Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Virol ; 169(7): 149, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888750

RESUMO

The genus Alternaria comprises many important fungal pathogens that infect a wide variety of organisms. In this report, we present the discovery of a new double-stranded RNA (dsRNA) mycovirus called Alternaria botybirnavirus 2 (ABRV2) from a phytopathogenic strain, XC21-21C, of Alternaria sp. isolated from diseased tobacco leaves in China. The ABRV2 genome consists of two dsRNA components, namely dsRNA1 and dsRNA2, with lengths of 6,162 and 5,865 base pairs (bp), respectively. Each of these genomic dsRNAs is monocistronic, encoding hypothetical proteins of 201.6 kDa (P1) and 2193.3 kDa (P2). ABRV2 P1 and P2 share 50.54% and 63.13% amino acid sequence identity with the corresponding proteins encoded by dsRNA1 of Alternaria botybirnavirus 1 (ABRV1). Analysis of its genome organization and phylogenetic analysis revealed that ABRV2 is a new member of the genus Botybirnavirus.


Assuntos
Alternaria , Micovírus , Genoma Viral , Nicotiana , Filogenia , Doenças das Plantas , RNA de Cadeia Dupla , RNA Viral , Alternaria/virologia , Alternaria/genética , Nicotiana/virologia , Nicotiana/microbiologia , Micovírus/genética , Micovírus/classificação , Micovírus/isolamento & purificação , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , RNA Viral/genética , RNA de Cadeia Dupla/genética , China , Vírus de RNA de Cadeia Dupla/genética , Vírus de RNA de Cadeia Dupla/isolamento & purificação , Vírus de RNA de Cadeia Dupla/classificação , Folhas de Planta/virologia , Folhas de Planta/microbiologia , Proteínas Virais/genética
2.
Arch Virol ; 169(6): 128, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38802709

RESUMO

A novel negative-sense single-stranded RNA mycovirus, designated as "Magnaporthe oryzae mymonavirus 1" (MoMNV1), was identified in the rice blast fungus Magnaporthe oryzae isolate NJ39. MoMNV1 has a single genomic RNA segment consisting of 10,515 nucleotides, which contains six open reading frames. The largest open reading frame contains 5837 bases and encodes an RNA replicase. The six open reading frames have no overlap and are arranged linearly on the genome, but the spacing of the genes is small, with a maximum of 315 bases and a minimum of 80 bases. Genome comparison and phylogenetic analysis indicated that MoMNV1 is a new member of the genus Penicillimonavirus of the family Mymonaviridae.


Assuntos
Micovírus , Genoma Viral , Fases de Leitura Aberta , Oryza , Filogenia , Doenças das Plantas , Vírus de RNA , RNA Viral , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Vírus de RNA/classificação , Micovírus/genética , Micovírus/isolamento & purificação , Micovírus/classificação , Oryza/microbiologia , Oryza/virologia , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , RNA Viral/genética , Ascomicetos/virologia , Ascomicetos/genética , Proteínas Virais/genética , Magnaporthe/virologia , Magnaporthe/genética
3.
Arch Virol ; 169(5): 110, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664287

RESUMO

Advancements in high-throughput sequencing and the development of new bioinformatics tools for large-scale data analysis play a crucial role in uncovering virus diversity and enhancing our understanding of virus evolution. The discovery of the ormycovirus clades, a group of RNA viruses that are phylogenetically distinct from all known Riboviria members and are found in fungi, highlights the value of these tools for the discovery of novel viruses. The aim of this study was to examine viral populations in fungal hosts to gain insights into the diversity, evolution, and classification of these viruses. Here, we report the molecular characterization of a newly discovered ormycovirus, which we have named "Hortiboletus rubellus ormycovirus 1" (HrOMV1), that was found in the ectomycorrhizal fungus Hortiboletus rubellus. The bipartite genome of HrOMV1, whose nucleotide sequence was determined by HTS and RLM-RACE, consists of two RNA segments (RNA1 and RNA2) that exhibit similarity to those of previously studied ormycoviruses in their organization and the proteins they encode. The presence of upstream, in-frame AUG triplets in the 5' termini of both RNA segments suggests that HrOMV1, like certain other ormycoviruses, employs a non-canonical translation initiation strategy. Phylogenetic analysis showed that HrOMV1 is positioned within the gammaormycovirus clade. Its putative RNA-dependent RNA polymerase (RdRp) exhibits sequence similarity to those of other gammaormycovirus members, the most similarity to that of Termitomyces ormycovirus 1, with 33.05% sequence identity. This protein was found to contain conserved motifs that are crucial for RNA replication, including the distinctive GDQ catalytic triad observed in gammaormycovirus RdRps. The results of this study underscore the significance of investigating the ecological role of mycoviruses in mycorrhizal fungi. This is the first report of an ormycovirus infecting a member of the ectomycorrhizal genus Hortiboletus.


Assuntos
Genoma Viral , Micorrizas , Filogenia , Vírus de RNA , Vírus de RNA/genética , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Micorrizas/genética , Micorrizas/virologia , Micovírus/genética , Micovírus/classificação , Micovírus/isolamento & purificação , RNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas Virais/genética , Fases de Leitura Aberta , Sequência de Bases
4.
Arch Virol ; 169(6): 126, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753067

RESUMO

A novel mitovirus was identified in Fusarium oxysporum f. sp. melonis strain T-SD3 and designated as "Fusarium oxysporum mitovirus 3" (FoMV3). The virus was isolated from diseased muskmelon plants with the typical symptom of fusarium wilt. The complete genome of FoMV3 is 2269 nt in length with a predicted AU content of 61.40% and contains a single open reading frame (ORF) using the fungal mitochondrial genetic code. The ORF was predicted to encode a polypeptide of 679 amino acids (aa) containing a conserved RNA-dependent RNA polymerase (RdRp) domain with a molecular mass of 77.39 kDa, which contains six conserved motifs with the highly conserved GDD tripeptide in motif IV. The 5'-untranslated region (UTR) and 3'-UTR of FoMV3 were predicted to fold into stem-loop structures. BLASTp analysis revealed that the RdRp of FoMV3 shared the highest aa sequence identity (83.85%) with that of Fusarium asiaticum mitovirus 5 (FaMV5, a member of the family Mitoviridae) infecting F. asiaticum, the causal agent of wheat fusarium head blight. Phylogenetic analysis further suggested that FoMV3 is a new member of the genus Unuamitovirus within the family Mitoviridae. This is the first report of a new mitovirus associated with F. oxysporum f. sp. melonis.


Assuntos
Micovírus , Fusarium , Genoma Viral , Fases de Leitura Aberta , Filogenia , Doenças das Plantas , Fusarium/virologia , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Micovírus/genética , Micovírus/isolamento & purificação , Micovírus/classificação , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Vírus de RNA/classificação , Sequenciamento Completo do Genoma , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Cucumis melo/virologia , Cucumis melo/microbiologia , Sequência de Aminoácidos , Regiões 5' não Traduzidas , Regiões 3' não Traduzidas , Sequência de Bases
5.
Phytopathology ; 114(5): 1020-1027, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38114080

RESUMO

Invasive fungal diseases represent a major threat to forest ecosystems worldwide. As the application of fungicides is often unfeasible and not a sustainable solution, only a few other control options are available, including biological control. In this context, the use of parasitic mycoviruses as biocontrol agents of fungal pathogens has recently gained particular attention. Since the 1990s, the Asian fungus Hymenoscyphus fraxineus has been causing lethal ash dieback across Europe. In the present study, we investigated the biocontrol potential of the mitovirus Hymenoscyphus fraxineus mitovirus 2 (HfMV2) previously identified in Japanese populations of the pathogen. HfMV2 could be successfully introduced via co-culturing into 16 of 105 HfMV2-free isolates. Infection with HfMV2 had contrasting effects on fungal growth in vitro, from cryptic to detrimental or beneficial. Virus-infected H. fraxineus isolates whose growth was reduced by HfMV2 showed overall a lower virulence on ash (Fraxinus excelsior) saplings as compared with their isogenic HfMV2-free lines. The results suggest that mycoviruses exist in the native populations of H. fraxineus in Asia that have the potential for biological control of ash dieback in Europe. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ascomicetos , Fraxinus , Micovírus , Doenças das Plantas , Fraxinus/microbiologia , Fraxinus/virologia , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Doenças das Plantas/prevenção & controle , Micovírus/fisiologia , Micovírus/isolamento & purificação , Ascomicetos/virologia , Ascomicetos/fisiologia , Virulência , Controle Biológico de Vetores , Agentes de Controle Biológico
6.
Curr Microbiol ; 81(7): 210, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837067

RESUMO

The extensive use of high-throughput sequencing (HTS) has significantly advanced and transformed our comprehension of virus diversity, especially in intricate settings like soil and biological specimens. In this study, we delved into mycovirus sequence surveys within mycorrhizal fungus species Terfezia claveryi, through employing HTS with total double-stranded RNA (dsRNA) extracts. Our findings revealed the presence of four distinct members from the Alsuviricetes class, one flexivirus designated as Terfezia claveryi flexivirus 1 (TcFV1) and three endornaviruses (TcEV1, TcEV2, and TcEV3) in two different T. claveryi isolates. TcFV1, a member of the order Tymovirales, exhibits a unique genome structure and sequence features. Through in-depth analyses, we found that it shares sequence similarities with other deltaflexiviruses and challenges existing Deltaflexiviridae classification. The discovery of TcFV1 adds to the genomic plasticity of mycoviruses within the Tymovirales order, shedding light on their evolutionary adaptations. Additionally, the three newly discovered endornaviruses (TcEV1, TcEV2, and TcEV3) in T. claveryi exhibited limited sequence similarities with other endornaviruses and distinctive features, including conserved domains like DEAD-like helicase, ATPases Associated with Diverse Cellular Activities (AAA ATPase), and RNA dependent RNA polymerase (RdRp), indicating their classification as members of new species within the Alphaendornavirus genus. In conclusion, this research emphasizes the importance of exploring viral diversity in uncultivated fungi, bridging knowledge gaps in mycovirus ecology. The discoveries of a novel flexivirus with unique genome organization and endornaviruses in T. claveryi broaden our comprehension of mycovirus diversity and evolution, highlighting the need for continued investigations into viral populations in wild fungi.


Assuntos
Micovírus , Genoma Viral , Micorrizas , Filogenia , Micovírus/genética , Micovírus/classificação , Micovírus/isolamento & purificação , Micorrizas/genética , Micorrizas/virologia , Micorrizas/classificação , Vírus de RNA/genética , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , RNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Basidiomycota/virologia , Basidiomycota/genética
7.
J Basic Microbiol ; 64(7): e2300671, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38736205

RESUMO

This study investigates the presence of mycoviruses in Antarctic fungi and elucidates their evolutionary relationships. To achieve this, we aligned mycoviral gene sequences with genomes of previously sequenced Antarctic endophytic fungi, made available by our research group and accessible via Joint Genome Institute. Our findings reveal that the most prevalent genetic regions in all endophytic fungi are homologous to Partitiviruses, Baculoviridae, and Phycodnaviridae. These regions display evidence of positive selection pressure, suggesting genetic diversity and the accumulation of nonsynonymous mutations. This phenomenon implies a crucial role for these regions in the adaptation and survival of these fungi in the challenging Antarctic ecosystems. The presence of mycoviruses in Antarctic endophytic fungi may indicate shared survival strategies between the virus and its host, shedding light on their evolutionary dynamics. This study underscores the significance of exploring mycoviruses within endophytic fungi and their contributions to genetic diversity. Future research avenues could delve into the functional implications of these conserved mycoviral genetic regions in Antarctic endophytic fungi, providing a comprehensive understanding of this intriguing association and genomic retention of viral region in fungi.


Assuntos
Briófitas , Endófitos , Micovírus , Variação Genética , Genoma Viral , Filogenia , Regiões Antárticas , Micovírus/genética , Micovírus/isolamento & purificação , Micovírus/classificação , Genoma Viral/genética , Endófitos/genética , Endófitos/isolamento & purificação , Endófitos/virologia , Endófitos/classificação , Briófitas/microbiologia , Briófitas/virologia , Fungos/genética , Fungos/virologia , Fungos/isolamento & purificação , Fungos/classificação , Genômica , Evolução Molecular , Seleção Genética
8.
J Virol ; 96(9): e0029622, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35446143

RESUMO

RNA viruses usually have linear genomes and are encapsidated by their own capsids. Here, we newly identified four mycoviruses and two previously reported mycoviruses (a fungal reovirus and a botybirnavirus) in the hypovirulent strain SCH941 of Sclerotinia sclerotiorum. One of the newly discovered mycoviruses, Sclerotinia sclerotiorum yadokarivirus 1 (SsYkV1), with a nonsegmented positive-sense single-stranded RNA (+ssRNA) genome, was molecularly characterized. SsYkV1 is 5,256 nucleotides (nt) in length, excluding the poly(A) structure, and has a large open reading frame that putatively encodes a polyprotein with the RNA-dependent RNA polymerase (RdRp) domain and a 2A-like motif. SsYkV1 was phylogenetically positioned into the family Yadokariviridae and was most closely related to Rosellinia necatrix yadokarivirus 2 (RnYkV2), with 40.55% identity (78% coverage). Although SsYkV1 does not encode its own capsid protein, the RNA and RdRp of SsYkV1 are trans-encapsidated in virions of Sclerotinia sclerotiorum botybirnavirus 3 (SsBV3), a bisegmented double-stranded RNA (dsRNA) mycovirus within the genus Botybirnavirus. In this way, SsYkV1 likely replicates inside the heterocapsid comprised of the SsBV3 capsid protein, like a dsRNA virus. SsYkV1 has a limited impact on the biological features of S. sclerotiorum. This study represents an example of a yadokarivirus trans-encapsidated by an unrelated dsRNA virus, which greatly deepens our knowledge and understanding of the unique life cycles of RNA viruses. IMPORTANCE RNA viruses typically encase their linear genomes in their own capsids. However, a capsidless +ssRNA virus (RnYkV1) highjacks the capsid of a nonsegmented dsRNA virus for the trans-encapsidation of its own RNA and RdRp. RnYkV1 belongs to the family Yadokariviridae, which already contains more than a dozen mycoviruses. However, it is unknown whether other yadokariviruses except RnYkV1 are also hosted by a heterocapsid, although dsRNA viruses with capsid proteins were detected in fungi harboring yadokarivirus. It is noteworthy that almost all presumed partner dsRNA viruses of yadokariviruses belong to the order Ghabrivirales (most probably a totivirus or toti-like virus). Here, we found a capsidless +ssRNA mycovirus, SsYkV1, from hypovirulent strain SCH941 of S. sclerotiorum, and the RNA and RdRp of this mycovirus are trans-encapsidated in virions of a bisegmented dsRNA virus within the free-floating genus Botybirnavirus. Our results greatly expand our knowledge of the unique life cycles of RNA viruses.


Assuntos
Ascomicetos , Micovírus , Vírus de RNA , Ascomicetos/virologia , Proteínas do Capsídeo/genética , Micovírus/classificação , Micovírus/genética , Micovírus/isolamento & purificação , Micovírus/metabolismo , Genoma Viral/genética , Fases de Leitura Aberta , Filogenia , Vírus de RNA/química , Vírus de RNA/classificação , Vírus de RNA/genética , Vírus de RNA/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , Replicação Viral/fisiologia
9.
Arch Virol ; 168(9): 226, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37561160

RESUMO

The complete genome of a novel mycovirus, Colletotrichum curcumae narnavirus 1 (CcNV1), derived from the phytopathogenic fungus Colletotrichum curcumae strain 780-2T, was sequenced and analyzed. The full sequence of CcNV1 is 3,374 nucleotides in length and contains a single large open reading frame (ORF) encoding an RNA-dependent RNA polymerase (RdRp) of 1,087 amino acids with a molecular mass of 124.2 kDa that shares the closest similarity with that of Monilinia narnavirus H (53.02% identity). RdRp phylogeny analysis showed that CcNV1 is a new member of the proposed genus "Betanarnavirus" within the family Narnaviridae. This is the first report of a novel narnavirus infecting the phytopathogenic fungus C. curcumae, the causal agent of leaf blight of Curcuma wenyujin.


Assuntos
Colletotrichum , Micovírus , Vírus de RNA , Colletotrichum/virologia , Micovírus/isolamento & purificação , Genoma Viral , Fases de Leitura Aberta , Filogenia , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética
10.
J Virol ; 95(17): e0039921, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34133887

RESUMO

Bacteriophages are considered the most abundant entities on earth. However, there are merely seven sequenced double-stranded RNA (dsRNA) phages, compared to thousands of sequenced double-stranded DNA (dsDNA) phages. Interestingly, dsRNA viruses are quite common in fungi and usually have a lifestyle of commensalism or mutualism. Thus, the classical protocol of using double-layer agar plates to characterize phage plaques might be significantly biased in the isolation of dsRNA phages beyond strictly lytic lifestyles. Thus, we applied a protocol for isolating fungal viruses to identify RNA phages in bacteria and successfully isolated a novel dsRNA phage, phiNY, from Microvirgula aerodenitrificans. phiNY has a genome consisting of three dsRNA segments, and its genome sequence has no nucleotide sequence similarity with any other phage. Although phiNY encodes a lytic protein of glycoside hydrolase, and phage particles are consistently released during bacterial growth, phiNY replication did not block bacterial growth, nor did it form any plaques on agar plates. More strikingly, the phiNY-infected strain grew faster than the phiNY-negative strain, indicating a mutualistic parasitic lifestyle. Thus, this study not only reveals a new mutualistic parasitic dsRNA phage but also implies that other virus isolation methods would be valuable to identify phages with nonlytic lifestyles. IMPORTANCE Viruses with dsRNA genomes are quite diverse and infect organisms in all three domains of life. Although dsRNA viruses that infect humans, plants, and fungi are quite common, dsRNA viruses that infect bacteria, known as bacteriophages, are quite understudied, and only seven dsRNA phages have been sequenced so far. One possible explanation for the rare isolation of dsRNA phages might be the protocol of the double-layer agar plate assay. Phages without strictly lytic lifestyles might not form plaques. Thus, we applied the protocol of isolating fungal viruses to identify RNA phages inside bacteria and successfully isolated a novel dsRNA phage, phiNY, with a mutualistic parasitic lifestyle. This study implies that dsRNA phages without strictly lytic lifestyles might be common in nature and deserve more investigations.


Assuntos
Bacteriófagos/fisiologia , Betaproteobacteria/virologia , Micovírus/fisiologia , Genoma Viral , Glicosídeo Hidrolases/metabolismo , RNA de Cadeia Dupla/genética , Simbiose , Micovírus/isolamento & purificação , Glicosídeo Hidrolases/genética , Filogenia
11.
Virol J ; 18(1): 43, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622359

RESUMO

BACKGROUND: Chinese bayberry (Myrica rubra) is a subtropical fruit crop widely grown in southern China. Twig dieback is a disease of Chinese bayberry caused by Pestalotiopsis spp. and results in great economic losses to Chinese bayberry production. A virus survey was conducted in the population of Pestalotiopsis spp. infecting M. rubra in China. We explored the viral diversity in Pestalotiopsis spp., which may provide resources for further development as biocontrol agents of twig dieback. METHODS: Strains of Pestalotiopsis spp. were isolated from diseased twigs of M. rubra, and cultured on potato dextrose agar for RNA extraction. The total RNA of each strain was extracted, mixed, and used for RNA sequencing. The resulting sequences were deduplicated, annotated, and then used for phylogenetic analysis. RESULTS: Seven novel viruses were characterized from 59 isolates of M. rubra collected from 14 localities in China. Based on the phylogenetic analysis, these viruses were classified into five viral families/orders, Botourmiaviridae, Mitoviridae, Partitiviridae, Tymovirales and Bunyavirales, and one virus, Pestalotiopsis negative-stranded RNA virus 1, which likely belongs to a new viral family. CONCLUSIONS: Metatranscriptomics analysis showed the presence of various mycoviruses in Pestalotiopsis spp. isolated from M. rubra in China. The genomes of eight putative viruses were identified, seven of which were nearly full-length. Some of these viruses of Pestalotiopsis spp. may have the potential for the biological control of twig dieback of M. rubra.


Assuntos
Micovírus/classificação , Micovírus/genética , Myrica/microbiologia , Pestalotiopsis/virologia , Agentes de Controle Biológico , China , Frutas/microbiologia , Micovírus/isolamento & purificação , Variação Genética , Filogenia , Análise de Sequência de RNA , Transcriptoma
12.
Arch Virol ; 166(6): 1783-1787, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33779811

RESUMO

A novel mycovirus with the proposed name "Magnaporthe oryzae botourmiavirus 9" (MoBV9) was found in the rice blast fungus Magnaporthe oryzae isolate SH05. The virus has a positive single-stranded RNA genome of 2,812 nucleotides and contains a single open reading frame predicted to encode an RNA-dependent RNA polymerase that is closely related to those of some unclassified viruses of the family Botourmiaviridae, including Plasmopara viticola lesion associated ourmia-like virus 44, Plasmopara viticola lesion associated ourmia-like virus 47, and Cladosporium uredinicola ourmiavirus 1. Genome sequence comparisons and phylogenetic analysis supported the notion that MoBV9 is a new member of the family Botourmiaviridae.


Assuntos
Ascomicetos/virologia , Micovírus/genética , Genoma Viral , Vírus de RNA/genética , RNA Viral/genética , Sequência de Aminoácidos , Micovírus/isolamento & purificação , Regulação Viral da Expressão Gênica , Filogenia , RNA Viral/isolamento & purificação , Proteínas Virais/genética , Proteínas Virais/metabolismo
13.
Arch Virol ; 166(8): 2325-2331, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34057607

RESUMO

In this report, we describe the molecular characterization of two novel mycoviruses coinfecting the plant pathogenic fungus Nigrospora sphaerica, which were designated "Nigrospora sphaerica fusarivirus 1" (NsFV1) and "Nigrospora sphaerica partitivirus 1" (NsPV1). NsFV1 has an undivided genome measuring 6,147 nt, excluding the polyA tail, and was predicted to contain two nonoverlapping open reading frames (ORF1 and 2). The larger ORF1 encodes a polyprotein containing a conserved RNA-dependent RNA polymerase (RdRp) and a helicase domain that has functions related to RNA replication, and the smaller ORF2 encodes a putative protein with an unknown function. NsPV1 consists of two genome segments, which measure 1,796 bp and 1,455 bp in length. Each of the two dsRNAs has a single ORF, and they are predicted to encode proteins with homology to viral RdRps and coat proteins of members of the family Partitiviridae. Phylogenetic analysis indicated that NsFV1 is a member of the recently proposed family "Fusariviridae", while NsPV1 was determined to belong to the genus Gammapartitivirus in the family Partitiviridae. To the best of our knowledge, this report is the first to describe mycoviruses infecting N. sphaerica.


Assuntos
Ascomicetos/virologia , Micovírus/classificação , Sequenciamento Completo do Genoma/métodos , Micovírus/genética , Micovírus/isolamento & purificação , Tamanho do Genoma , Genoma Viral , Fases de Leitura Aberta , Filogenia , Doenças das Plantas/microbiologia , Homologia de Sequência do Ácido Nucleico
14.
Arch Virol ; 166(11): 3211-3216, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34495411

RESUMO

Fusarium oxysporum is a cosmopolitan plant pathogen that causes fusarium wilt and fusarium root rot in many economically important crops. There is still limited information about mycoviruses that infect F. oxysporum. Here, a novel mitovirus tentatively named "Fusarium oxysporum mitovirus 1" (FoMV1) was identified in F. oxysporum strain B2-10. The genome of FoMV1 is 2,453 nt in length with a predicted AU content of 71.6% and contains one large open reading frame (ORF) using the fungal mitochondrial genetic code. The ORF putatively encodes an RNA-dependent RNA polymerase (RdRp) of 723 aa with a molecular mass of 84.98 kDa. The RdRp domain of FoMV1 shares 29.01% to 68.43% sequence identity with the members of the family Mitoviridae. Phylogenetic analysis further suggested that FoMV1 is a new member of a distinct species in the genus Mitovirus.


Assuntos
Micovírus/genética , Fusarium/virologia , Genoma Viral , Filogenia , Vírus de RNA/genética , Micovírus/isolamento & purificação , Fusarium/patogenicidade , Fases de Leitura Aberta , Doenças das Plantas/microbiologia , Vírus de RNA/isolamento & purificação , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Sequenciamento Completo do Genoma
15.
Arch Virol ; 166(11): 3229-3232, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34524536

RESUMO

The complete genome sequence of a double-stranded RNA (dsRNA) virus, Rhizoctonia solani dsRNA virus 11 (RsRV11), isolated from Rhizoctonia solani AG-1 IA strain 9-11 was determined. The RsRV11 genome is 9,555 bp in length and contains three conserved domains: structural maintenance of chromosomes (SMC) superfamily, phosphoribulokinase (PRK), and RNA-dependent RNA polymerase (RdRp). The RsRV11 genome has two non-overlapping open reading frames (ORFs). ORF1 is predicted to encode a 204.12-kDa protein that shares low but significant amino acid sequence similarity with a putative protein encoded by Rhizoctonia solani RNA virus HN008 (RsRV-HN008). ORF2 potentially encodes a 132.41-kDa protein that contains the conserved domain of the RdRp. Phylogenetic analysis indicated that RsRV11 clustered with RsRV-HN008 in a separate clade from other virus families. This implies that RsRV11 and RsRV-HN008 should be included in a new mycovirus taxon close to the family Megabirnaviridae and that RsRV11 is a new mycovirus.


Assuntos
Micovírus/genética , Genoma Viral , Filogenia , Rhizoctonia/virologia , China , Micovírus/isolamento & purificação , Fases de Leitura Aberta , RNA de Cadeia Dupla , Rhizoctonia/isolamento & purificação , Proteínas Virais/genética , Zea mays/microbiologia
16.
Arch Virol ; 166(6): 1805-1809, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33956246

RESUMO

In this study, a novel single-stranded RNA virus was isolated from the plant-pathogenic fungus Colletotrichum higginsianum strain HTC-5, and the virus was named "Colletotrichum higginsianum ssRNA virus 1" (ChRV1). The complete genome of ChRV1 is 3850 nucleotides in length with a GC content of 52% and contains two in-frame open reading frames (ORFs): ORF1 (smaller) and ORF2 (larger). ORF1 encodes a protein with the highest sequence similarity to proteins encoded by Phoma matteucciicola RNA virus 1 (PmRV1, 47.99% identity) and Periconia macrospinosa ambiguivirus 1 (PmAV1, 50.73% identity). ORF2 encodes a protein with a conserved RNA-dependent RNA polymerase (RdRp) domain with similarity to the RdRps of PmRV1 (61.41% identity) and PmAV1 (60.61% identity), which are recently reported unclassified (+) ssRNA mycoviruses. Phylogenetic analysis of the RdRp domain showed that ChRV1 grouped together with PmRV1, PmAV1, and other unclassified (+) ssRNA mycoviruses and had a distant relationship to invertebrate viruses and plant viruses of the family Tombusviridae. This is the first report of a novel (+) ssRNA virus infecting the phytopathogenic fungus C. higginsianum.


Assuntos
Colletotrichum/virologia , Micovírus/genética , Vírus de RNA/genética , Sequência de Aminoácidos , Micovírus/isolamento & purificação , Genoma Viral , Filogenia , Vírus de RNA/isolamento & purificação , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
17.
Arch Virol ; 166(3): 977-981, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33427966

RESUMO

Here, we report a novel partitivirus infecting Metarhizium brunneum, which was designated "Metarhizium brunneum partitivirus 2" (MbPV2). The complete genome of MbPV2 consists of two segments, dsRNA1 and dsRNA2, with each dsRNA possessing a single open reading frame (ORF). dsRNA1 (1,775 bp) encodes a conserved RNA-dependent RNA polymerase (RdRp) with the highest sequence similarity to Plasmopara viticola associated partitivirus 1 (PvAPV1), while dsRNA2 (1,568 bp) encodes a coat protein (CP) with the highest sequence similarity to Colletotrichum partitivirus 1 (CtParV1). Phylogenetic analysis based on RdRp sequences showed that MbPV2 is a new member of the genus Gammapartitivirus, family Partitiviridae. This is the first report of a gammapartitivirus that infects the entomopathogenic fungus Metarhizium brunneum.


Assuntos
Micovírus/genética , Genoma Viral/genética , Metarhizium/virologia , Vírus de RNA/genética , RNA Viral/genética , Sequência de Aminoácidos , Proteínas do Capsídeo/genética , Micovírus/classificação , Micovírus/isolamento & purificação , Fases de Leitura Aberta/genética , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , RNA de Cadeia Dupla/genética , RNA Polimerase Dependente de RNA/genética , Alinhamento de Sequência , Análise de Sequência de RNA
18.
Arch Virol ; 166(8): 2315-2319, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34028604

RESUMO

A putative polymycovirus tentatively named "Setosphaeria turcica polymycovirus 1" (StPmV1) was discovered in the phytopathogenic fungus Setosphaeria turcica. StPmV1 has a genome comprising five double-stranded RNAs (dsRNAs). dsRNA1, 2, and 3 each encode a protein sharing significant similarity but lower than 64% sequence identity to the corresponding proteins of other polymycoviruses. dsRNA4 and 5 each encode a protein with a sequence that is not conserved among polymycoviruses. However, the protein encoded by dsRNA4 is rich in proline (P), alanine (A), and serine (S) residues, which is a feature shared by the so-called PAS-rich proteins encoded by all polymycoviruses. Phylogeny reconstruction using the RNA-dependent RNA polymerase (RdRp) sequences of accepted or putative polymycoviruses revealed that StPmV1 is most closely related to Plasmopara viticola lesion associated polymycovirus 1 (PvaPolymyco1), a putative polymycovirus recovered from the phytopathogenic oomycetes Plasmopara viticola. These data suggest that StPmV1 may represent a novel species of the genus Polymycovirus, family Polymycoviridae. To our knowledge, this is the first polymycovirus reported from S. turcica.


Assuntos
Ascomicetos/virologia , Micovírus/classificação , RNA de Cadeia Dupla/genética , Sequenciamento Completo do Genoma/métodos , Composição de Bases , Micovírus/genética , Micovírus/isolamento & purificação , Tamanho do Genoma , Fases de Leitura Aberta , Filogenia , Folhas de Planta/microbiologia , RNA Fúngico/genética , Zea mays/microbiologia
19.
Arch Virol ; 166(4): 1237-1240, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33560459

RESUMO

Aplosporella javeedii is a pathogenic fungus that causes canker and dieback of jujube in China. In this study, we report a new mycovirus, Aplosporella javeedii partitivirus 1 (AjPV1), isolated from A. javeedii strain NX55-3. The AjPV1 genome contains two double-stranded RNA elements (dsRNA1 and dsRNA2). The size of dsRNA1 is 2,360 bp, and it encodes a putative RNA-dependent RNA polymerase (RdRp), while dsRNA2 is 2,301 bp in length and encodes a putative capsid protein (CP). The sequences of RdRp and CP have significant similarity to those of members of the family Partitiviridae. Sequence alignment and phylogenetic analysis showed that AjPV1 is a new member of the family Partitiviridae that is related to members of the genus Betapartitivirus. To our knowledge, AjPV1 is the first mycovirus reported from A. javeedii.


Assuntos
Ascomicetos/virologia , Vírus de RNA de Cadeia Dupla/genética , Micovírus/genética , Doenças das Plantas/microbiologia , Sequência de Aminoácidos , Sequência de Bases , Vírus de RNA de Cadeia Dupla/classificação , Vírus de RNA de Cadeia Dupla/isolamento & purificação , Micovírus/classificação , Micovírus/isolamento & purificação , Genoma Viral/genética , Filogenia , Doenças das Plantas/virologia , RNA Viral/genética , Proteínas Virais/genética , Ziziphus/microbiologia , Ziziphus/virologia
20.
Arch Virol ; 166(3): 973-976, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33427965

RESUMO

In this study, a new double-stranded RNA (dsRNA) virus, Alternaria tenuissima partitivirus 1 (AttPV1), was isolated from Alternaria tenuissima strain XJ-BZ-2-6, a phytopathogenic fungus infecting cotton in China. The genome of AttPV1 comprised three dsRNAs of 1,785 nt (dsRNA1), 1,545 nt (dsRNA2), and 1,537 nt (dsRNA3) in length, the nucleotide sequence of which was determined using reverse transcription polymerase chain reaction, random-primed clones, and RNA-ligase-mediated rapid amplification of cDNA ends. dsRNA1 had a single open reading frame encoding a putative 61.54-kDa RNA-dependent RNA polymerase (RdRp). dsRNA2 and dsRNA3 were predicted to encode putative coat proteins (CPs) of 47.90 kDa and 46.25 kDa, respectively. The RdRp domain shared 63.54-73.17% amino acid sequence identity with members of the genus Gammapartitivirus. Phylogenetic trees based on RdRp or CP sequences showed that AttPV1 clustered with members of the genus Gammapartitivirus. Hence, these results indicate that AttPV1 is a new gammapartitivirus from A. tenuissima.


Assuntos
Alternaria/virologia , Micovírus/genética , Genoma Viral/genética , Vírus de RNA/genética , RNA Viral/genética , Sequência de Aminoácidos , Sequência de Bases , Proteínas do Capsídeo/genética , China , Micovírus/classificação , Micovírus/isolamento & purificação , Gossypium/microbiologia , Fases de Leitura Aberta/genética , Doenças das Plantas/microbiologia , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , RNA de Cadeia Dupla/genética , RNA Polimerase Dependente de RNA/genética , Alinhamento de Sequência , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA