Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 190, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486151

RESUMO

BACKGROUND: Rosmarinic acid (RA), like other phenolic compounds, is sources of antioxidants and anti-inflammatory agents in medicinal plants. In vitro culture of plants can improve the medicinal plants' metabolite profile and phenolic compound quantity. To date, various methods have been proposed to increase this medicinal metabolite in plants, among which the use of bioelicitors can be mentioned. In the present study, a native isolate of heterocystous cyanobacteria, Nostoc spongiaeforme var. tenue ISB65, was used to stimulate the production of biomass and content of RA in Mentha piperita L. (peppermint) grown in vitro from apical meristem. Mentha piperita L. explants were inoculated in half strength Murashige and Skoog (1/2 MS) medium containing cyanobacterial lysate (CL). After 50 days of culturing, the growth indices, the content of photosynthetic pigments, and RA in control and treated plants were measured. RESULTS: CL inoculation resulted in a significant enhancement in the vegetative growth indices of peppermint, including root and shoot length, plant biomass and leaf number. The content of photosynthetic pigments also increased in cyanobacteria-treated plants. Inoculation with CL increased the RA content by 2.3-fold, meaning that the plants treated with CL had the highest RA content (7.68 mg. g- 1 dry weight) compared to the control (3.42 mg. g- 1 dry weight). Additionally, HPLC analysis revealed the presence of several auxins in CL. CONCLUSIONS: The presence of auxins and the chemical content of CL such as K+ and Ca2+, as regulators of metabolic pathways and molecular activities of cells, may be responsible for the enhanced growth and phenolic compounds of plants under tissue culture conditions. An improvement in RA content in the tissue culture of medicinal plants treated with CL was reported for the first time in this investigation.


Assuntos
Cianobactérias , Plantas Medicinais , Mentha piperita/química , Mentha piperita/metabolismo , Mentha piperita/microbiologia , Ácido Rosmarínico , Meristema , Biomassa , Fenóis/metabolismo , Ácidos Indolacéticos/metabolismo , Plantas Medicinais/química
2.
J Toxicol Environ Health A ; 87(5): 199-214, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38073506

RESUMO

Several medicinal plants have been administered to cancer patients attributed to their anticarcinogenic and chemoprotective properties, in addition to lower toxicity compared to traditional therapies. The aim was to investigate the antioxidant properties and carotenoid composition of aqueous extracts of Mentha piperita or Artemisia vulgaris which were previously found to exert beneficial effects on human health through diet. aqueous extracts exhibited potent antioxidant activity. A diversity of carotenoids was identified in these extracts using HPLC-PDA-MS/MS. Both extracts contained predominantly all-trans-lutein as the main component within this class. In order to investigate antioxidant properties, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) techniques were used. The (3-4,5 dimethylthiazol-2, 5 diphenyl tetrazolium bromide) (MTT) and Crystal Violet assays assessed cellular cytotoxicity. Assessments of presence of reactive species were carried out following exposure of oral squamous cell carcinoma cell line (SCC-4) to various aqueous extracts of M piperita or A vulgaris utilizing dichlorofluorescein diacetate (DCFH-DA) and nitric oxide (NO) assays. Exposure to these extracts induced severe cytotoxic effects, which led to investigation of the biochemical and molecular mechanisms underlying this observed effect. Data demonstrated that both solutions induced oxidative stress and DNA damage, especially at higher concentrations using agarose gel subjected to electrophoresis. It is known that exposure to excess amounts of antioxidants results in a prooxidant effect which is beneficial in cancer therapy. Further, the extracts were found to reduce viability of SCC-4 in culture, indicating that this antitumoral activity may be of therapeutic importance and requires further study.


Assuntos
Artemisia , Carcinoma de Células Escamosas , Neoplasias Bucais , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Mentha piperita/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectrometria de Massas em Tandem , Clivagem do DNA , Compostos Fitoquímicos , Carotenoides/farmacologia
3.
J Toxicol Environ Health A ; 87(20): 824-835, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-38984907

RESUMO

Dental caries is a highly prevalent oral disease affecting billions of individuals globally. The disease occurs chemically as a result of breakdown of the tooth surface attributed to metabolic activity in colonizing biofilm. Biofilms, composed of exopolysaccharides and proteins, protect bacteria like Streptococcus mutans, which is notable for its role in tooth decay due to its acid-producing abilities. While various antimicrobial agents may prevent biofilm formation, these drugs often produce side effects including enamel erosion and taste disturbances. This study aimed to examine utilization of the Mentha piperita essential oil as a potential antibiofilm activity agent against S. mutans. M. piperita oil significantly (1) reduced bacterial biofilm, (2) exhibited a synergistic effect when combined with chlorhexidine, and (3) did not induce cell toxicity. Chemical analysis identified the essential oil with 99.99% certainty, revealing menthol and menthone as the primary components, constituting approximately 42% and 26%, respectively. Further, M. piperita oil eradicated preformed biofilms and inhibited biofilm formation at sub-inhibitory concentrations. M. piperita oil also interfered with bacterial quorum sensing communication and did not produce any apparent cell toxicity in immortalized human keratinocytes (HaCaT). M. piperita represented an alternative substance for combating S. mutans and biofilm formation and a potential combination option with chlorhexidine to minimize side effects. An in-situ performance assessment requires further studies.


Assuntos
Biofilmes , Mentha piperita , Óleos Voláteis , Percepção de Quorum , Streptococcus mutans , Streptococcus mutans/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Mentha piperita/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Humanos , Percepção de Quorum/efeitos dos fármacos , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Antibacterianos/farmacologia
4.
Phytother Res ; 38(1): 187-195, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37850332

RESUMO

Inflammation, a type of the body's defense against injury or infection, causes many chronic disorders including diabetes, cardiovascular disease, and cancer. Therefore, discovering natural compounds with numerous biological activities for the management of inflammation is highly recommended. Out of natural compounds, peppermint and its main component, menthol, has been suggested to possess antiinflammatory potential. Four databases including Web of Sciences, PubMed, Scopus, and Embase were searched to identify articles about peppermint and its antiinflammatory effects up to March 2023. Out of 3805 records screened, 14 articles met the study criteria. The evidence reviewed here proposed peppermint as an antiinflammatory agent. Peppermint may suppress inflammation by activating the AMP-activated protein kinase/unc-51 like kinase 1/nuclear factor-E2 associated factor 2 autophagy pathway, downregulating extracellular signal-regulated kinase-nuclear factor kappa B and mitogen activated protein kinases pathways, attenuating oxidative stress, suppressing the production of pro-inflammatory mediators and nitric oxide, and inducing the production of antiinflammatory prostaglandins. Due to the promising antiinflammatory effects of peppermint and the lack of human studies in this regard, future randomized clinical trials examining the effects of peppermint on inflammation and its related maladies are warranted.


Assuntos
Anti-Inflamatórios , Inflamação , Mentha piperita , Extratos Vegetais , Animais , Humanos , Camundongos , Ratos , Anti-Inflamatórios/uso terapêutico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/uso terapêutico , Mentha piperita/química , Monócitos/efeitos dos fármacos , NF-kappa B/metabolismo , Extratos Vegetais/uso terapêutico , Técnicas In Vitro
5.
Chem Biodivers ; 21(3): e202301980, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38285970

RESUMO

The present paper highlights the effect of Pb/Cd-stress and/or mycorrhizal colonization by Glomus Intraradices on yield, chemical composition, cytotoxicity and antimicrobial activity of Mentha x piperita L. essential oil. Our findings showed that mycorrhizal colonization could be used to improve the essential oil yield of M. x piperita, either in non-stressed or Pb/Cd-stressed plants. GC-MS analysis revealed three chemotypes: linalool/pulegone (32.6/30.8 %) chemotype in essential oils of non-mycorrhizal Pb-stressed plants, menthone/menthyl acetate (30.3/25.1 %) chemotype in essential oils of non-mycorrhizal Cd-stressed plants and menthol (44.6 %) chemotype in essential oils of non-mycorrhizal non-stressed plants, mycorrhizal non-stressed plants and mycorrhizal Pb/Cd-stressed plants. The cytotoxicity of M. x piperita essential oil, evaluated by brine shrimp lethality bioassay, was increased in presence of Pb/Cd-stress (from 379.58 to 72.84 µm/mL) and decreased in mycorrhizal plants (from 379.58 to 482.32 µm/mL). The antimicrobial activity of M. x piperita essential oil, evaluated by disc diffusion method and determination of Minimum Inhibitory Concentration against ten microorganisms, was enhanced by the mycorrhizal colonization and deceased by the Pb/Cd-stress. In conclusion, the inoculation of medicinal plants with mycorrhizal fungi is a real avenue for alleviating abiotic stress and/or increasing the quantity and quality of secondary metabolites in terms of biological activities.


Assuntos
Anti-Infecciosos , Mentha , Micorrizas , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Mentha piperita/química , Simbiose , Cádmio , Chumbo , Anti-Infecciosos/farmacologia
6.
Plant Dis ; 108(6): 1533-1543, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38105459

RESUMO

Biopesticide fungicides are naturally derived compounds that offer protection from plant diseases through various modes of action, including antimicrobial activity and upregulation of defense responses in host plants. These plant protectants provide a sustainable and safe alternative to conventional pesticides in integrated disease management programs and are especially salient in the management of high-risk and economically important diseases such as late blight of tomato and potato, for which host resistance options are limited. In this study, a commercially available biopesticide, EF400 comprised of clove (8.2%), rosemary (8.1%), and peppermint oils (6.7%) (Anjon AG, Corcoran, CA), was investigated for its effects on the Phytophthora infestans-tomato pathosystem. Specifically, we evaluated the impact of EF400 on P. infestans growth in culture, disease symptoms in planta, and activation of host defenses through monitoring transcript accumulation of defense-related genes. The application timing and use rate of EF400 were further investigated for managing tomato late blight. EF400 delayed the onset of tomato late blight symptoms, although not as effectively as the copper hydroxide fungicide Champ WG (Nufarm Americas Inc., Alsip, IL). Pathogen mycelial growth and sporangial quantity on late blight-susceptible tomato leaves were significantly reduced with EF400. The biopesticide also had an enhancing or suppressing effect on the transcript accumulation of three defense-related genes: Pin2, PR1a, and PR1b. Our work in exploring a commercially available horticultural oil biopesticide meaningfully contributed to the essential knowledge base for optimizing recommendations for the management of tomato late blight.


Assuntos
Phytophthora infestans , Doenças das Plantas , Óleos de Plantas , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Phytophthora infestans/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Óleos de Plantas/farmacologia , Fungicidas Industriais/farmacologia , Agentes de Controle Biológico/farmacologia , Mentha piperita/química , Interações Hospedeiro-Patógeno/efeitos dos fármacos
7.
Eur J Nutr ; 62(8): 3411-3422, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37665425

RESUMO

PURPOSE: This study aimed to evaluate the capacity of peppermint essential oil to improve the physical performance of runners in running protocol until exhaustion. METHODS: In a clinical, randomized, double-blind, cross-over and controlled study, fourteen male recreational runners (37.1 ± 2.0 years; 24 ± 1.1 kg/m2; 53.1 ± 1.7 mL kg min) performed two runs to exhaustion at 70% of VO2max, after intake of 500 mL of water added with 0.05 mL of peppermint essential oil (PEO) or placebo (PLA), plus 400 mL of the drink during the initial part of the exercise. Records were made of body temperature (BT), thermal sensation (TS), thermal comfort (TC), subjective perception of effort (SPE), sweat rate (SR), and urine volume and density. RESULTS: Time to exhaustion was 109.9 ± 6.9 min in PEO and 98.5 ± 6.2 min in PLA (p = 0.009; effect size: 0.826). No significant changes were observed in the values of BT, TS, TC, SPE, SR, lost body mass, and urine volume and density (p > 0.05). CONCLUSION: Peppermint essential oil added to water before and during a race significantly increases the time to exhaustion of recreational runners but without altering BT, TS, TC, or hydration status, so the mechanisms involved were not clarified in this study. BRAZILIAN REGISTRY OF CLINICAL TRIALS (REBEC): RBR-75zt25z.


Assuntos
Mentha piperita , Óleos Voláteis , Resistência Física , Corrida , Exercício Físico , Mentha piperita/química , Óleos Voláteis/administração & dosagem , Água , Humanos , Masculino , Resistência Física/efeitos dos fármacos , Adulto
8.
Molecules ; 28(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37570659

RESUMO

Helicobacter pylori infections are highly common amongst the global population. Such infections have been shown to be the cause of gastric ulcers and stomach carcinoma and, unfortunately, most cases are asymptomatic. Standard treatment requires antibiotics such as metronidazole or azithromycin to which many strains are now resistant. Mentha species have been used as a natural treatment for gastrointestinal diseases throughout history and essential oils (EOs) derived from these plants show promising results as potential antimicrobial agents. In this study, EOs obtained from the leaves and flowers of five cultivars of Mentha × piperita and M. spicata were examined by GC-MS. The investigated mints are representatives of four chemotypes: the menthol chemotype (M. × piperita 'Multimentha' and M. × piperita 'Swiss'), the piperitenone oxide chemotype (M. × piperita 'Almira'), the linalool chemotype (M. × piperita 'Granada'), and the carvone chemotype (M. spicata 'Moroccan'). The chemical composition of EOs from mint flowers and leaves was comparable with the exception of the Swiss cultivar. Menthol was the most abundant component in the leaves while menthone was highest in flowers. The H. pylori ATCC 43504 reference strain and 10 other H. pylori clinical strains were examined for their sensitivity to the EOs in addition to their major monoterpenoid components (menthol, menthone, carvone, dihydrocarvone, linalool, 1,8-cineole, and limonene). All tested mint EOs showed inhibitory activity against both the reference H. pylori ATCC 43504 strain (MIC 15.6-31.3 mg/L) and clinical H. pylori strains (MIC50/90 31.3-250 mg/L/62.5-500 mg/L). Among the reference monoterpenes, menthol (MIC50/90 7.8/31.3 mg/L) and carvone (MIC50/90 31.3/62.5 mg/L) had the highest anti-H. pylori activity, which also correlated with a higher activity of EOs containing these compounds (M. × piperita 'Swiss' and M. spicata 'Moroccan'). A synergistic and additive interaction between the most active EOs/compounds and antibiotics possibly points to a new plant-based anti-H. pylori treatment.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Mentha , Óleos Voláteis , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Mentol/farmacologia , Mentol/química , Mentha/química , Mentha piperita/química , Antibacterianos/farmacologia
9.
Molecules ; 28(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37959863

RESUMO

This review aims to analyze Mentha piperita L. as a potential raw material for the development of new health-promoting products (nutraceuticals, cosmetics, and pharmaceutical products). A lot of scientific publications were retrieved from the Scopus, PubMed, and Google Scholar databases which enable the study and generalization of the extraction procedures, key biologically active compounds of essential oil and extracts, biological properties, and therapeutic potential of M. piperita, along with perspectives on the development of its dosage forms, including combinations of synthetic active substances and herbal preparations of M. piperita. The results of this review indicate that M. piperita is a source rich in phytoconstituents of different chemical nature and can be regarded as a source of active substances to enhance health and to develop medicinal products for complementary therapy of various conditions, especially those related with oxidant stress, inflammation, and moderate infections. Essential oil has a broad spectrum of activities. Depending on the test and concentration, this essential oil has both anti- and prooxidant properties. Gram-positive bacteria are more sensitive to the essential oil of M. piperita than Gram-negative ones. This review also considered some facets of the standardization of essential oil and extracts of M. piperita. Among the identified phenolics of extracts were caffeic acid, rosmarinic acid, eriocitrin, luteolin derivates (luteolin-7-O-rutinoside, luteolin-7-O-glucoronide), and hesperidin. The concentration of these phenolics depends on the solvent used. This review also considered the relationships between the chemical component and biological activity. The results showed that the essential oil and extracts reduced inflammation in vitro by inhibiting the production of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), and in vivo by reducing the paw edema induced using carrageenan injection in rats. Therefore, herbal preparations of M. piperita are promising medicinal and cosmetic preparations for their usage in skincare and oral cavity care products with antimicrobial, anti-inflammatory, and wound-healing properties. This plant can also be regarded as a platform for the development of antibacterial preparations and combined anti-inflammatory and cardioprotective medicinal products (synthetic active substances plus herbal preparations). This review could be considered for the justification of the composition of some medicinal products during their pharmaceutical development for writing a registration dossier in the format of Common Technical Document.


Assuntos
Óleos Voláteis , Ratos , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Mentha piperita/química , Luteolina , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Fenóis , Inflamação , Anti-Inflamatórios/farmacologia
10.
Molecules ; 28(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985839

RESUMO

The most significant reactive α-dicarbonyl RCS involved in the pathomechanism of glycation and related diseases is methylglyoxal (MGO). Hyperglycemia promotes the generation of MGO and leads to the formation of advanced glycation end products (AGEs). Therefore, MGO trapping and glycation inhibition appear to be important therapeutic targets in prediabetes, diabetes, and in the early prevention of hyperglycemic complications. Peppermint leaf is commonly used as herbal tea, rich in polyphenols. Eriocitrin, its predominant component, in a double-blind, randomized controlled study reversed the prediabetic condition in patients. However, the antiglycation activity of this plant material and its polyphenols has not been characterized to date. Therefore, the aim of this study was to evaluate the ability of a peppermint leaf dry extract and its polyphenols to inhibit non-enzymatic protein glycation in a model with bovine serum albumin (BSA) and MGO as a glycation agent. Peppermint polyphenols were also evaluated for their potential to trap MGO in vitro, and the resulting adducts were analyzed by UHPLC-ESI-MS. To relate chemical composition to glycation inhibitory activity, the obtained peppermint extract was subjected to qualitative and quantitative analysis. The capability of peppermint leaf polyphenols to inhibit glycation (27.3-77.2%) and form adducts with MGO was confirmed. In the case of flavone aglycones, mono- and di-adducts with MGO were observed, while eriodictyol and eriocitrin effectively produced only mono-adducts. Rosmarinic acid and luteolin-7-O-glycosides did not reveal this action. IC50 of the peppermint leaf dry extract was calculated at 2 mg/mL, equivalent to a concentration of 1.8 µM/mL of polyphenols, including ~1.4 µM/mL of flavonoids and ~0.4 µM/mL of phenolic acids. The contribution of the four major components to the anti-AGE activity of the extract was estimated at 86%, including eriocitrin 35.4%, rosmarinic acid 25.6%, luteolin-7-O-rutinoside 16.9%, luteolin-7-O-ß-glucuronoside 8.1%, and others 14%. The effect of peppermint dry extract and polyphenols in inhibiting MGO-induced glycation in vitro was comparable to that of metformin used as a positive control.


Assuntos
Polifenóis , Aldeído Pirúvico , Humanos , Polifenóis/química , Aldeído Pirúvico/química , Mentha piperita/química , Luteolina/análise , Óxido de Magnésio , Extratos Vegetais/química , Folhas de Planta/química , Produtos Finais de Glicação Avançada/química , Ácido Rosmarínico
11.
J Toxicol Environ Health A ; 85(6): 230-242, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-34781835

RESUMO

The objective of this study was to determine the chemical composition as well as antioxidant, antibacterial, and cytotoxic properties of the essential oil of Mentha piperita L. (peppermint). Fifteen chemical constituents were identified in the essential oil, for a total of 99.99% of the compounds. The essential oil exhibited antimicrobial activity against two Gram-positive bacteria Staphylococcus aureus and Listeria monocytogenes. The minimum inhibitory concentration (MIC) of essential oil of Mentha piperita L. for Staphylococcus aureus and Listeria monocytogenes was 1.84 µg/ml, whereas the minimum bactericidal concentration (MBC) values were 3.7 and 7.43 µg/ml, respectively. The oil displayed potent antioxidant activity inhibiting up to approximately73% of 2,2'-azinothiobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals. In the cytotoxicity assay, the highest essential oil concentration (100 µg/ml) resulted in viability of approximately 90% human epidermal keratinocyte (HaCaT) cells. With respect to antitumor activity in C6 rat glioma cells, there was significant reduction in cell viability: 56-74% in 24 hr, and 71-77% in 48 hr. Data suggest that in presence of the essential oil of Mentha piperita L. antioxidant, antibacterial, antitumor and non-cytotoxic properties were noted.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Óleos de Plantas/farmacologia , Células HaCaT , Humanos , Listeria monocytogenes/efeitos dos fármacos , Mentha piperita/química , Mentha piperita/toxicidade , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia , Óleos Voláteis/toxicidade , Extratos Vegetais/farmacologia , Óleos de Plantas/química , Óleos de Plantas/toxicidade , Medição de Risco , Staphylococcus aureus/efeitos dos fármacos
12.
Chem Biodivers ; 19(1): e202100835, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34812593

RESUMO

Cera pepper (Capsicum pubescens) is an exotic fruit considered as a rich source of nutraceuticals with known benefits for human health and also an economic resource for local producers in Mexico. The present investigation reports on the in vitro and in situ antifungal activity of the essential oil from Mentha piperita and its two major volatiles (menthol and menthone) against Fusarium sambucinum, which is a causal agent of soft rot in cera pepper. The application of these components in pepper fruits previously infected with F. sambucinum caused a significant delay (p<0.05) in the emergence of soft rot symptoms. This effect was reflected in the maintenance of pH and fruit firmness during a period of 10 days. The nutrimental content of the fruits (protein, fiber, fat and other proximate parameters) was conserved in the same period of time. The nutraceutical content of these fruits was estimated by the quantification of seven carotenoids (violaxanthin, cis-violaxanthin, luteoxanthin, antheraxanthin, lutein, zeaxanthin and ß-carotene), ascorbic acid and capsaicinoids (capsaicin and dihydrocapsaicin). According to our results, the essential oil from M. Piperita and its major volatiles exerted a preservative effect on these metabolites. Our findings demonstrated that the essential oil of M. Piperita and its major volatiles represent an ecological alternative for the control of fusariosis caused by F. sambucinum in cera peppers under postharvest conditions.


Assuntos
Capsicum/microbiologia , Fusarium/efeitos dos fármacos , Mentha piperita/química , Doenças das Plantas/prevenção & controle , Óleos de Plantas/farmacologia , Compostos Orgânicos Voláteis/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Capsaicina/análise , Capsaicina/isolamento & purificação , Capsicum/crescimento & desenvolvimento , Carotenoides/análise , Carotenoides/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Frutas/química , Frutas/metabolismo , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Mentha piperita/metabolismo , Doenças das Plantas/microbiologia , Extratos Vegetais/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Óleos de Plantas/química , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação
13.
Molecules ; 27(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36144839

RESUMO

Colorectal cancer is one of the most frequently diagnosed forms of cancer, and the therapeutic solutions are frequently aggressive requiring improvements. Essential oils (EOs) are secondary metabolites of aromatic plants with important pharmacological properties that proved to be beneficial in multiple pathologies including cancer. Mentha piperita L. (M_EO) and Rosmarinus officinalis L. (R_EO) essential oils are well-known for their biological effects (antimicrobial, antioxidant, anti-inflammatory and cytotoxic in different cancer cells), but their potential as complementary treatment in colorectal cancer is underexplored. The aim of the present study was to investigate the M_EO and R_EO in terms of chemical composition, antioxidant, antimicrobial, and cytotoxic effects in a colorectal cancer cell line-HCT 116. The gas-chromatographic analysis revealed menthone and menthol, and eucalyptol, α-pinene and L-camphor as major compounds in M_EO and R_EO respectively. M_EO exhibited potent antimicrobial activity, moderate antioxidant activity and a low cytotoxic effect in HCT 116 cells. R_EO presented a significant cytotoxicity in colorectal cancer cells and a low antimicrobial effect. The cytotoxic effect on non-cancerous cell line HaCaT was not significant for both essential oils. These results may provide an experimental basis for further research concerning the potential use of M_EO and R_EO for anticancer treatment.


Assuntos
Anti-Infecciosos , Neoplasias Colorretais , Óleos Voláteis , Rosmarinus , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Cânfora , Neoplasias Colorretais/tratamento farmacológico , Eucaliptol/farmacologia , Humanos , Mentha piperita/química , Mentol/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Rosmarinus/química
14.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299152

RESUMO

In this study, peppermint (Mentha piperita L.), German chamomile (Matricaria chamomilla L.) and yarrow (Achillea millefolium L.) were applied as natural fibrous fillers to create biocomposites containing substances of plant origin. The purpose of the work was to investigate the activity and effectiveness of selected plants as a material for the modification of natural rubber composites. This research was the first approach to examine the usefulness of peppermint, German chamomile and yarrow in the field of polymer technology. Dried and ground plant particles were subjected to Fourier transmission infrared spectroscopy (FTIR) and UV-Vis spectroscopy, thermogravimetric analysis (TGA), goniometric measurements (contact angle) and scanning electron microscopy (SEM). The characterization of natural rubber composites filled with bio-additives was performed including rheometric measurements, FTIR, TGA, cross-linking density, mechanical properties and colour change after simulated aging processes. Composites filled with natural fillers showed improved barrier properties and mechanical strength. Moreover, an increase in the cross-linking density of the materials before and after the simulated aging processes, compared to the reference sample, was observed.


Assuntos
Achillea/química , Materiais Biocompatíveis/química , Matricaria/química , Mentha piperita/química , Extratos Vegetais/química , Borracha/química
15.
Molecules ; 26(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34946549

RESUMO

Essential oils have been studied for various applications, including for therapeutic purposes. There is extensive literature regarding their properties; however, their low stability limits their application. Generally, the microencapsulation of essential oils allows enhanced stability and enables the potential incorporation in solid dosage forms. Lavender and peppermint oils were encapsulated in microparticles using a spray-drying technique under optimized conditions: 170 °C temperature, 35 m3/h aspiration volume flow, and 7.5 mL/min feed flow. Arabic gum and maltodextrin were used as coating polymers individually in varying concentrations from 5 to 20% (w/v) and in combination. The microparticles were studied for morphology, particle size, oil content, and flowability. The formulated powder particles showed a high yield of 71 to 84%, mean diameter 2.41 to 5.99 µm, and total oil content of up to 10.80%. The results showed that both the wall material type and concentration, as well as the type of essential oil, significantly affected the encapsulation process and the final particle characteristics. Our study has demonstrated that the encapsulation of lavender and peppermint oils in Arabic gum/maltodextrin microparticles by spray-drying represents a feasible approach for the conversion of liquids into solids regarding their further use in powder technology.


Assuntos
Dessecação , Composição de Medicamentos , Lavandula/química , Mentha piperita/química , Óleos Voláteis/química , Cápsulas
16.
Molecules ; 26(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34885744

RESUMO

A worldwide increase in the incidence of fungal infections, emergence of new fungal strains, and antifungal resistance to commercially available antibiotics indicate the need to investigate new treatment options for fungal diseases. Therefore, the interest in exploring the antifungal activity of medicinal plants has now been increased to discover phyto-therapeutics in replacement to conventional antifungal drugs. The study was conducted to explore and identify the mechanism of action of antifungal agents of edible plants, including Cinnamomum zeylanicum, Cinnamomum tamala, Amomum subulatum, Trigonella foenumgraecum, Mentha piperita, Coriandrum sativum, Lactuca sativa, and Brassica oleraceae var. italica. The antifungal potential was assessed via the disc diffusion method and, subsequently, the extracts were assessed for phytochemicals and total antioxidant activity. Potent polyphenols were detected using high-performance liquid chromatography (HPLC) and antifungal mechanism of action was evaluated in silico. Cinnamomum zeylanicum exhibited antifungal activity against all the tested strains while all plant extracts showed antifungal activity against Fusarium solani. Rutin, kaempferol, and quercetin were identified as common polyphenols. In silico studies showed that rutin displayed the greatest affinity with binding pocket of fungal 14-alpha demethylase and nucleoside diphosphokinase with the binding affinity (Kd, -9.4 and -8.9, respectively), as compared to terbinafine. Results indicated that Cinnamomum zeylanicum and Cinnamomum tamala exert their antifungal effect possibly due to kaempferol and rutin, respectively, or possibly by inhibition of nucleoside diphosphokinase (NDK) and 14-alpha demethylase (CYP51), while Amomum subulatum and Trigonella foenum graecum might exhibit antifungal potential due to quercetin. Overall, the study demonstrates that plant-derived products have a high potential to control fungal infections.


Assuntos
Antifúngicos/química , Produtos Biológicos/química , Micoses/tratamento farmacológico , Polifenóis/química , Amomum/química , Antifúngicos/farmacologia , Antioxidantes/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Brassica/química , Cinnamomum zeylanicum/química , Coriandrum/química , Lactuca/química , Mentha piperita/química , Micoses/microbiologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas Comestíveis/química , Plantas Medicinais/química , Polifenóis/isolamento & purificação , Polifenóis/farmacologia , Quercetina/química , Quercetina/isolamento & purificação , Quercetina/farmacologia , Trigonella/química
17.
J Sci Food Agric ; 101(6): 2500-2510, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33058206

RESUMO

BACKGROUND: White tea, considered to be the oldest form of tea, is becoming a popular beverage for its organoleptic characteristics. Peppermint tea, used as a herbal remedy for centuries, is now also very popular throughout the world as herbal tea. What interested us was that in ancient China, peppermint was used in combination with tea as a detoxification or anti-inflammatory agent. However, there are few reports on the combined use of white tea and peppermint. Therefore, this study aims to investigate the antibacterial and anti-inflammatory activities of white tea in combination with peppermint. RESULTS: A synergistic inhibitory effect against four bacterial strains, especially against Staphylococcus argenteus, was observed in the combination of white tea and peppermint in vitro. In addition, the combined formula demonstrated a stronger anti-inflammatory effect in vivo than either of the two used alone, which was associated with the decrease of the pro-inflammatory cytokines of interleukin-6 (IL-6), interleukin-1beta (IL-1ß), tumor necrosis factor-alpha (TNF-α), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). In a further mechanism study, it was found that white tea and peppermint inhibited the phosphorylation of p-IκB-α and mitogen-activated protein kinase (MAPK) at different degrees. While the enhanced anti-inflammatory effect of the combined formula was associated with the combination of NF-κB down-regulation and p-MAPK inhibition. CONCLUSION: In our study, it was for the first time shown that when white tea was combined with peppermint, the antibacterial and anti-inflammatory effects were enhanced. The results suggested an effective application of white tea in combination with peppermint as a potential antibacterial and anti-inflammatory functional food. © 2020 Society of Chemical Industry.


Assuntos
Antibacterianos/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Camellia sinensis/química , Edema/tratamento farmacológico , Mentha piperita/química , Extratos Vegetais/administração & dosagem , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/imunologia , Sinergismo Farmacológico , Edema/genética , Edema/imunologia , Humanos , Interleucina-6/genética , Interleucina-6/imunologia , Masculino , Camundongos , NF-kappa B/genética , NF-kappa B/imunologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Folhas de Planta/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus/efeitos dos fármacos , Staphylococcus/crescimento & desenvolvimento , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
18.
Anal Bioanal Chem ; 412(24): 6341-6349, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32173791

RESUMO

A lab-made stirring extraction unit based on a selective monolithic solid was developed. The monolith was formed by interconnected carbon nanotubes which were covered by a thin polymeric layer, where specific cavities were generated to provide selective recognition sites in the material. To reach this goal, a water-in-oil (W/O) medium internal phase emulsion (40/60 w/w%), was prepared and photopolymerized. The polymerization reaction took place in the organic or external phase containing the carbon nanotubes, polymeric monomers (cross-linker and functional monomer) and a molecule template. Therefore, it was possible to coat the nanotubes with a layer of molecularly imprinted polymer (MIP) with the target analyte while forming a monolithic and macroscopic structure. The developed selective monolithic stirring extraction units were applied for the determination of secbumeton and structurally related compounds (triazine herbicides) in peppermint mint and tea samples. Their adsorption capacity and selectivity were also compared with a non-imprinted polymer (NIP). Finally, the performance of the method was evaluated for quantitative analysis, achieving limits of detection (LODs) between 0.4 and 2.5 µg·L-1. The intra- and inter-day precision of the method was also evaluated as relative standard deviation, observing values which ranged from 3% to 9% and 9% to 15%, respectively. Graphical Abstract.


Assuntos
Herbicidas/isolamento & purificação , Polímeros Molecularmente Impressos/química , Nanotubos de Carbono/química , Microextração em Fase Sólida/métodos , Triazinas/isolamento & purificação , Reagentes de Ligações Cruzadas/química , Herbicidas/análise , Limite de Detecção , Mentha piperita/química , Metacrilatos/química , Impressão Molecular/métodos , Polimerização , Chá , Chás de Ervas/análise , Triazinas/análise
19.
Phytother Res ; 34(9): 2088-2139, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32173933

RESUMO

Peppermint (Mentha × piperita L) is a perennial, glabrous and strongly scented herb belongs to the family Lamiaceae. It is cultivated in a temperate region of Europe, Asia, United States, India and Mediterranean countries due to their commercial value and distinct aroma. In addition to traditional food flavouring uses, M. × piperita is well recognized for their traditional use to treat fever, cold, digestive, anti-viral, anti-fungal and oral mucosa and throat inflammation. The scientific studies provide awareness on the use of M. × piperita for biological effects such as anti-oxidant, anti-microbial, anti-viral, anti-inflammatory, biopesticidal, larvicidal, anticancer, radioprotective effect, genotoxicity and anti-diabetic activity have been ascribed. A wide spectrum of bioactive phytochemicals such as flavonoids, phenolics lignans and stilbenes and essential oils are expected to be responsible for the aroma effects. In this sense, this present review provides an extensive overview of the traditional medicinal, phytochemical and multiple biological activities of this "Peppermint."


Assuntos
Medicina Tradicional/tendências , Mentha piperita/fisiologia , Compostos Fitoquímicos/farmacologia , Fitoterapia/tendências , Ásia , Europa (Continente) , Humanos , Índia , Medicina Tradicional/métodos , Ilhas do Mediterrâneo , Mentha piperita/química , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/farmacologia , Compostos Fitoquímicos/uso terapêutico , Fitoterapia/métodos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Estados Unidos
20.
Molecules ; 25(11)2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32517340

RESUMO

Due to the industrial use of Mentha piperita L. (peppermint), it is important to develop an optimal method to obtain standardized plant material with specific quality parameters. In vitro cultures may allow the production of desirable odor-active compounds (OACs) and improve their share in the plant aroma profile. There are two types of explants that are commonly used, apical meristems and nodal segments. In this study, the best overall effects were shown to be produced by the combination of MS medium with the addition of 0.5 mg·dm-3 indolyl-3-butyric acid. In this case, a very high degree of rooting was found (97% for apical meristems, 100% for nodal meristems), lateral shoots were induced in 83% of both types of explant, and the content of OACs in the plant aroma profile increased significantly, especially menthofurolactone and cis-carvone oxide, responsible in this case for a characteristic mint-like aroma. The comparison of the volatile organic compounds (VOCs) obtained from plants of different origin by GC-MS showed no significant differences in their qualitative composition. Moreover, in-vitro-cultivated peppermint on a medium containing 0.5 mg·dm-3 2-isopentinloadenine and 0.1 mg·dm-3 indolyl-3-acetic acid showed significant amounts of menthofurolactone in its VOC composition.


Assuntos
Mentha piperita/química , Reguladores de Crescimento de Plantas/metabolismo , Compostos Orgânicos Voláteis/química , Adenina/química , Monoterpenos Cicloexânicos/química , Cromatografia Gasosa-Espectrometria de Massas , Técnicas In Vitro , Ácidos Indolacéticos/química , Lactonas/química , Meristema/química , Monoterpenos/química , Óleos Voláteis/química , Óxidos/química , Folhas de Planta/química , Raízes de Plantas/química , Brotos de Planta/química , Sementes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA