Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurochem Res ; 49(2): 348-362, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37812268

RESUMO

Melittin, a principal constituent of honeybee venom, exhibits diverse biological effects, encompassing anti-inflammatory capabilities and neuroprotective actions against an array of neurological diseases. In this study, we probed the prospective protective influence of melittin on cerebral ischemia, focusing on its anti-inflammatory activity. Mechanistically, we explored whether monocyte chemotactic protein-induced protein 1 (MCPIP1, also known as ZC3H12A), a recently identified zinc-finger protein, played a role in melittin-mediated anti-inflammation and neuroprotection. Male C57/BL6 mice were subjected to distal middle cerebral artery occlusion to create a focal cerebral cortical ischemia model, with melittin administered intraperitoneally. We evaluated motor functions, brain infarct volume, cerebral blood flow, and inflammatory marker levels within brain tissue, employing quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assays, and western blotting. In vitro, an immortalized BV-2 microglia culture was stimulated with lipopolysaccharide (LPS) to establish an inflammatory cell model. Post-melittin exposure, cell viability, and cytokine expression were examined. MCPIP1 was silenced using siRNA in LPS-induced BV-2 cells, with the ensuing nuclear translocation of nuclear factor-κB assessed through cellular immunofluorescence. In vivo, melittin enhanced motor functions, diminished infarction, fostered blood flow restoration in ischemic brain regions, and markedly inhibited the expression of inflammatory cytokines (interleukin-1ß, interleukin-6, tumor necrosis factor-α, and nuclear factor-κB). In vitro, melittin augmented MCPIP1 expression in LPS-induced BV-2 cells and ameliorated inflammation-induced cell death. The neuroprotective effect conferred by melittin was attenuated upon MCPIP1 knockdown. Our findings establish that melittin-induced tolerance to ischemic injury is intrinsically linked with its anti-inflammatory capacity. Moreover, MCPIP1 is, at the very least, partially implicated in this process.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Camundongos , Masculino , Animais , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Meliteno/farmacologia , Meliteno/uso terapêutico , Meliteno/genética , Regulação para Cima , Lipopolissacarídeos/farmacologia , Estudos Prospectivos , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Isquemia/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Microglia/metabolismo
2.
Appl Microbiol Biotechnol ; 108(1): 496, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39466458

RESUMO

Melittin is a bioactive peptide and the predominant component in bee venom (BV), studied for its many medical properties, such as antibacterial, anti-inflammatory, anti-arthritis, nerve damage reduction, and muscle cell regeneration. Melittin is primarily obtained through natural extraction and chemical synthesis; however, both methods have limitations and cannot be used for mass production. This study established a heterologous melittin expression system in the probiotic yeast Kluyveromyces marxianus. This yeast was selected for its advantages in stress tolerance and high secreted protein yields, simplifying purification. A > 95% high-purity melittin (MET) and its precursor promelittin (ProMET) were successfully produced and purified at 1.68 µg/mL and 3.33 µg/mL concentrations and verified through HPLC and mass spectrum. The functional test of the NSC-34 cell regeneration revealed that MET achieved the best activity compared to ProMET and the natural-extracted BV groups. Growth-related gene expressions were evaluated, including microtubule-associated protein 2 (MAP2), microtubule-associated protein Tau (MAPT), growth-associated protein 43 (GAP-43), choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), and acetylcholine esterase (AChE). The results indicated that treating MET increased MAP2, GAP-43, and VAChT expressions, in which cholinergic signaling is related to neurological functions. A heterologously expressed melittin in a probiotic yeast and its potential for promoting NSC-34 regeneration described here facilitate commercial and therapeutic use. KEY POINTS: • MET and its precursor ProMET were successfully hetero-expressed in K. marxianus • > 95% high-purity MET and ProMET were purified at 1.68 µg/mL and 3.33 µg/mL • MET has no cytotoxicity toward NSC-34 and significantly promotes NSC-34 growth.


Assuntos
Kluyveromyces , Meliteno , Probióticos , Meliteno/genética , Meliteno/farmacologia , Meliteno/metabolismo , Camundongos , Animais , Kluyveromyces/genética , Kluyveromyces/metabolismo , Linhagem Celular , Regeneração/efeitos dos fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Expressão Gênica
3.
Fish Shellfish Immunol ; 138: 108817, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37230309

RESUMO

The frequent occurrence of diseases seriously hampers the sustainable development of the spotted knifejaw (Oplegnathus punctatus) breeding industry. Our previous genome-wide scan and cross-species comparative genomic analysis revealed that the immune gene family (Toll-like receptors, TLR) members of O. punctatus underwent a significant contraction event (tlr1, tlr2, tlr14, tlr5, and tlr23). To address immune genetic contraction may result in reduced immunity, we investigated whether adding different doses (0, 200, 400, 600, and 800 mg/kg) of immune enhancers (tea polyphenols, astaxanthin, and melittin) to the bait after 30 days of continuous feeding could stimulate the immune response of O. punctatus. We found that the expression of tlr1, tlr14, tlr23 genes in immune organs (spleen and head kidney) was stimulated when tea polyphenols were added at 600 mg/kg. The tlr2 (400 mg/kg), tlr14 (200 mg/kg), tlr5 (200 mg/kg), and tlr23 (200 mg/kg) genes expression of intestine were elevated in the tea polyphenol group. When the addition of astaxanthin is 600 mg/kg, it can effectively stimulate the expression of tlr14 gene in immune organs (liver, spleen and head kidney). In the astaxanthin group, the expression of the genes tlr1 (400 mg/kg), tlr14 (600 mg/kg), tlr5 (400 mg/kg) and tlr23 (400 mg/kg) reached their highest expression in the intestine. Besides, the addition of 400 mg/kg of melittin can effectively induce the expression of tlr genes in the liver, spleen and head kidney, except the tlr5 gene. The tlr-related genes expression in the intestine was not significantly elevated in the melittin group. We hypothesize that the immune enhancers could enhance the immunity of O. punctatus by increasing the expression of tlr genes, and thereby leading to increased resistance to diseases. Meanwhile, our findings further demonstrated that significant increases in weight gain rate (WGR), visceral index (VSI), and feed conversion rate (FCR) were observed at 400 mg/kg, 200 mg/kg and 200 mg/kg of tea polyphenols, astaxanthin and melittin in the diet, respectively. Overall, our study provided valuable insights for future immunity enhancement and viral infection prevention in O. punctatus, as well as offered guidance for the healthy development of the O. punctatus breeding industry.


Assuntos
Receptor 1 Toll-Like , Receptor 2 Toll-Like , Animais , Receptor 2 Toll-Like/genética , Receptor 1 Toll-Like/genética , Regulação da Expressão Gênica , Receptor 5 Toll-Like/genética , Meliteno/genética , Meliteno/metabolismo , Peixes/metabolismo , Imunidade , Chá
4.
Prep Biochem Biotechnol ; 53(7): 849-859, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36508334

RESUMO

The antimicrobial peptide was considered an important target for developing novel antibacterial drugs. However, the unstable biological activity and the low antibacterial activity are challenges for the application of recombinant proteins. In this study, the fusion peptide of Melittin-Thanatin (MT) was designed and produced, and its derivative sequence (MT-W) was obtained by replacing three glycines (Gly, G) with tryptophan (Trp, W). The MT-W peptide were synthesized in Bacillus subtilis WB700 by EDDIE self-cleavage protein fusion. Compared with MT, MT-W exhibited 2-4 times higher antibacterial rate against Escherichia coli K88. In addition, MT-W showed lower cytotoxicity (IC50 > 300 mg·L-1) to the red blood cell, and more stable biological activities under the conditions of different temperatures (20, 30, 40, 50, 60, 70, 80, and 90 °C), pH values (2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, and 9.0) and different proteases. Especially, MT-W showed a broader antibacterial effect on three drug-resistant strains than florfenicol and oxytetracycline calcium. In conclusion, compared with MT, the MT-W showed increased antibacterial activity, stability, lower cytotoxicity, and broader antimicrobial effect. Therefore, it would become a promising alternative to conventional antibiotics.


Assuntos
Meliteno , Triptofano , Meliteno/farmacologia , Meliteno/genética , Triptofano/genética , Glicina/farmacologia , Proteínas Recombinantes/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Mutação , Testes de Sensibilidade Microbiana
5.
Biochem Biophys Res Commun ; 451(4): 650-5, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25130460

RESUMO

Cecropin A-melittin (CAM), a chimeric antimicrobial peptide with potent antimicrobial activity, is threatened by some special extracellular proteases when used to deal with certain drug-resistant pathogenic microbes in the gastrointestinal tract. Thus, a four-tryptophan-substitution mutant (CAM-W) from CAM was developed via the replacement of special amino acid residues to enhance the antimicrobial potency and to improve the proteolytic stability of this agent. The pharmaceutical index of CAM-W was investigated, with a focus on biological potency, cytotoxicity, and proteolytic stability, as well as pH and thermal resistance. CAM-W exhibited potent antimicrobial activity and was approximately 3-12 times higher than that of CAM. CAM-W also exhibited a strong antifungal activity against a series of common pathogenic fungi, in a lower IC50 range between 2.1mg/L and 3.3mg/L than that of its reference CAM ranging from 9.8mg/L to 14.2mg/L. Besides, CAM-W showed moderate cytotoxicity (IC50>300mg/L) in erythrocyte lysis test. In addition, CAM-W overcame challenges under various conditions, including specific temperatures (20, 30, 40, 50, 60, 70, 80, and 90°C), pH values (2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, and 9.0), and proteases (trypsin, pepsin, human neutrophil elastase, Pseudomonas aeruginosa elastase, and Staphylococcus aureus V8 protease) that are commonly present in human gastrointestinal tract. These results suggest that the four-tryptophan-substitution can confer CAM-W with a high pharmaceutical index, which is important for CAM-W to become a potential alternative to conventional antibiotics against bacteria and fungi associated with gastroenteritis.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Estabilidade de Medicamentos , Meliteno/genética , Anti-Infecciosos , Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Gastroenterite/tratamento farmacológico , Gastroenterite/microbiologia , Humanos , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Peptídeo Hidrolases , Proteólise , Temperatura
6.
Protein Expr Purif ; 101: 99-105, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24955549

RESUMO

M-IL-2((88)Arg, (125)Ala) is a fusion protein comprising melittin genetically linked to a mutant human interleukin 2((88)Arg, (125)Ala). In this study, we constructed an expression system of M-IL-2((88)Arg, (125)Ala) in Pichia pastoris: GS115/pPICZα A/M-IL-2((88)Arg, (125)Ala), and achieved the high-level expression of the fusion protein. The maximum yield of the fusion protein M-IL-2((88)Arg, (125)Ala) reached up to 814.5mg/L, higher than the system in Escherichiacoli. The fusion protein was purified by means of ammonium sulfate fractionation, dialysis and nickel ion affinity chromatography. The molecular weight of the fusion protein is about 26kDa, conforming the theoretical value. And M-IL-2((88)Arg, (125)Ala) possesses strong antigen-specificity by Western blot detection. Bioassay results indicated that the fusion protein could directly inhibit the growth of human ovarian cancer SKOV3 cells and Hela cells in vitro. This study provides an alternative strategy for large-scale production of bioactive M-IL-2((88)Arg, (125)Ala) using P. pastoris as an expression host and paves the way to clinical practice.


Assuntos
Interleucina-2/genética , Meliteno/genética , Neoplasias Ovarianas/tratamento farmacológico , Pichia/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatografia de Afinidade , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Expressão Gênica , Vetores Genéticos/genética , Células HeLa , Humanos , Dados de Sequência Molecular , Pichia/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética
7.
Mol Biol Rep ; 41(7): 4163-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24871991

RESUMO

Hybridizing of different antimicrobial peptides (AMPs) has been a common practice for obtaining novel hybrid AMPs with elevated antibacterial activity but minimized cytotoxicity. The hybrid peptides melittin (1-13)-LL37 (17-30) (M-L) combining the hydrophobic N-terminal fragment of melittin (M) with the core antibacterial fragment of LL37 (L), was designed for the first time to explore its antibacterial activity and hemolytic activity against bacteria and sheep erythrocyte respectively. Results showed that M-L had an even more potent antibacterial activity against all indicator strains (especially gram-positive bacteria) than M and L, whereas didn't exhibit hemolytic activity to sheep erythrocytes, implying M-L can be served as a potential therapeutic drug to substitute traditional antibiotics. However the high expense of biosynthesis limited its further research, therefore fusion expression of M-L was carried out in Escherichia coli (E. coli) for overproducing the hybrid peptide so as to solve the problem. The DNA sequence encoding M-L with preferred codons was cloned into the pET-SUMO vector for protein expression in E. coli BL21 (DE3). After IPTG induction, approximately 165 mg soluble fusion protein SUMO-M-L was recovered per liter supernatant of the fermentation ultrasonic lysate using Ni-NTA Sepharose column (92 % purity). And 23 mg recombinant M-L was obtained per liter culture after cleavage of SUMO protease and purification of Ni-NTA Sepharose column. In sum, this research not only supplied an effective approach for overproducing hybrid peptide M-L, but paved the way for its further exploration on pharmaceutical potential and medical importance.


Assuntos
Antibacterianos/biossíntese , Catelicidinas/química , Meliteno/química , Sequência de Aminoácidos , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos , Abelhas , Catelicidinas/genética , Catelicidinas/farmacologia , Células Cultivadas , Desenho de Fármacos , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Expressão Gênica , Hemólise/efeitos dos fármacos , Humanos , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/crescimento & desenvolvimento , Meliteno/genética , Meliteno/farmacologia , Micrococcus luteus/efeitos dos fármacos , Micrococcus luteus/crescimento & desenvolvimento , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Ovinos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
8.
J Integr Med ; 22(1): 72-82, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38307819

RESUMO

OBJECTIVE: Melittin and its derivative have been developed to support effective gene delivery systems. Their ability to facilitate endosomal release enhances the delivery of nanoparticle-based gene therapy. Nevertheless, its potential application in the context of viral vectors has not received much attention. Therefore, we would like to optimize the rAAV vector by Melittin analog to improve the transduction efficiency of rAAV in liver cancer cells and explore the mechanism of Melittin analog on rAAV. METHODS: Various melittin-derived peptides were inserted into loop VIII of the capsid protein in recombinant adeno-associated virus vectors. These vectors carrying either gfp or fluc genes were subjected to quantitative polymerase chain reaction assays and transduction assays in human embryonic kidney 293 (HEK293T) cells to investigate the efficiency of vector production and gene delivery. In addition, the ability of a specific p5RHH-rAAV vector to deliver genes was examined through in vitro transduction of different cultured cells and in vivo tail vein administration to C57BL/6 mice. Finally, the intricate details of the vector-mediated transduction mechanisms were explored by using pharmacological inhibitors of every stage of the rAAV2 intracellular life cycle. RESULTS: A total of 76 melittin-related peptides were identified from existing literature. Among them, CMA-3, p5RHH and aAR3 were found to significantly inhibit transduction of rAAV2 vector crude lysate. The p5RHH-rAAV2 vectors efficiently transduced not only rAAV-potent cell lines but also cell lines previously considered resistant to rAAV. Mechanistically, bafilomycin A1, a vacuolar endosome acidification inhibitor, completely inhibited the transgene expression mediated by the p5RHH-rAAV2 vectors. Most importantly, p5RHH-rAAV8 vectors also increased hepatic transduction in vivo in C57BL/6 mice. CONCLUSION: The incorporation of melittin analogs into the rAAV capsids results in a significant improvement in rAAV-mediated transgene expression. While further modifications remain an area of interest, our studies have substantially broadened the pharmacological prospects of melittin in the context of viral vector-mediated gene delivery. Please cite this article as: Meng J, He Y, Yang H, Zhou L, Wang S, Feng X, Al-shargi OY, Yu X, Zhu L, Ling, C. Melittin analog p5RHH enhances recombinant adeno-associated virus transduction efficiency. J Integr Med. 2024; 22(1): 72-82.


Assuntos
Dependovirus , Meliteno , Camundongos , Masculino , Animais , Humanos , Dependovirus/genética , Meliteno/farmacologia , Meliteno/genética , Transdução Genética , Células HEK293 , Camundongos Endogâmicos C57BL , Vetores Genéticos
9.
Iran Biomed J ; 28(1): 46-52, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38445441

RESUMO

Background: The potential anticancer effect of melittin has motivated scientists to find its exact molecular mechanism of action. There are few data on the effect of melittin on the UPR and autophagy as two critical pathways involved in tumorigenesis of colorectal and drug resistance. This study aimed to investigate the effect of melittin on these pathways in the colorectal cancer (CRC) HCT116 cells. Methods: MTT method was carried out to assess the cytotoxicity of melittin on the HCT116 cell line for 24, 48, and 72 h. After selecting the optimal concentrations and treatment times, the gene expression of autophagy flux markers (LC3-ßII and P62) and UPR markers (CHOP and XBP-1s) were determined using qRT-PCR. The protein level of autophagy initiation marker (Beclin1) was also determined by Western blotting. Results: MTT assay showed a cytotoxic effect of melittin on the HCT116 cells. The increase in LC3-ßII and decrease in P62 mRNA expression levels, along with the elevation in the Beclin1 protein level, indicated the stimulatory role of melittin on the autophagy. Melittin also significantly enhanced the CHOP and XBP-1s expressions at mRNA level, suggesting the positive role of the melittin on the UPR activation. Conclusion: This study shows that UPR and autophagy can potentially be considered as two key signaling pathways in tumorigenesis, which can be targeted by the BV melittin in the HCT116 cells. Further in vivo evaluations are recommended to verify the obtained results.


Assuntos
Neoplasias Colorretais , Meliteno , Humanos , Células HCT116 , Meliteno/farmacologia , Meliteno/genética , Meliteno/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Resposta a Proteínas não Dobradas , Autofagia , RNA Mensageiro/metabolismo , Carcinogênese , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética
10.
J Biol Chem ; 287(3): 1980-95, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22128186

RESUMO

The bee venom antimicrobial peptide, melittin, besides showing versatile activity against microorganisms also neutralizes lipopolysaccharide (LPS)-induced proinflammatory responses in macrophage cells. However, how the amino acid sequence of melittin contributes in its anti-inflammatory properties is mostly unknown. To determine the importance of the leucine zipper sequence of melittin in its neutralization of LPS-induced inflammatory responses in macrophages and interaction with LPS, anti-inflammatory properties of melittin and its three analogues and their interactions with LPS were studied in detail. Two of these analogues, namely melittin Mut-1 (MM-1) and melittin Mut-2 (MM-2), possess leucine to alanine substitutions in the single and double heptadic leucine residue(s) of melittin, respectively, whereas the third analogue is a scrambled peptide (Mel-SCR) that contains the amino acid composition of melittin with minor rearrangement in its leucine zipper sequence. Although MM-1 partly inhibited the production of proinflammatory cytokines in RAW 264.7 and rat primary macrophage cells in the presence of LPS, MM-2 and Mel-SCR were negligibly active. A progressive decrease in interaction of melittin with LPS, aggregation in LPS, and dissociation of LPS aggregates with alteration in the leucine zipper sequence of melittin was observed. Furthermore, with alteration in the leucine zipper sequence of melittin, these analogues failed to exhibit cellular responses associated with neutralization of LPS-induced inflammatory responses in macrophage cells by melittin. The data indicated a probable important role of the leucine zipper sequence of melittin in neutralizing LPS-induced proinflammatory responses in macrophage cells as well as in its interaction with LPS.


Assuntos
Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Meliteno/genética , Meliteno/farmacologia , Substituição de Aminoácidos , Animais , Linhagem Celular , Citocinas/biossíntese , Citocinas/genética , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Zíper de Leucina/genética , Lipopolissacarídeos/antagonistas & inibidores , Macrófagos/patologia , Meliteno/metabolismo , Camundongos , Mutação de Sentido Incorreto , Ratos
11.
Biochim Biophys Acta ; 1818(5): 1274-83, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22290189

RESUMO

Antimicrobial peptides often permeabilize biological membranes via a pore mechanism. Two pore types have been proposed: toroidal, where the pore is partly lined by lipid, and barrel-stave, where a cylindrical pore is completely lined by peptides. What drives the preference of antimicrobial peptides for a certain pore type is not yet fully understood. According to neutron scattering and oriented circular dichroism, melittin and MG-H2 induce toroidal pores whereas alamethicin forms barrel-stave pores. In previous work we found that indeed melittin seems to favor toroidal pores whereas alamethicin favors cylindrical pores. Here we designed mutants of these two peptides and the magainin analog MG-H2, aimed to probe how the distribution of charges along the helix and its imperfectly amphipathic structure influence pore formation. Molecular dynamics (MD) simulations of the peptides in a pre-formed cylindrical pore have been performed. The duration of the simulations was 136ns to 216ns. We found that a melittin mutant with lysine 7 neutralized favors cylindrical pores whereas a MG-H2 mutant with lysines in the N-terminal half of these peptides neutralized and an alamethicin mutant with a positive charge at the position 7 form semitoroidal pores. These results suggest that charged residues within the N-terminal half are important for toroidal pore formation. Toroidal pores produced by MG-H2 are more disordered than the melittin pores, likely because of the charged residues located in the middle of the MG-H2 helix (K11 and K14). Imperfect amphipathicity of melittin seems to play a role in its preference for toroidal pores since the substitutions of charged residues located within the nonpolar face by hydrophobic residues suppress evolution of a toroidal pore. The mutations change the position of lysine 7 near the N-terminus, relative to the lower leaflet headgroups. The MD simulations also show that the melittin P14A mutant forms a toroidal pore, but its configuration diverges from that of melittin and it is probably metastable.


Assuntos
Alameticina/química , Meliteno/química , Membranas Artificiais , Complexos Multiproteicos/química , Substituição de Aminoácidos , Meliteno/genética , Complexos Multiproteicos/genética , Mutação de Sentido Incorreto , Estrutura Secundária de Proteína
12.
Bioconjug Chem ; 24(12): 1998-2007, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24266665

RESUMO

Monitoring insertion and orientation of peptides in situ on cell membranes remains a challenge. To this end, we synthesized an l-amino acid (AFaa) containing a dual-fluorescence dye of the 3-hydroxyflavone family, as a side chain. In contrast to other labeling approaches using a flexible linker, the AFaa fluorophore, introduced by solid phase synthesis into desired position of a peptide, is attached closely to its backbone with well-defined orientation, and, therefore, could reflect its localization in the membrane. This concept was validated by replacing the leucine-9 (L9) and tryptophan-19 (W19) residues by AFaa in melittin, a well-studied membrane-active peptide. Due to high sensitivity of AFaa dual emission to the environment polarity, we detected a much deeper insertion of L9 peptide position into the bilayer, compared to the W19 position. Moreover, using fluorescence microscopy with a polarized light excitation, we found different orientation of AFaa at L9 and W19 positions of melittin in the bilayers of giant vesicles and cellular membranes. These results suggested that in the natural membranes, similarly to the model lipid bilayers, melittin is preferentially oriented parallel to the membrane surface. The developed amino acid and the proposed methodology will be of interest to study other membrane peptides.


Assuntos
Aminoácidos/química , Membrana Celular/química , Membrana Celular/metabolismo , Corantes Fluorescentes/química , Meliteno/química , Meliteno/metabolismo , Substituição de Aminoácidos , Desenho de Fármacos , Flavonoides/síntese química , Flavonoides/química , Corantes Fluorescentes/síntese química , Interações Hidrofóbicas e Hidrofílicas , Meliteno/genética , Modelos Moleculares , Estrutura Secundária de Proteína
13.
Appl Microbiol Biotechnol ; 97(7): 2877-84, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23149754

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), as an anticancer protein with tumor-selective apoptotic activity, has been examined for use in clinical application. Melittin, an antibacterial peptide isolated from the bee Apis mellifera, has shown strong cytotoxicity to both tumor and normal cells. To ameliorate the cytotoxicity of melittin on cells and enhance the activity of TRAIL on cancer cells, we constructed a novel fusion protein, sTRAIL-melittin, containing a small ubiquitin-related modifier (SUMO) tag and expressed this fusion protein in Escherichia coli. Data showed that expression of the soluble fusion protein with the SUMO tag was approximately 85% of total target protein which was much higher than that without the SUMO tag (approximately 10%); sTRAIL-melittin was easily purified using Ni-NTA affinity chromatography and the tag was removed easily using SUMO-specific protease. To assay anticancer activity and side effects, methyl thiazolyl tetrazolium, hemolytic, and apoptosis assays were employed. Results demonstrated that sTRAIL-melittin had cytotoxic and apoptotic activity in K562 leukemia cells and HepG2 liver carcinoma cells, while it had only a minimal effect on erythrocytes and normal HEK293 cells. This indicates that the cytotoxicity of sTRAIL-melittin in normal cells was low and the anticancer activity of the fusion protein in tumor cells was significantly enhanced compared with sTRAIL (P<0.01). Furthermore, we found that sTRAIL-melittin also showed antibacterial activity to Staphylococcus aureus due to the presence of the melittin domain. Therefore, TRAIL fused with an antibacterial peptide may be a promising novel TRAIL-based anticancer treatment strategy.


Assuntos
Antibacterianos/metabolismo , Antineoplásicos/metabolismo , Meliteno/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Apoptose , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/genética , Expressão Gênica , Humanos , Meliteno/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/genética
14.
J Integr Med ; 21(1): 106-115, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36333178

RESUMO

OBJECTIVE: Melittin, a cell-penetrating peptide, improves the efficiency of many non-viral gene delivery vectors, yet its application in viral vectors has not been well studied. The non-pathogenic recombinant adeno-associated virus (rAAV) vector is an ideal in vivo gene delivery vector. However, its full potential will only be achieved after improvement of its transduction efficiency. To improve the transduction efficiency of rAAV2 vectors, we attempted to develop a melittin-based rAAV2 vector delivery strategy. METHODS: The melittin peptide was inserted into the rAAV2 capsid either in the loop VIII of all viral proteins (VPs) or at the N terminus of VP2. Various rAAV2-gfp or -fluc vectors were subjected to quantitative real-time polymerase chain reaction and Western blot assays to determine their titers and integrity of capsid proteins, respectively. Alternatively, the vectors based on wild-type capsid were pre-incubated with melittin, followed by transduction of cultured cells or tail vein administration of the mixture to C57BL/6 and BALB/c nude mice. In vivo bioluminescence imaging was performed to evaluate the transgene expression. RESULTS: rAAV2 vectors with melittin peptide inserted in the loop VIII of VPs had low transduction efficiency, probably due to dramatically reduced ability to bind to the target cells. Fusing the melittin peptide at the N-terminus of VP2 produced vectors without the VP2 subunit. Interestingly, among the commonly used rAAV vectors, pre-incubation of rAAV2 and rAAV6 vectors with melittin significantly enhanced their transduction efficiency in HEK293 and Huh7 cells in vitro. Melittin also had the ability to increase the rAAV2-mediated transgene expression in mouse liver in vivo. Mechanistically, melittin did not change the vector-receptor interaction. Moreover, cell counting kit-8 assays of cultured cells and serum transaminase levels indicated melittin had little cytotoxicity. CONCLUSION: Pre-incubation with melittin, but not insertion of melittin into the rAAV2 capsid, significantly enhanced rAAV2-mediated transgene expression. Although further in vivo evaluations are required, this research not only expands the pharmacological potential of melittin, but also provides a new strategy to improve gene therapy mediated by rAAV vectors.


Assuntos
Dependovirus , Meliteno , Camundongos , Animais , Humanos , Meliteno/farmacologia , Meliteno/genética , Dependovirus/genética , Sorogrupo , Células HEK293 , Camundongos Nus , Camundongos Endogâmicos C57BL , Transgenes , Vetores Genéticos/genética
15.
BMC Complement Med Ther ; 23(1): 132, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098530

RESUMO

BACKGROUND: Apitherapy is an emerging field in cancer research, particularly in developing communities. The potency of Melittin (MEL), a major constituent in bee venom is accounted for the cytotoxic capacity against cancer cells. It is postulated that the genotype of bees and the time of venom collection influences its specific activity against certain types of cancer. METHOD: Hereby, Jordanian crude bee venom (JCBV) was collected during different seasons of the year, specifically spring, summer and autumn and investigated for in vitro antitumour effects. Venom collected during springtime comprised the highest quantity of MEL in comparison to venom collected some other time. Springtime-collected JCBV extract and MEL were tested on an immortal myelogenous leukaemia cell line, namely K562 leukemic cells. Treated cells were examined for cell modality via flow cytometry analysis and cell death mediating gene expressions. RESULTS: Springtime-collected JCBV extract and MEL showed an IC50 of 3.7 ± 0.37 µg/ml and 1.84 ± 0.75 µg/ml, respectively. In comparison to JCBV and positive control, MEL-treated cells exhibited late apoptotic death with a moderate cellular arrest at G0/G1 and an increase of cell number at G2/M phase. Expression of NF-κB/MAPK14 axis was inhibited in MEL and JCBV-treated cells, as well as expression of c-MYC and CDK4. Moreover, marked upregulation in ABL1, JUN and TNF was observed. In conclusion, springtime-collected JCBV showed the highest content of MEL while both JCBV and pure MEL showed apoptotic, necrotic, and cell cycle arrest efficiency against K562 leukemic cells. CONCLUSION: Integration of bee venom in chemotherapy needs more investigation and should be carefully translated into clinical use. During such translation, the correlation of bee genotype, collection time and concentration of MEL in CBV should be profiled.


Assuntos
Venenos de Abelha , Leucemia , Humanos , Abelhas , Animais , Meliteno/farmacologia , Meliteno/química , Meliteno/genética , Venenos de Abelha/farmacologia , Células K562 , Peptídeos , Leucemia/tratamento farmacológico
16.
J Cancer Res Clin Oncol ; 149(19): 17709-17726, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919474

RESUMO

BACKGROUND: Melittin is a water-soluble cationic peptide derived from bee venom that has been thoroughly studied for the cure of different cancers. However, the unwanted interactions of melittin produce hemolytic and cytotoxic effects that hinder their therapeutic applications. To overcome the shortcomings, numerous research groups have adopted different approaches, including conjugation with tumor-targeting proteins, gene therapy, and encapsulation in nanoparticles, to reduce the non-specific cytotoxic effects and potentiate their anti-cancerous activity. PURPOSE: This article aims to provide mechanistic insights into the chemopreventive activity of melittin and its nanoversion in combination with standard anti-cancer drugs for the treatment of cancer. METHODS: We looked over the pertinent research on melittin's chemopreventive properties in online databases such as PubMed and Scopus. CONCLUSION: In the present article, the anti-cancerous effects of melittin on different cancers have been discussed very nicely, as have their possible mechanisms of action to act against different tumors. Besides, it interacts with different signal molecules that regulate the diverse pathways of cancerous cells, such as cell cycle arrest, apoptosis, metastasis, angiogenesis, and inflammation. We also discussed the recent progress in the synergistic combination of melittin with standard anti-cancer drugs and a nano-formulated version of melittin for targeted delivery to improve its anticancer potential.


Assuntos
Antineoplásicos , Neoplasias , Animais , Meliteno/farmacologia , Meliteno/química , Meliteno/genética , Neoplasias/patologia , Antineoplásicos/uso terapêutico , Técnicas de Cultura de Células , Modelos Animais , Proliferação de Células
17.
Biophys J ; 100(5): 1353-61, 2011 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-21354409

RESUMO

The interaction of a melittin mutant with a 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC)-supported lipid bilayer was studied with the use of time-resolved evanescent wave-induced fluorescence spectroscopy (TREWIFS) and evanescent wave-induced time-resolved fluorescence anisotropy measurements (EW-TRAMs). The mutant peptide was labeled at position K14 with AlexaFluor 430 and retained the lytic activity characteristic of native melittin. The fluorescence decay kinetics of the conjugate was found to be biexponential with a short-lived component, τ(1), due to photoinduced electron transfer between AlexaFluor 430 and proximal side chains within or between the peptides. The longer-lived component, τ(2), was sensitive to the polarity of the microenvironment at or near the K14 position of the peptide. Upon interaction with a DPPC-supported bilayer, the proportional contribution of τ(1) increased, indicating a conformational change of the peptide. The values of τ(1) and τ(2) indicate that the AlexaFluor 430 probe experienced an environment with an equivalent polarity no less than that of methanol. EW-TRAMs data from the melittin mutant revealed hindered rotational motions of the AlexaFluor 430 probe both in the plane and perpendicular to the plane of the supported lipid bilayer. The data indicate a highly ordered and polar environment near the center of the melittin helix consistent with the formation of a toroidal pore.


Assuntos
Bicamadas Lipídicas/metabolismo , Meliteno/química , Meliteno/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Sequência de Aminoácidos , Polarização de Fluorescência , Bicamadas Lipídicas/química , Meliteno/genética , Dados de Sequência Molecular , Mutação , Ligação Proteica , Espectrometria de Fluorescência
18.
Biochim Biophys Acta ; 1798(8): 1494-502, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20188066

RESUMO

Antimicrobial peptides (AMPs) are small, usually cationic peptides, which permeabilize bacterial membranes. Understanding their mechanism of action might help design better antibiotics. Using an implicit membrane model, modified to include pores of different shapes, we show that four AMPs (alamethicin, melittin, a magainin analogue, MG-H2, and piscidin 1) bind more strongly to membrane pores, consistent with the idea that they stabilize them. The effective energy of alamethicin in cylindrical pores is similar to that in toroidal pores, whereas the effective energy of the other three peptides is lower in toroidal pores. Only alamethicin intercalates into the membrane core; MG-H2, melittin and piscidin are located exclusively at the hydrophobic/hydrophilic interface. In toroidal pores, the latter three peptides often bind at the edge of the pore, and are in an oblique orientation. The calculated binding energies of the peptides are correlated with their hemolytic activities. We hypothesize that one distinguishing feature of AMPs may be the fact that they are imperfectly amphipathic which allows them to bind more strongly to toroidal pores. An initial test on a melittin-based mutant seems to support this hypothesis.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Alameticina/química , Alameticina/metabolismo , Animais , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Hemolíticos/química , Hemolíticos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Técnicas In Vitro , Magaininas/química , Magaininas/metabolismo , Meliteno/química , Meliteno/genética , Meliteno/metabolismo , Membranas/química , Membranas/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Termodinâmica
19.
Protein Expr Purif ; 76(2): 184-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21144903

RESUMO

A recombinant targeted toxin (Disintegrin-Conj-Mel) was developed that contained a disintegrin connected to cytotoxic melittin by a urokinase plasminogen activator (uPA)-cleavable linker. This recombinant targeted toxin was designed to target tumor cells expressing integrin αvß3. The fusion gene was expressed under the control of the promoter AOX1 in Pichia pastoris. Electrophoresis by SDS-PAGE and Western blotting assays of culture broth from a methanol-induced expression strain, demonstrated that an approximately 13 kDa fusion protein was secreted into the culture medium. The molecular weight was that calculated from the predicted amino acid sequence. After optimizing the growth and expression conditions of the transformant strain, about 160 mg/L of the recombinant protein was achieved. The recombinant protein was purified to more than 95% purity by SP Sepharose ion exchange chromatography and Sephadex G-75 gel filtration chromatography. The hemolysis bioactivity test revealed that the fusion had no hemolytic activity or cytotoxicity against uPA non-expressing 293 cells, but exerted dose-dependent inhibition on uPA-expressing A549 cell proliferation.


Assuntos
Clonagem Molecular/métodos , Venenos de Crotalídeos/isolamento & purificação , Desintegrinas/isolamento & purificação , Pichia/metabolismo , Proteínas Recombinantes de Fusão/isolamento & purificação , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Linhagem Celular Tumoral , Cromatografia em Gel , Venenos de Crotalídeos/biossíntese , Venenos de Crotalídeos/genética , Desintegrinas/biossíntese , Desintegrinas/genética , Eletroforese em Gel de Poliacrilamida , Eritrócitos , Hemólise , Humanos , Meliteno/genética , Meliteno/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Pichia/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Ativador de Plasminogênio Tipo Uroquinase/genética
20.
Nature ; 437(7055): 159-62, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16136146

RESUMO

Marked hydration changes occur during the self-assembly of the melittin protein tetramer in water. Hydrophobicity induces a drying transition in the gap between simple sufficiently large (more than 1 nm(2)) strongly hydrophobic surfaces as they approach each other, resulting in the subsequent collapse of the system, as well as a depletion of water next to single surfaces. Here we investigate whether the hydrophobic induced collapse of multidomain proteins or the formation of protein oligimers exhibits a similar drying transition. We performed computer simulations to study the collapse of the tetramer of melittin in water, and observed a marked water drying transition inside a nanoscale channel of the tetramer (with a channel size of up to two or three water-molecule diameters). This transition, although occurring on a microscopic length scale, is analogous to a first-order phase transition from liquid to vapour. We find that this drying is very sensitive to single mutations of the three isoleucines to less hydrophobic residues and that such mutations in the right locations can switch the channel from being dry to being wet. Thus, quite subtle changes in hydrophobic surface topology can profoundly influence the drying transition. We show that, even in the presence of the polar protein backbone, sufficiently hydrophobic protein surfaces can induce a liquid-vapour transition providing an enormous driving force towards further collapse. This behaviour was unexpected because of the absence of drying in the collapse of the multidomain protein 2,3-dihydroxybiphenyl dioxygenase (BphC).


Assuntos
Meliteno/química , Meliteno/metabolismo , Água/química , Dioxigenases/química , Dioxigenases/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Meliteno/genética , Modelos Moleculares , Mutação/genética , Estrutura Quaternária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/efeitos dos fármacos , Água/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA