Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 506
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 156(1-2): 261-76, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24439381

RESUMO

Traumatic events generate some of the most enduring forms of memories. Despite the elevated lifetime prevalence of anxiety disorders, effective strategies to attenuate long-term traumatic memories are scarce. The most efficacious treatments to diminish recent (i.e., day-old) traumata capitalize on memory updating mechanisms during reconsolidation that are initiated upon memory recall. Here, we show that, in mice, successful reconsolidation-updating paradigms for recent memories fail to attenuate remote (i.e., month-old) ones. We find that, whereas recent memory recall induces a limited period of hippocampal neuroplasticity mediated, in part, by S-nitrosylation of HDAC2 and histone acetylation, such plasticity is absent for remote memories. However, by using an HDAC2-targeting inhibitor (HDACi) during reconsolidation, even remote memories can be persistently attenuated. This intervention epigenetically primes the expression of neuroplasticity-related genes, which is accompanied by higher metabolic, synaptic, and structural plasticity. Thus, applying HDACis during memory reconsolidation might constitute a treatment option for remote traumata.


Assuntos
Medo , Memória de Longo Prazo , Plasticidade Neuronal , Animais , Epigênese Genética , Hipocampo/metabolismo , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Masculino , Memória de Longo Prazo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Transcriptoma
2.
Cell ; 144(5): 810-23, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21376239

RESUMO

We report that, in the rat hippocampus, learning leads to a significant increase in extracellular lactate levels that derive from glycogen, an energy reserve selectively localized in astrocytes. Astrocytic glycogen breakdown and lactate release are essential for long-term but not short-term memory formation, and for the maintenance of long-term potentiation (LTP) of synaptic strength elicited in vivo. Disrupting the expression of the astrocytic lactate transporters monocarboxylate transporter 4 (MCT4) or MCT1 causes amnesia, which, like LTP impairment, is rescued by L-lactate but not equicaloric glucose. Disrupting the expression of the neuronal lactate transporter MCT2 also leads to amnesia that is unaffected by either L-lactate or glucose, suggesting that lactate import into neurons is necessary for long-term memory. Glycogenolysis and astrocytic lactate transporters are also critical for the induction of molecular changes required for memory formation, including the induction of phospho-CREB, Arc, and phospho-cofilin. We conclude that astrocyte-neuron lactate transport is required for long-term memory formation.


Assuntos
Astrócitos/metabolismo , Ácido Láctico/metabolismo , Memória de Longo Prazo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neurônios/metabolismo , Animais , Arabinose , Glicogênio/metabolismo , Hipocampo/metabolismo , Imino Furanoses , Memória de Longo Prazo/efeitos dos fármacos , Proteínas Musculares/metabolismo , Ratos , Álcoois Açúcares/farmacologia , Simportadores/metabolismo
3.
Mol Psychiatry ; 29(3): 718-729, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38123728

RESUMO

Chronic stress causes cognitive deficits, such as impairments in episodic-like hippocampus-dependent memory. Stress regulates an opioid-related neuropeptide named Nociceptin/Orphanin FQ (N/OFQ), the ligand of the G protein-coupled receptor NOP. Since this peptide has deleterious effects on memory, we hypothesized that the N/OFQ system could be a mediator of the negative effects of stress on memory. Chronic stress was mimicked by chronic exposure to corticosterone (CORT). The NOP receptor was either acutely blocked using selective antagonists, or knocked-down specifically in the hippocampus using genetic tools. Long-term memory was assessed in the object recognition (OR) and object location (OL) paradigms. Acute injection of NOP antagonists before learning had a negative impact on memory in naive mice whereas it restored memory performances in the chronic stress model. This rescue was associated with a normalization of neuronal cell activity in the CA3 part of the hippocampus. Chronic CORT induced an upregulation of the N/OFQ precursor in the hippocampus. Knock-down of the NOP receptor in the CA3/Dentate Gyrus region prevented memory deficits in the CORT model. These data demonstrate that blocking the N/OFQ system can be beneficial for long-term memory in a neuroendocrine model of chronic stress. We therefore suggest that NOP antagonists could be useful for the treatment of memory deficits in stress-related disorders.


Assuntos
Corticosterona , Modelos Animais de Doenças , Hipocampo , Memória de Longo Prazo , Receptor de Nociceptina , Nociceptina , Peptídeos Opioides , Receptores Opioides , Estresse Psicológico , Animais , Receptores Opioides/metabolismo , Camundongos , Estresse Psicológico/metabolismo , Masculino , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Peptídeos Opioides/metabolismo , Memória de Longo Prazo/efeitos dos fármacos , Memória de Longo Prazo/fisiologia , Antagonistas de Entorpecentes/farmacologia , Camundongos Endogâmicos C57BL , Cognição/efeitos dos fármacos , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/tratamento farmacológico
4.
Mol Psychiatry ; 29(3): 730-741, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38221548

RESUMO

Remote memory usually decreases over time, whereas remote drug-cue associated memory exhibits enhancement, increasing the risk of relapse during abstinence. Memory system consolidation is a prerequisite for remote memory formation, but neurobiological underpinnings of the role of consolidation in the enhancement of remote drug memory are unclear. Here, we found that remote cocaine-cue associated memory was enhanced in rats that underwent self-administration training, together with a progressive increase in the response of prelimbic cortex (PrL) CaMKII neurons to cues. System consolidation was required for the enhancement of remote cocaine memory through PrL CaMKII neurons during the early period post-training. Furthermore, dendritic spine maturation in the PrL relied on the basolateral amygdala (BLA) input during the early period of consolidation, contributing to remote memory enhancement. These findings indicate that memory consolidation drives the enhancement of remote cocaine memory through a time-dependent increase in activity and maturation of PrL CaMKII neurons receiving a sustained BLA input.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Cocaína , Consolidação da Memória , Neurônios , Córtex Pré-Frontal , Animais , Consolidação da Memória/efeitos dos fármacos , Consolidação da Memória/fisiologia , Cocaína/farmacologia , Masculino , Ratos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Memória de Longo Prazo/fisiologia , Sinais (Psicologia) , Ratos Sprague-Dawley , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Autoadministração , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/fisiologia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Memória/efeitos dos fármacos , Memória/fisiologia
5.
Proc Natl Acad Sci U S A ; 119(22): e2116797119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35613054

RESUMO

Long-term memory formation relies on synaptic plasticity, neuronal activity-dependent gene transcription, and epigenetic modifications. Multiple studies have shown that HDAC inhibitor (HDACi) treatments can enhance individual aspects of these processes and thereby act as putative cognitive enhancers. However, their mode of action is not fully understood. In particular, it is unclear how systemic application of HDACis, which are devoid of substrate specificity, can target pathways that promote memory formation. In this study, we explore the electrophysiological, transcriptional, and epigenetic responses that are induced by CI-994, a class I HDACi, combined with contextual fear conditioning (CFC) in mice. We show that CI-994­mediated improvement of memory formation is accompanied by enhanced long-term potentiation in the hippocampus, a brain region recruited by CFC, but not in the striatum, a brain region not primarily implicated in fear learning. Furthermore, using a combination of bulk and single-cell RNA-sequencing, we find that, when paired with CFC, HDACi treatment engages synaptic plasticity-promoting gene expression more strongly in the hippocampus, specifically in the dentate gyrus (DG). Finally, using chromatin immunoprecipitation-sequencing (ChIP-seq) of DG neurons, we show that the combined action of HDACi application and conditioning is required to elicit enhancer histone acetylation in pathways that underlie improved memory performance. Together, these results indicate that systemic HDACi administration amplifies brain region-specific processes that are naturally induced by learning.


Assuntos
Benzamidas , Giro Denteado , Inibidores de Histona Desacetilases , Memória de Longo Prazo , Fenilenodiaminas , Animais , Benzamidas/farmacologia , Comunicação Celular/efeitos dos fármacos , Giro Denteado/citologia , Giro Denteado/efeitos dos fármacos , Giro Denteado/fisiologia , Inibidores de Histona Desacetilases/farmacologia , Memória de Longo Prazo/efeitos dos fármacos , Camundongos , Plasticidade Neuronal , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenilenodiaminas/farmacologia , RNA-Seq , Análise de Célula Única
6.
Neurobiol Learn Mem ; 212: 107939, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38762038

RESUMO

Recognizing and remembering another individual in a social context could be beneficial for individual fitness. Especially in agonistic encounters, remembering an opponent and the previous fight could allow for avoiding new conflicts. Considering this, we hypothesized that this type of social interaction forms a long-term recognition memory lasting several days. It has been shown that a second encounter 24 h later between the same pair of zebrafish males is resolved with lower levels of aggression. Here, we evaluated if this behavioral change could last for longer intervals and a putative mechanism associated with memory storage: the recruitment of NMDA receptors. We found that if a pair of zebrafish males fight and fight again 48 or 72 h later, they resolve the second encounter with lower levels of aggression. However, if opponents were exposed to MK-801 (NMDA receptor antagonist) immediately after the first encounter, they solved the second one with the same levels of aggression: that is, no reduction in aggressive behaviors was observed. These amnesic effect suggest the formation of a long-term social memory related to recognizing a particular opponent and/or the outcome and features of a previous fight.


Assuntos
Agressão , Maleato de Dizocilpina , Consolidação da Memória , Memória de Longo Prazo , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Masculino , Agressão/fisiologia , Agressão/efeitos dos fármacos , Consolidação da Memória/fisiologia , Consolidação da Memória/efeitos dos fármacos , Maleato de Dizocilpina/farmacologia , Memória de Longo Prazo/fisiologia , Memória de Longo Prazo/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Reconhecimento Psicológico/fisiologia , Reconhecimento Psicológico/efeitos dos fármacos , Comportamento Social , Antagonistas de Aminoácidos Excitatórios/farmacologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia
7.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903651

RESUMO

We provide evidence that human sleep is a competitive arena in which cognitive domains vie for limited resources. Using pharmacology and effective connectivity analysis, we demonstrate that long-term memory and working memory are served by distinct offline neural mechanisms that are mutually antagonistic. Specifically, we administered zolpidem to increase central sigma activity and demonstrated targeted suppression of autonomic vagal activity. With effective connectivity, we determined the central activity has greater causal influence over autonomic activity, and the magnitude of this influence during sleep produced a behavioral trade-off between offline long-term and working memory processing. These findings suggest a sleep switch mechanism that toggles between central sigma-dependent long-term memory and autonomic vagal-dependent working memory processing.


Assuntos
Memória de Longo Prazo/fisiologia , Memória de Curto Prazo/fisiologia , Sono/fisiologia , Adulto , Sistema Nervoso Autônomo/efeitos dos fármacos , Sistema Nervoso Autônomo/fisiologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Humanos , Masculino , Consolidação da Memória/efeitos dos fármacos , Consolidação da Memória/fisiologia , Memória de Longo Prazo/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Modelos Neurológicos , Vias Neurais , Sono/efeitos dos fármacos , Fases do Sono/efeitos dos fármacos , Fases do Sono/fisiologia , Zolpidem/farmacologia
8.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38928457

RESUMO

The objective of this study was to assess the impact of acute and chronic treatment with oxcarbazepine on its anticonvulsant activity, neurological adverse effects, and protective index in mice. Oxcarbazepine was administered in four protocols: once or twice daily for one week (7 × 1 or 7 × 2) and once or twice daily for two weeks (14 × 1 or 14 × 2). A single dose of the drug was employed as a control. The anticonvulsant effect was evaluated in the maximal electroshock test in mice. Motor and long-term memory impairment were assessed using the chimney test and the passive avoidance task, respectively. The concentrations of oxcarbazepine in the brain and plasma were determined via high-performance liquid chromatography. Two weeks of oxcarbazepine treatment resulted in a significant reduction in the anticonvulsant (in the 14 × 1; 14 × 2 protocols) and neurotoxic (in the 14 × 2 schedule) effects of this drug. In contrast, the protective index for oxcarbazepine in the 14 × 2 protocol was found to be lower than that calculated for the control. No significant deficits in memory or motor coordination were observed following repeated administration of oxcarbazepine. The plasma and brain concentrations of this anticonvulsant were found to be significantly higher in the one-week protocols. Chronic treatment with oxcarbazepine may result in the development of tolerance to its anticonvulsant and neurotoxic effects, which appears to be dependent on pharmacodynamic mechanisms.


Assuntos
Anticonvulsivantes , Modelos Animais de Doenças , Eletrochoque , Oxcarbazepina , Animais , Oxcarbazepina/farmacologia , Oxcarbazepina/uso terapêutico , Camundongos , Anticonvulsivantes/farmacologia , Masculino , Convulsões/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Memória de Longo Prazo/efeitos dos fármacos , Carbamazepina/análogos & derivados , Carbamazepina/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos
9.
J Neurosci ; 41(5): 947-959, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33298536

RESUMO

Long-term memory (LTM) formation is a critical survival process by which an animal retains information about prior experiences to guide future behavior. In the experimentally advantageous marine mollusk Aplysia, LTM for sensitization can be induced by the presentation of two aversive shocks to the animal's tail. Each of these training trials recruits distinct growth factor signaling systems that promote LTM formation. Specifically, whereas intact TrkB signaling during Trial 1 promotes an initial and transient increase of the immediate early gene apc/ebp mRNA, a prolonged increase in apc/ebp gene expression required for LTM formation requires the addition of TGFß signaling during Trial 2. Here we explored the molecular mechanisms by which Trial 2 achieves the essential prolonged gene expression of apc/ebp We find that this prolonged gene expression is not dependent on de novo transcription, but that apc/ebp mRNA synthesized by Trial 1 is post-transcriptionally stabilized by interacting with the RNA-binding protein ApELAV. This interaction is promoted by p38 MAPK activation initiated by TGFß. We further demonstrate that blocking the interaction of ApELAV with its target mRNA during Trial 2 blocks both the prolonged increase in apc/ebp gene expression and the behavioral induction of LTM. Collectively, our findings elucidate both when and how ELAV proteins are recruited for the stabilization of mRNA in LTM formation. Stabilization of a transiently expressed immediate early gene mRNA by a repeated training trial may therefore serve as a "filter" for learning, permitting only specific events to cause lasting transcriptional changes and behavioral LTM.SIGNIFICANCE STATEMENT: In the present paper, we significantly extend the general field of molecular processing in long-term memory (LTM) by describing a novel form of pretranslational processing required for LTM, which relies on the stabilization of a newly synthesized mRNA by a class of RNA binding proteins (ELAVs). There are now compelling data showing that important processing can occur after transcription of a gene, but before translation of the message into protein. Although the potential importance of ELAV proteins in LTM formation has previously been reported, the specific actions of ELAV proteins during LTM formation remained to be understood. Our new findings thus complement and extend this literature by demonstrating when and how this post-transcriptional gene regulation is mediated in the induction of LTM.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteínas ELAV/metabolismo , Memória de Longo Prazo/fisiologia , RNA Mensageiro/metabolismo , Animais , Aplysia , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteínas ELAV/genética , Memória de Longo Prazo/efeitos dos fármacos , Ligação Proteica/fisiologia , RNA Mensageiro/genética , Fator de Crescimento Transformador beta1/toxicidade
10.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35163003

RESUMO

An early and persistent sign of Alzheimer's disease (AD) is glucose hypometabolism, which can be evaluated by positron emission tomography (PET) with 18F-2-fluoro-2-deoxy-D-glucose ([18F]FDG). Cannabidiol has demonstrated neuroprotective and anti-inflammatory properties but has not been evaluated by PET imaging in an AD model. Intracerebroventricular (icv) injection of streptozotocin (STZ) is a validated model for hypometabolism observed in AD. This proof-of-concept study evaluated the effect of cannabidiol treatment in the brain glucose metabolism of an icv-STZ AD model by PET imaging. Wistar male rats received 3 mg/kg of STZ and [18F]FDG PET images were acquired before and 7 days after STZ injection. Animals were treated with intraperitoneal cannabidiol (20 mg/kg-STZ-cannabidiol) or saline (STZ-saline) for one week. Novel object recognition was performed to evaluate short-term and long-term memory. [18F]FDG uptake in the whole brain was significantly lower in the STZ-saline group. Voxel-based analysis revealed a hypometabolism cluster close to the lateral ventricle, which was smaller in STZ-cannabidiol animals. The brain regions with more evident hypometabolism were the striatum, motor cortex, hippocampus, and thalamus, which was not observed in STZ-cannabidiol animals. In addition, STZ-cannabidiol animals revealed no changes in memory index. Thus, this study suggests that cannabidiol could be an early treatment for the neurodegenerative process observed in AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/psicologia , Canabidiol/administração & dosagem , Glucose/metabolismo , Estreptozocina/efeitos adversos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/diagnóstico por imagem , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Canabidiol/farmacologia , Modelos Animais de Doenças , Fluordesoxiglucose F18/administração & dosagem , Injeções Intraperitoneais , Masculino , Memória de Longo Prazo/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Tomografia por Emissão de Pósitrons , Estudo de Prova de Conceito , Ratos , Ratos Wistar
11.
Neurobiol Learn Mem ; 178: 107342, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33227506

RESUMO

Sleep is vital for biological function and long-term memory formation, with preferential enhancement of emotionally laden content. A growing trend in healthy young adults is the non-medical use of psychostimulants, or "smart drugs", to prevent sleep and, hopefully, enhance cognition. However, the effect of these drugs on sleep-dependent memory processes are unclear. Here, in a within-subject, double-blind, placebo-controlled design, we investigated the impact of morning administration of dextroamphetamine on memory retention of negative and neutral pictures after 1) 12 h of wake, and 2) 24 h with sleep. After 12-hrs of wake, stimulants increased hit rate for neutral, but not negative, pictures, compared to placebo. No differences in memory discrimination were found. In addition, stimulants impaired nighttime sleep and significantly reduced memory for neutral pictures at 24-hrs, compared to placebo. Again, no performance differences between drug conditions were found for negative pictures. Together, these findings suggest that stimulants impairment of nighttime sleep likely leads to next day memory costs.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Dextroanfetamina/farmacologia , Consolidação da Memória/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Sono/efeitos dos fármacos , Adolescente , Adulto , Método Duplo-Cego , Emoções/efeitos dos fármacos , Feminino , Voluntários Saudáveis , Humanos , Masculino , Testes Neuropsicológicos , Reconhecimento Psicológico/efeitos dos fármacos , Adulto Jovem
12.
Neurobiol Learn Mem ; 179: 107383, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33460788

RESUMO

BACKGROUND: Inaccurate fear memories can be maladaptive and potentially portrait a core symptomatic dimension of fear adaptive disorders such as post-traumatic stress disorder (PTSD), which is generally characterized by an intense and enduring memory for the traumatic events. Evidence exists in support of epigenetic regulation of fear behavior. Brd4, a member of the bromodomain and extra-terminal domain (BET) protein family, serves as a chromatin "reader" by binding to histones in acetylated lysine residues, and hence promotes transcriptional activities. However, less is known whether Brd4 participates in modulating cognitive activities especially memory formation and extinction. Here we provide evidence for a role of Brd4 in modulation of auditory fear memory. Auditory fear conditioning resulted in a biphasic Brd4 activation in the anterior cingulate cortex (ACC) and hippocampus of adult mice. Thus, Brd4 phosphorylation occurred 6 h and 3-14 days, respectively, after auditory fear conditioning. Systemic inhibition of Brd4 with a BET inhibitor, JQ1, impaired the extinction of remote (i.e., 14 days after conditioning) fear memory. Further, conditional Brd4 knockout in excitatory neurons of the forebrain impaired remote fear extinction as observed in the JQ1-treated mice. Herein, we identified that Brd4 is essential for extinction of remote fear in rodents. These results thus indicate that Brd4 potentially plays a role in the pathogenesis of PTSD.


Assuntos
Estimulação Acústica , Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Medo , Giro do Cíngulo/metabolismo , Hipocampo/metabolismo , Memória/fisiologia , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Azepinas/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Epigênese Genética , Extinção Psicológica/efeitos dos fármacos , Memória/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Memória de Longo Prazo/fisiologia , Camundongos , Camundongos Knockout , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Triazóis/farmacologia
13.
Neurobiol Learn Mem ; 185: 107539, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34648950

RESUMO

The basolateral complex of the amygdala (BLA) is critically involved in modulation of memory by stress hormones. Noradrenergic activation of the BLA enhances memory consolidation and plays a necessary role in the enhancing or impairing effects of stress hormones on memory. The BLA is not only involved in the consolidation of aversive memories but can regulate appetitive memory formation as well. Extensive evidence suggests that the BLA is a modulatory structure that influences consolidation of arousing memories through modulation of plasticity and expression of plasticity-related genes, such as the activity regulated cytoskeletal-associated (Arc/Arg 3.1) protein, in efferent brain regions. ARC is an immediate early gene whose mRNA is localized to the dendrites and is necessary for hippocampus-dependent long-term potentiation and long-term memory formation. Post-training intra-BLA infusions of the ß-adrenoceptor agonist, clenbuterol, enhances memory for an aversive task and increases dorsal hippocampus ARC protein expression following training on that task. To examine whether this function of BLA noradrenergic signaling extends to the consolidation of appetitive memories, the present studies test the effect of post-training intra-BLA infusions of clenbuterol on memory for the appetitive conditioned place preference (CPP) task and for effects on ARC protein expression in hippocampal synapses. Additionally, the necessity of increased hippocampal ARC protein expression was also examined for long-term memory formation of the CPP task. Immediate post-training intra-BLA infusions of clenbuterol (4 ng/0.2 µL) significantly enhanced memory for the CPP task. This same memory enhancing treatment significantly increased ARC protein expression in dorsal, but not ventral, hippocampal synaptic fractions. Furthermore, immediate post-training intra-dorsal hippocampal infusions of Arc antisense oligodeoxynucleotides (ODNs), which reduce ARC protein expression, prevented long-term memory formation for the CPP task. These results suggest that noradrenergic activity in the BLA influences long-term memory for aversive and appetitive events in a similar manner and the role of the BLA is conserved across classes of memory. It also suggests that the influence of the BLA on hippocampal ARC protein expression and the role of hippocampal ARC protein expression are conserved across classes of emotionally arousing memories.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Clembuterol/farmacologia , Condicionamento Operante/fisiologia , Proteínas do Citoesqueleto/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Sinapses/fisiologia , Animais , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Proteínas do Citoesqueleto/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Potenciação de Longa Duração/efeitos da radiação , Masculino , Memória/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Memória de Longo Prazo/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos
14.
Neurobiol Learn Mem ; 179: 107406, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33609736

RESUMO

The G9a/G9a-like protein (GLP) histone lysine dimethyltransferase complex and downstream histone H3 lysine 9 dimethylation (H3K9me2) repressive mark have recently emerged as key transcriptional regulators of gene expression programs necessary for long-term memory (LTM) formation in the dorsal hippocampus. However, the role for hippocampal G9a/GLP complex in mediating the consolidation of spatial LTM remains largely unknown. Using a water maze competition task in which both dorsal hippocampus-dependent spatial and striatum-dependent cue navigation strategies are effective to solve the maze, we found that pharmacological inhibition of G9a/GLP activity immediately after learning disrupts long-term consolidation of previously learned spatial information in male mice, hence producing cue bias on the competition test performed 24 h later. Importantly, the inhibition of hippocampal G9a/GLP did not disrupt short-term memory retention. Immunohistochemical analyses revealed increases in global levels of permissive histone H3K9 acetylation in the dorsal hippocampus and dorsal striatum at 1 h post-training, which persisted up to 24 h in the hippocampus. Conversely, H3K9me2 levels were either unchanged in the dorsal hippocampus or transiently decreased at 15 min post-training in the dorsal striatum. Finally, the inhibition of G9a/GLP activity further increased global levels of H3K9 acetylation while decreasing H3K9me2 in the hippocampus at 1 h post-training. However, both marks returned to vehicle control levels at 24 h. Together, these findings support the possibility that G9a/GLP in the dorsal hippocampus is required for the transcriptional switch from short-term to long-term spatial memory formation.


Assuntos
Corpo Estriado/metabolismo , Hipocampo/metabolismo , Histona-Lisina N-Metiltransferase/fisiologia , Consolidação da Memória/fisiologia , Memória de Longo Prazo/fisiologia , Memória de Curto Prazo/fisiologia , Memória Espacial/fisiologia , Animais , Azepinas/farmacologia , Corpo Estriado/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Código das Histonas , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Masculino , Consolidação da Memória/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Camundongos , Teste do Labirinto Aquático de Morris , Quinazolinas/farmacologia , Memória Espacial/efeitos dos fármacos
15.
FASEB J ; 34(7): 9466-9479, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32459037

RESUMO

Reduced retrograde memory performance at the cognitive level and aggregation/deposition of amyloid beta (Aß) in the brain at the cellular level are some of the hallmarks of Alzheimer's Disease (AD). A molecular system that participates in the removal of proteins with an altered conformation is the Ubiquitin-Proteasome System (UPS). Impairments of the UPS in wild-type (WT) mice lead to defective clearance of Aß and prevent long-term plasticity of synaptic transmission. Here we show data whereby in contrast to WT mice, the inhibition of proteasome-mediated protein degradation in an animal model of AD by MG132 or lactacystin restores impaired activity-dependent synaptic plasticity and its associative interaction, synaptic tagging and capture (STC) in vitro, as well as associative long-term memory in vivo. This augmentation of synaptic plasticity and memory is mediated by the mTOR pathway and protein synthesis. Our data offer novel insights into the rebalancing of proteins relevant for synaptic plasticity which are regulated by UPS in AD-like animal models. In addition, the data provide evidence that proteasome inhibitors might be effective in reinstating synaptic plasticity and memory performance in AD, and therefore offer a new potential therapeutic option for AD treatment.


Assuntos
Doença de Alzheimer/complicações , Modelos Animais de Doenças , Leupeptinas/farmacologia , Transtornos da Memória/tratamento farmacológico , Memória de Longo Prazo/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Inibidores de Cisteína Proteinase/farmacologia , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-33881581

RESUMO

When two male crayfish encounter, agonistic bouts are initiated and a winner-loser relationship is established. Larger animals are more likely to win with their physical advantage, but they are frequently beaten by small dominant animals with previous winning experience. This winner effect remains for several days. In mammals, anxiety impairs learning and induces memory forgetting. In this study, dominant crayfish were exposed to electrical shocks two days after their first win, after which they were paired with large or small naive opponents the following day. Our results showed that electrical shock-applied dominant animals were beaten by large naive opponents, but overcame small naive opponents, suggesting that electrical shocks cause animals to forget their previous winner effect. Electrical shocks appeared to elicit serotonin-mediated anxiety since electrical shocks had no effect on mianserin-injected dominant animals. A 0.5 µM serotonin injection induced a caused anxiety-like reaction, while a 1.0 µM serotonin injection-induced no changes in posture and walking activity. For pairings between dominant and naive animals 1 day after serotonin injection, 0.5 µM serotonin caused similar forgetting of the winner effect, but 1.0 µM serotonin had no effect. Serotonin of low concentrations mediated anxiety and stimulated forgetting of the winner's memory.


Assuntos
Ansiedade , Comportamento Animal/fisiologia , Memória de Longo Prazo/fisiologia , Animais , Ansiedade/etiologia , Astacoidea , Masculino , Memória de Longo Prazo/efeitos dos fármacos , Serotonina/farmacologia , Predomínio Social , Estresse Psicológico/complicações
17.
Neurochem Res ; 46(2): 183-196, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33095439

RESUMO

Methylglyoxal (MG) is a by-product of glycolysis. In pathological conditions, particularly diabetes mellitus, this molecule is unbalanced, causing widespread protein glycation. In addition to protein glycation, other effects resulting from high levels of MG in the central nervous system may involve the direct modulation of GABAergic and glutamatergic neurotransmission, with evidence suggesting that the effects of MG may be related to behavioral changes and glial dysfunction. In order to evaluate the direct influence of MG on behavioral and biochemical parameters, we used a high intracerebroventricular final concentration (3 µM/µL) to assess acute effects on memory and locomotor behavior in rats, as well as the underlying alterations in glutamatergic and astroglial parameters. MG induced, 12 h after injection, a decrease in locomotor activity in the Open field and anxiolytic effects in rats submitted to elevated plus-maze. Subsequently, 36 h after surgery, MG injection also induced cognitive impairment in both short and long-term memory, as evaluated by novel object recognition task, and in short-term spatial memory, as evaluated by the Y-maze test. In addition, hippocampal glutamate uptake decreased and glutamine synthetase activity and glutathione levels diminished during seventy-two hours after infusion of MG. Interestingly, the astrocytic protein, S100B, was increased in the cerebrospinal fluid, accompanied by decreased hippocampal S100B mRNA expression, without any change in protein content. Taken together, these results may improve our understanding of how this product of glucose metabolism can induce the brain dysfunction observed in diabetic patients, as well as in other neurodegenerative conditions, and further defines the role of astrocytes in disease and therapeutics.


Assuntos
Astrócitos/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Aldeído Pirúvico/toxicidade , Animais , Teste de Labirinto em Cruz Elevado , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Infusões Intraventriculares , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Teste de Campo Aberto/efeitos dos fármacos , Aldeído Pirúvico/administração & dosagem , Ratos Wistar
18.
J Pineal Res ; 70(1): e12703, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33125735

RESUMO

Melatonin (MEL) has been reported to enhance cognitive processes, making it a potential treatment for cognitive decline. However, the role of MEL's metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in these effects are unknown. The current study directly investigated the acute effects of systemic MEL, AFMK, and AMK on novel object recognition. We also analyzed MEL, AFMK, and AMK levels in hippocampus and temporal lobe containing the perirhinal cortex following systemic MEL and AMK treatment. AMK administered post-training had a more potent effect on object memory than MEL and AFMK. AMK was also able to rescue age-associated declines in memory impairments when object memory was tested up to 4 days following training. Results from administering AMK at varying times around the training trial and the metabolism time course in brain tissue suggest that AMK's memory-enhancing effects reflect memory consolidation. Furthermore, inhibiting the MEL-to-AMK metabolic pathway disrupted object memory at 24 hours post-training, suggesting that endogenous AMK might play an important role in long-term memory formation. This is the first study to report that AMK facilitates long-term object memory performance in mice, and that MEL crosses the blood-brain barrier and is immediately converted to AMK in brain tissue. Overall, these results support AMK as a potential therapeutic agent to improve or prevent memory decline.


Assuntos
Comportamento Animal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Cinuramina/análogos & derivados , Melatonina/farmacologia , Memória de Longo Prazo/efeitos dos fármacos , Lobo Temporal/efeitos dos fármacos , Fatores Etários , Animais , Biotransformação , Hipocampo/metabolismo , Cinuramina/metabolismo , Cinuramina/farmacologia , Masculino , Melatonina/deficiência , Melatonina/genética , Camundongos Endogâmicos ICR , Teste de Campo Aberto , Lobo Temporal/metabolismo , Fatores de Tempo
19.
Nutr Neurosci ; 24(6): 417-425, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31304891

RESUMO

Background: Previous studies on preclinical models have shown that giving supplemental choline during the embryonic period improves performance on memory tasks during adulthood. However, the effects of an early intervention on the development of cognitive functions in the immature brain have not been widely studied. In addition, it has been well established that short-term memory in rats emerges at an earlier stage than long-term memory.Objective: The aim of this work was to examine the effect of prenatal dietary choline supplementation on long-term memory development in rats.Methods: In order to assess long-term memory, we used an object-recognition task, which evaluates the ability to recall a previously presented stimulus. Pregnant rats were fed with the diets AIN 76-A standard (1.1 g choline/Kg food) or supplemented (5 g choline/Kg food) between embryonic days (E) 12 and E18. On the first post-natal day (PN 0), male offspring of the rats fed with the supplemented and standard diet were cross-fostered to rat dams fed a standard diet during pregnancy and tested at the age of PN21-22 or PN29-31 applying 24-hour retention tests.Results: The supplemented animals spent less time exploring the familiar object after a 24-hour retention interval, an effect that was observed in both the group tested at PN21-22 days of age and that tested at PN29-31 days. The non-supplemented rats only showed this effect in the group tested at PN29-31 days.Conclusions: These results suggest that prenatal supplementation with choline accelerates the development of long-term memory in rats.


Assuntos
Colina/administração & dosagem , Suplementos Nutricionais , Memória de Longo Prazo/efeitos dos fármacos , Animais , Comportamento Animal , Feminino , Masculino , Gravidez , Fenômenos Fisiológicos da Nutrição Pré-Natal , Ratos Wistar
20.
Nutr Neurosci ; 24(2): 119-129, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31084475

RESUMO

Objective: The ubiquitin-proteasome system plays a key role in memory consolidation. Proteasome inhibition and free radical-induced neural damage were implicated in neurodegenerative states. In this study, it was tested whether alpha-tocopherol (αT) in low and high doses could improve the long-term memory impairment induced by proteasome inhibition and protects against hippocampal oxidative stress. Methods: Alpha-tocopherol (αT) (60, 200 mg/kg, i.p. for 5 days) was administered to rats with memory deficit and hippocampal oxidative stress induced by bilateral intra-hippocampal injection of lactacystin (32 ng/µl) and mitochondrial evaluations were performed for improvement assessments. Results: The results showed that lactacystin significantly reduced the passive avoidance memory performance and increased the level of malondialdehyde (MDA), reactive oxygen species (ROS) and diminished the mitochondrial membrane potential (MMP) in the rat hippocampus. Furthermore, Intraperitoneal administration of αT significantly increased the passive avoidance memory, glutathione content and reduced ROS, MDA levels and impaired MMP. Conclusions: The results suggested that αT has neuroprotective effects against lactacystin-induced oxidative stress and memory impairment via the enhancement of hippocampal antioxidant capacity and concomitant mitochondrial sustainability. This finding shows a way to prevent and also to treat neurodegenerative diseases associated with mitochondrial impairment.


Assuntos
Hipocampo/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , alfa-Tocoferol/administração & dosagem , Animais , Hipocampo/metabolismo , Masculino , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma , Inibidores de Proteassoma/administração & dosagem , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA