Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 628(8009): 863-871, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570687

RESUMO

Vertebrate organs require locally adapted blood vessels1,2. The gain of such organotypic vessel specializations is often deemed to be molecularly unrelated to the process of organ vascularization. Here, opposing this model, we reveal a molecular mechanism for brain-specific angiogenesis that operates under the control of Wnt7a/b ligands-well-known blood-brain barrier maturation signals3-5. The control mechanism relies on Wnt7a/b-dependent expression of Mmp25, which we find is enriched in brain endothelial cells. CRISPR-Cas9 mutagenesis in zebrafish reveals that this poorly characterized glycosylphosphatidylinositol-anchored matrix metalloproteinase is selectively required in endothelial tip cells to enable their initial migration across the pial basement membrane lining the brain surface. Mechanistically, Mmp25 confers brain invasive competence by cleaving meningeal fibroblast-derived collagen IV α5/6 chains within a short non-collagenous region of the central helical part of the heterotrimer. After genetic interference with the pial basement membrane composition, the Wnt-ß-catenin-dependent organotypic control of brain angiogenesis is lost, resulting in properly patterned, yet blood-brain-barrier-defective cerebrovasculatures. We reveal an organ-specific angiogenesis mechanism, shed light on tip cell mechanistic angiodiversity and thereby illustrate how organs, by imposing local constraints on angiogenic tip cells, can select vessels matching their distinctive physiological requirements.


Assuntos
Encéfalo , Neovascularização Fisiológica , Animais , Membrana Basal/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/citologia , Encéfalo/citologia , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Movimento Celular , Colágeno Tipo IV/metabolismo , Sistemas CRISPR-Cas/genética , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Meninges/citologia , Meninges/irrigação sanguínea , Meninges/metabolismo , Especificidade de Órgãos , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
2.
Forensic Sci Int ; 361: 112080, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838611

RESUMO

In infantile abusive head injury (AHT), subdural haemorrhage (SDH) is commonly held to result from traumatic damage to bridging veins traversing from the surface of the brain to the dura and dural venous sinuses. However, there are limited published radiological or autopsy demonstrations of ruptured bridging veins and several authors also assert that bridging veins are too large to rupture due to the forces associated with AHT. There have been several studies on the size, locations and numbers of adult bridging veins and there is one small study of infant bridging veins. However, there are no microscopic studies of infant bridging veins and only a select few ultrastructural investigations of adult bridging veins. Hitherto, it has been assumed that bridging veins from infants and younger children will display the same anatomical characteristics as those in adulthood. At 19 neonatal, infant and young child post-mortem examinations, we macroscopically examined and sampled bridging veins for microscopy. We compared the histology of those samples with bridging veins from an older child and two adults. We demonstrate that adult bridging veins are usually surrounded by supportive meningeal tissue that appears to be lacking or minimally present around the bridging veins of younger children. Neonatal, infant and young children's veins had a free 'bridging' section. Neonatal and infant bridging veins had smaller diameter ranges and thinner walls (some only 5-7 µm) than those seen in older children and adults. Bridging vein walls contained both fine strands of elastic fibers and a more pronounced elastic lamina. The presence of an elastic lamina occurred more frequently in the older age groups These anatomical differences between the veins of adults and young children may help to explain apparent increased vulnerability of neonatal/infant bridging veins to the forces associated with a shaking-type traumatic event.


Assuntos
Veias Cerebrais , Humanos , Lactente , Recém-Nascido , Pré-Escolar , Veias Cerebrais/patologia , Masculino , Feminino , Adulto , Tecido Elástico/patologia , Patologia Legal , Meninges/patologia , Meninges/irrigação sanguínea , Criança , Microscopia
3.
Neuron ; 112(9): 1456-1472.e6, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38412858

RESUMO

Recanalization is the mainstay of ischemic stroke treatment. However, even with timely clot removal, many stroke patients recover poorly. Leptomeningeal collaterals (LMCs) are pial anastomotic vessels with yet-unknown functions. We applied laser speckle imaging, ultrafast ultrasound, and two-photon microscopy in a thrombin-based mouse model of stroke and fibrinolytic treatment to show that LMCs maintain cerebral autoregulation and allow for gradual reperfusion, resulting in small infarcts. In mice with poor LMCs, distal arterial segments collapse, and deleterious hyperemia causes hemorrhage and mortality after recanalization. In silico analyses confirm the relevance of LMCs for preserving perfusion in the ischemic region. Accordingly, in stroke patients with poor collaterals undergoing thrombectomy, rapid reperfusion resulted in hemorrhagic transformation and unfavorable recovery. Thus, we identify LMCs as key components regulating reperfusion and preventing futile recanalization after stroke. Future therapeutic interventions should aim to enhance collateral function, allowing for beneficial reperfusion after stroke.


Assuntos
Circulação Colateral , AVC Isquêmico , Meninges , Reperfusão , Animais , AVC Isquêmico/fisiopatologia , AVC Isquêmico/terapia , Camundongos , Circulação Colateral/fisiologia , Humanos , Reperfusão/métodos , Meninges/irrigação sanguínea , Masculino , Circulação Cerebrovascular/fisiologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Encéfalo/irrigação sanguínea , Trombectomia/métodos
4.
Neuron ; 112(9): 1378-1380, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697020

RESUMO

Adequate reperfusion after ischemic stroke is a major determinant of functional outcome yet remains unpredictable and insufficient for most survivors. In this issue of Neuron, Binder et al.1 identify leptomeningeal collaterals (LMCs) in mice and human patients as a key factor in regulating reperfusion and hemorrhagic transformation following stroke.


Assuntos
Circulação Colateral , Reperfusão , Acidente Vascular Cerebral , Humanos , Animais , Acidente Vascular Cerebral/fisiopatologia , Circulação Colateral/fisiologia , Camundongos , AVC Isquêmico/fisiopatologia , Circulação Cerebrovascular/fisiologia , Meninges/irrigação sanguínea , Isquemia Encefálica/fisiopatologia
5.
ACS Nano ; 18(33): 22080-22094, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39102350

RESUMO

Meningeal vascular network is significant in neurology and neurosurgery. However, high-resolution imaging of intact meningeal vascular network is lacking. In this work, we develop a practical experimental method to ensure that the intact meninges are morphologically unfolded and fixed in an agarose gel. With the help of high-brightness polymer dots (Pdots) as probe, macroscopic and detailed imaging of the vascular network on the intact dorsal meninges can be performed. Meningeal vessels are symmetrically distributed along the superior sagittal sinus, and the distribution of meningeal vessels had a certain degree of hierarchy. The meninges are thicker blood vessels and capillary networks from the outside to the inside. Moreover, the diameter of the capillaries is 3.96 ± 0.89 µm. Interestingly, meningeal primo vessels in the central nervous system of mice is imaged with the diameter of 4.18 ± 1.18 µm, which has not been reported previously. It is worth mentioning that we found that orthotopic xenografts of brain tumors caused the appearance of corneal neovascularization and morphological changes in optic nerve microvessels. In conclusion, our work provides an effective Pdots-based imaging method for follow-up research on meningeal vascular-related diseases, and illustrates that the eye can serve as a window for the prevention and diagnosis of brain diseases.


Assuntos
Encéfalo , Meninges , Animais , Camundongos , Meninges/diagnóstico por imagem , Meninges/irrigação sanguínea , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Corantes Fluorescentes/química , Humanos , Olho/irrigação sanguínea , Olho/diagnóstico por imagem , Polímeros/química , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Imagem Óptica , Pontos Quânticos/química
6.
Swiss Med Wkly ; 154: 3584, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39137358

RESUMO

INTRODUCTION: There is limited understanding of the pathomechanistic relationship between leptomeningeal collateral formation and ischaemic stroke aetiology. We aimed to assess the association of leptomeningeal collateral status and ischaemic stroke aetiology, using the widely recognised "Trial of Org 10172 in Acute Stroke Treatment" (TOAST) classification categorising strokes into five distinct aetiologies. METHODS: Retrospective study of consecutively admitted adult ischaemic stroke patients at a Swiss stroke centre. Leptomeningeal collateral status was assessed on admission with single-phase CT-angiographies using a validated 4-point score. Patients were categorised into large-artery atherosclerosis (LAA), cardioembolic (CE), small-vessel disease (SVD) and cryptogenic (CG) according to the TOAST classification. We performed ordinal and binary (poor [collaterals filling ≤50% of the occluded territory] vs good [collaterals filling >50% of the occluded territory] collateralisation) logistic regression to evaluate the impact of TOAST aetiology on collateral status. RESULTS: Among 191 patients, LAA patients had better collateral status compared to non-LAA aetiology (LAA: 2 vs CE: 2 vs SVD: 3 vs CG: 2, pLAA vs non-LAA = 0.04). In weighted multivariate logistic regression, LAA and SVD independently predicted better collateral status (binary models [adjusted odds ratio; aOR]: LAA: 3.72 [1.21-11.44] and SVD: 4.19 [1.21-14.52]; ordinal models [adjusted common odds ratio; acOR]: LAA: 2.26 [95% CI: 1.23-4.15] and SVD: 1.94 [1.03-3.66]), while CE predicted worse collateral status (binary models [aOR]: CE: 0.17 [0.07-0.41]; ordinal models [acOR]: CE: 0.24 [0.11-0.51]). CONCLUSION: The aetiology of ischaemic stroke is associated with leptomeningeal collateral status on single-phase CT-angiography, with LAA and SVD predicting better and CE predicting worse collateral status.


Assuntos
Circulação Colateral , AVC Isquêmico , Meninges , Humanos , Estudos Retrospectivos , Masculino , Feminino , Idoso , AVC Isquêmico/complicações , AVC Isquêmico/etiologia , AVC Isquêmico/fisiopatologia , AVC Isquêmico/diagnóstico por imagem , Suíça/epidemiologia , Meninges/irrigação sanguínea , Meninges/diagnóstico por imagem , Meninges/fisiopatologia , Pessoa de Meia-Idade , Angiografia por Tomografia Computadorizada/métodos , Angiografia Cerebral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA