Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.104
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 157(2): 433-446, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24725409

RESUMO

Transporting epithelial cells build apical microvilli to increase membrane surface area and enhance absorptive capacity. The intestinal brush border provides an elaborate example with tightly packed microvilli that function in nutrient absorption and host defense. Although the brush border is essential for physiological homeostasis, its assembly is poorly understood. We found that brush border assembly is driven by the formation of Ca(2+)-dependent adhesion links between adjacent microvilli. Intermicrovillar links are composed of protocadherin-24 and mucin-like protocadherin, which target to microvillar tips and interact to form a trans-heterophilic complex. The cytoplasmic domains of microvillar protocadherins interact with the scaffolding protein, harmonin, and myosin-7b, which promote localization to microvillar tips. Finally, a mouse model of Usher syndrome lacking harmonin exhibits microvillar protocadherin mislocalization and severe defects in brush border morphology. These data reveal an adhesion-based mechanism for brush border assembly and illuminate the basis of intestinal pathology in patients with Usher syndrome. PAPERFLICK:


Assuntos
Caderinas/metabolismo , Enterócitos/metabolismo , Microvilosidades/metabolismo , Animais , Células COS , Células CACO-2 , Proteínas Relacionadas a Caderinas , Cálcio/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Chlorocebus aethiops , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Enterócitos/citologia , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Microvilosidades/ultraestrutura , Miosinas/metabolismo , Síndromes de Usher/patologia
2.
J Biol Chem ; 300(5): 107279, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588808

RESUMO

Actin bundling proteins crosslink filaments into polarized structures that shape and support membrane protrusions including filopodia, microvilli, and stereocilia. In the case of epithelial microvilli, mitotic spindle positioning protein (MISP) is an actin bundler that localizes specifically to the basal rootlets, where the pointed ends of core bundle filaments converge. Previous studies established that MISP is prevented from binding more distal segments of the core bundle by competition with other actin-binding proteins. Yet whether MISP holds a preference for binding directly to rootlet actin remains an open question. By immunostaining native intestinal tissue sections, we found that microvillar rootlets are decorated with the severing protein, cofilin, suggesting high levels of ADP-actin in these structures. Using total internal reflection fluorescence microscopy assays, we also found that purified MISP exhibits a binding preference for ADP- versus ADP-Pi-actin-containing filaments. Consistent with this, assays with actively growing actin filaments revealed that MISP binds at or near their pointed ends. Moreover, although substrate attached MISP assembles filament bundles in parallel and antiparallel configurations, in solution MISP assembles parallel bundles consisting of multiple filaments exhibiting uniform polarity. These discoveries highlight nucleotide state sensing as a mechanism for sorting actin bundlers along filaments and driving their accumulation near filament ends. Such localized binding might drive parallel bundle formation and/or locally modulate bundle mechanical properties in microvilli and related protrusions.


Assuntos
Actinas , Animais , Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Difosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microvilosidades/metabolismo , Ligação Proteica
3.
J Virol ; 98(6): e0023524, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38775478

RESUMO

Baculoviruses enter insect midgut epithelial cells via a set of occlusion-derived virion (ODV) envelope proteins called per os infectivity factors (PIFs). P74 of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), which was the first identified PIF, is cleaved by an endogenous proteinase embedded within the occlusion body during per os infection, but the target site(s) and function of the cleavage have not yet been ascertained. Here, based on bioinformatics analyses, we report that cleavage was predicted at an arginine and lysine-rich region in the middle of P74. A series of recombinant viruses with site-directed mutants in this region of P74 were generated. R325 or R334 was identified as primary cleavage site. In addition, we showed that P74 is also cleaved by brush border membrane vesicles (BBMV) of the host insect at R325 or R334, instead of R195, R196, and R199, as previously reported. Simultaneous mutations in R195, R196, and R199 lead to instability of P74 during ODV release. Bioassays showed that mutations at both R325 and R334 significantly affected oral infectivity. Taken together, our data show that both R325 and R334 of AcMNPV P74 are the primary cleavage site for both occlusion body endogenous proteinase and BBMV proteinase during ODV release and are critical for oral infection. IMPORTANCE: Cleavage of viral envelope proteins is usually an important trigger for viral entry into host cells. Baculoviruses are insect-specific viruses that infect host insects via the oral route. P74, a per os infectivity factor of baculoviruses, is cleaved during viral entry. However, the function and precise cleavage sites of P74 remain unknown. In this study, we found that R325 or R334 between the N- and C-conserved domains of P74 was the primary cleavage site by proteinase either from the occlusion body or host midgut. The biological significance of cleavage seems to be the release of the potential fusion peptide at the N-terminus of the cleaved C-terminal P74. Our results shed light on the cleavage model of P74 and imply its role in membrane fusion in baculovirus per os infection.


Assuntos
Nucleopoliedrovírus , Animais , Nucleopoliedrovírus/metabolismo , Nucleopoliedrovírus/genética , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/genética , Internalização do Vírus , Células Sf9 , Spodoptera , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Microvilosidades/metabolismo , Microvilosidades/virologia , Vírion/metabolismo , Corpos de Oclusão Virais/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(24): e2122249119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35666862

RESUMO

Microvilli are actin-bundle-supported membrane protrusions essential for absorption, secretion, and sensation. Microvilli defects cause gastrointestinal disorders; however, mechanisms controlling microvilli formation and organization remain unresolved. Here, we study microvilli by vitrifying the Caenorhabditis elegans larvae and mouse intestinal tissues with high-pressure freezing, thinning them with cryo-focused ion-beam milling, followed by cryo-electron tomography and subtomogram averaging. We find that many radial nanometer bristles referred to as nanobristles project from the lateral surface of nematode and mouse microvilli. The C. elegans nanobristles are 37.5 nm long and 4.5 nm wide. Nanobristle formation requires a protocadherin family protein, CDH-8, in C. elegans. The loss of nanobristles in cdh-8 mutants slows down animal growth and ectopically increases the number of Y-shaped microvilli, the putative intermediate structures if microvilli split from tips. Our results reveal a potential role of nanobristles in separating microvilli and suggest that microvilli division may help generate nascent microvilli with uniformity.


Assuntos
Caenorhabditis elegans , Tomografia com Microscopia Eletrônica , Animais , Caenorhabditis elegans/metabolismo , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Congelamento , Camundongos , Microvilosidades/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(32): e2203247119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914144

RESUMO

During immune surveillance, CD8 T cells scan the surface of antigen-presenting cells using dynamic microvillar palpation and movements as well as by having their receptors preconcentrated into patches. Here, we use real-time lattice light-sheet microscopy to demonstrate the independence of microvillar and membrane receptor patch scanning. While T cell receptor (TCR) patches can distribute to microvilli, they do so stochastically and not preferentially as for other receptors such as CD62L. The distinctness of TCR patch movement from microvillar movement extends to many other receptors that form patches that also scan independent of the TCR. An exception to this is the CD8 coreceptor which largely comigrates in patches that overlap with or are closely adjacent to those containing TCRs. Microvilli that assemble into a synapse contain various arrays of the engaged patches, notably of TCRs and the inhibitory receptor PD-1, creating a pastiche of occupancies that vary from microvillar contact to contact. In summary, this work demonstrates that localization of receptor patches within the membrane and on microvillar projections is random prior to antigen detection and that such random variation may play into the generation of many individually composed receptor patch compositions at a single synapse.


Assuntos
Células Apresentadoras de Antígenos , Linfócitos T CD8-Positivos , Microvilosidades , Receptores de Antígenos de Linfócitos T , Células Apresentadoras de Antígenos/citologia , Linfócitos T CD8-Positivos/citologia , Membrana Celular/metabolismo , Humanos , Vigilância Imunológica , Sinapses Imunológicas , Microvilosidades/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(43): e2208993119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252000

RESUMO

Multiple membrane-shaping and remodeling processes are associated with tetraspanin proteins by yet unknown mechanisms. Tetraspanins constitute a family of proteins with four transmembrane domains present in every cell type. Prominent examples are tetraspanin4 and CD9, which are required for the fundamental cellular processes of migrasome formation and fertilization, respectively. These proteins are enriched in curved membrane structures, such as cellular retraction fibers and oocyte microvilli. The factors driving this enrichment are, however, unknown. Here, we revealed that tetraspanin4 and CD9 are curvature sensors with a preference for positive membrane curvature. To this end, we used a biomimetic system emulating membranes of cell retraction fibers and oocyte microvilli by membrane tubes pulled out of giant plasma membrane vesicles with controllable membrane tension and curvature. We developed a simple thermodynamic model for the partitioning of curvature sensors between flat and tubular membranes, which allowed us to estimate the individual intrinsic curvatures of the two proteins. Overall, our findings illuminate the process of migrasome formation and oocyte microvilli shaping and provide insight into the role of tetraspanin proteins in membrane remodeling processes.


Assuntos
Oócitos , Tetraspaninas , Membrana Celular/metabolismo , Microvilosidades/metabolismo , Oócitos/metabolismo , Tetraspanina 28/metabolismo , Tetraspanina 29/metabolismo , Tetraspanina 30/metabolismo , Tetraspaninas/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(34): e2204332119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35976880

RESUMO

Attaching and effacing (AE) lesion formation on enterocytes by enteropathogenic Escherichia coli (EPEC) requires the EPEC type III secretion system (T3SS). Two T3SS effectors injected into the host cell during infection are the atypical kinases, NleH1 and NleH2. However, the host targets of NleH1 and NleH2 kinase activity during infection have not been reported. Here phosphoproteomics identified Ser775 in the microvillus protein Eps8 as a bona fide target of NleH1 and NleH2 phosphorylation. Both kinases interacted with Eps8 through previously unrecognized, noncanonical "proline-rich" motifs, PxxDY, that bound the Src Homology 3 (SH3) domain of Eps8. Structural analysis of the Eps8 SH3 domain bound to a peptide containing one of the proline-rich motifs from NleH showed that the N-terminal part of the peptide adopts a type II polyproline helix, and its C-terminal "DY" segment makes multiple contacts with the SH3 domain. Ser775 phosphorylation by NleH1 or NleH2 hindered Eps8 bundling activity and drove dispersal of Eps8 from the AE lesion during EPEC infection. This finding suggested that NleH1 and NleH2 altered the cellular localization of Eps8 and the cytoskeletal composition of AE lesions during EPEC infection.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Fosfotransferases , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Núcleo Celular/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Humanos , Microvilosidades/metabolismo , Fosforilação , Fosfotransferases/metabolismo
8.
Gastroenterology ; 165(4): 986-998.e11, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429363

RESUMO

BACKGROUND & AIMS: Acute diarrheal diseases are the second most common cause of infant mortality in developing countries. This is contributed to by lack of effective drug therapy that shortens the duration or lessens the volume of diarrhea. The epithelial brush border sodium (Na+)/hydrogen (H+) exchanger 3 (NHE3) accounts for a major component of intestinal Na+ absorption and is inhibited in most diarrheas. Because increased intestinal Na+ absorption can rehydrate patients with diarrhea, NHE3 has been suggested as a potential druggable target for drug therapy for diarrhea. METHODS: A peptide (sodium-hydrogen exchanger 3 stimulatory peptide [N3SP]) was synthesized to mimic the part of the NHE3 C-terminus that forms a multiprotein complex that inhibits NHE3 activity. The effect of N3SP on NHE3 activity was evaluated in NHE3-transfected fibroblasts null for other plasma membrane NHEs, a human colon cancer cell line that models intestinal absorptive enterocytes (Caco-2/BBe), human enteroids, and mouse intestine in vitro and in vivo. N3SP was delivered into cells via a hydrophobic fluorescent maleimide or nanoparticles. RESULTS: N3SP uptake stimulated NHE3 activity at nmol/L concentrations under basal conditions and partially reversed the reduced NHE3 activity caused by elevated adenosine 3',5'-cyclic monophosphate, guanosine 3',5'-cyclic monophosphate, and Ca2+ in cell lines and in in vitro mouse intestine. N3SP also stimulated intestinal fluid absorption in the mouse small intestine in vivo and prevented cholera toxin-, Escherichia coli heat-stable enterotoxin-, and cluster of differentiation 3 inflammation-induced fluid secretion in a live mouse intestinal loop model. CONCLUSIONS: These findings suggest pharmacologic stimulation of NHE3 activity as an efficacious approach for the treatment of moderate/severe diarrheal diseases.


Assuntos
Enterotoxinas , Trocadores de Sódio-Hidrogênio , Camundongos , Animais , Humanos , Trocador 3 de Sódio-Hidrogênio/metabolismo , Enterotoxinas/farmacologia , Enterotoxinas/metabolismo , Células CACO-2 , Trocadores de Sódio-Hidrogênio/metabolismo , Enterócitos/metabolismo , Sódio/metabolismo , Diarreia/tratamento farmacológico , Diarreia/prevenção & controle , Diarreia/induzido quimicamente , Peptídeos/efeitos adversos , Microvilosidades/metabolismo
9.
Development ; 148(23)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34704594

RESUMO

The intestinal brush border is made of an array of microvilli that increases the membrane surface area for nutrient processing, absorption and host defense. Studies on mammalian cultured epithelial cells have uncovered some of the molecular players and physical constraints required to establish this apical specialized membrane. However, the building and maintenance of a brush border in vivo has not yet been investigated in detail. Here, we combined super-resolution imaging, transmission electron microscopy and genome editing in the developing nematode Caenorhabditis elegans to build a high-resolution and dynamic localization map of known and new brush border markers. Notably, we show that microvilli components are dynamically enriched at the apical membrane during microvilli outgrowth and maturation, but become highly stable once microvilli are built. This new toolbox will be instrumental for understanding the molecular processes of microvilli growth and maintenance in vivo, as well as the effect of genetic perturbations, notably in the context of disorders affecting brush border integrity.


Assuntos
Caenorhabditis elegans/metabolismo , Enterócitos/metabolismo , Microvilosidades/metabolismo , Animais , Caenorhabditis elegans/genética , Microvilosidades/genética
10.
J Anat ; 242(3): 327-353, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36281951

RESUMO

Sensory neurons use specialized apical processes to perceive external stimuli and monitor internal body conditions. The apical apparatus can include cilia, microvilli, or both, and is adapted for the functions of the particular cell type. Photoreceptors detect light through a large, modified cilium (outer segment), that is supported by a surrounding ring of microvilli-like calyceal processes (CPs). Although first reported 150 years ago, CPs remain poorly understood. As a basis for future study, we therefore conducted a review of existing literature about sensory cell microvilli, which can act either as the primary sensory detector or as support for a cilia-based detector. While all microvilli are finger-like cellular protrusions with an actin core, the processes vary across cell types in size, number, arrangement, dynamics, and function. We summarize the current state of knowledge about CPs and the characteristics of the microvilli found on inner ear hair cells (stereocilia) and cerebral spinal fluid-contacting neurons, with comparisons to the brush border of the intestinal and renal epithelia. The structure, stability, and dynamics of the actin core are regulated by a complement of actin-binding proteins, which includes both common components and unique features when compared across cell types. Further, microvilli are often supported by lateral links, a glycocalyx, and a defined extracellular matrix, each adapted to the function and environment of the cell. Our comparison of microvillar features will inform further research into how CPs support photoreceptor function, and also provide a general basis for investigations into the structure and functions of apical microvilli found on sensory neurons.


Assuntos
Actinas , Células Receptoras Sensoriais , Microvilosidades/metabolismo , Actinas/metabolismo , Células Receptoras Sensoriais/metabolismo , Cílios
11.
Pestic Biochem Physiol ; 190: 105318, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36740338

RESUMO

Pentachlorophenol (PCP) is a synthetic organochlorine compound that is widely used in biocide and pesticide industries, and in preservation of wood, fence posts, cross arms and power line poles. Humans are usually exposed to PCP through air, contaminated water and food. PCP enters the body and adversely affects liver, gastrointestinal tract, kidney and lungs. PCP is a highly toxic class 2B or probable human carcinogen that produces large amount of reactive oxygen species (ROS) within cells. This work aimed to determine PCP-induced oxidative damage in rat kidney. Adult rats were given PCP (25, 50, 100, 150 mg/kg body weight), in corn oil, once a day for 5 days while control rats were given similar amount of corn oil by oral gavage. PCP increased hydrogen peroxide level and oxidation of thiols, proteins and lipids. The antioxidant status of kidney cells was compromised in PCP treated rats while enzymes of brush border membrane (BBM) and carbohydrate metabolism were inhibited. Plasma level of creatinine and urea was also increased. Administration of PCP increased DNA fragmentation, cross-linking of DNA to proteins and DNA strand scission in kidney. Histological studies supported biochemical findings and showed significant damage in the kidneys of PCP-treated rats. These changes could be due to redox imbalance or direct chemical modification by PCP or its metabolites. These results signify that PCP-induced oxidative stress causes nephrotoxicity, dysfunction of BBM enzymes and DNA damage.


Assuntos
Pentaclorofenol , Ratos , Humanos , Animais , Pentaclorofenol/toxicidade , Pentaclorofenol/metabolismo , Microvilosidades/metabolismo , Óleo de Milho/metabolismo , Ratos Wistar , Rim/patologia , Oxirredução , Estresse Oxidativo , Dano ao DNA
12.
J Anim Physiol Anim Nutr (Berl) ; 107(6): 1456-1464, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37448186

RESUMO

Digestible carbohydrates differ in glycaemic response, therewith having the potential to influence metabolic conditions such as insulin resistance and diabetes mellitus. Isomaltulose has been proven to lower the glycaemic response in humans, which to date has not been studied in dogs. Therefore, the aim of the present study was to characterise the digestibility, as well as the physiological effects of isomaltulose in dogs, in comparison to other saccharides. To this end, three studies were performed. Study 1 was an in vitro study, evaluating the small intestinal hydrolysis of isomaltulose compared to other relevant carbohydrate sources. Three of these saccharides, having close and low-moderate degrees of hydrolysis by brush border enzymes, were also evaluated in vivo for their glycaemic effects by measuring plasma levels of glucose, insulin and glucagon-like peptide 1 (GLP-1) 0-180 min after administration of a single dosage after an overnight fast (i.e., isomaltulose, sucrose and maltodextrin in a 3 × 3 Latin-square design, in 9 dogs, Study 2). To understand if digestive enzymes, underlying glycaemic responses for isomaltulose and sucrose can be upregulated, we exposed dogs to these saccharides for 2 weeks and repeated the measurements after an overnight fast in 18 dogs (Study 3). Isomaltulose was hydrolysed by intestinal enzyme preparation from all three dogs, but the degrading activity was low (e.g., 3.95 ± 1.03 times lower vs. sucrose), indicating a slower rate of hydrolysis. Isomaltulose had a low glycaemic response, in line with in vitro data. In vitro hydrolysis of sucrose was comparable or even higher than maltodextrin in contrast to the more pronounced glycaemic response to maltodextrin observed in vivo. The numerically higher blood glucose response to sucrose after continuous consumption, might indicate an adaptive response. In conclusion, the current work provides valuable insights into the digestion physiology of various saccharides in dogs. Further investigations on related benefits are thus warranted.


Assuntos
Glicemia , Sacarose , Humanos , Cães , Animais , Hidrólise , Microvilosidades/metabolismo
13.
Biophys J ; 121(21): 4128-4136, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181267

RESUMO

T cells are immune cells that continuously scan for foreign-derived antigens on the surfaces of nearly all cells, termed antigen-presenting cells (APCs). They do this by dynamically extending numerous protrusions called microvilli (MVs) that contain T cell receptors toward the APC surface in order to scan for antigens. The number, size, and dynamics of these MVs, and the complex multiscale topography that results, play a yet unknown role in antigen recognition. We develop an anatomically informed model that confines antigen recognition to small areas representing MVs that can dynamically form and dissolve and use the model to study how MV dynamics impact antigen sensitivity and discrimination. We find that MV surveillance reduces antigen sensitivity compared with a completely flat interface, unless MV are stabilized in an antigen-dependent manner, and observe that MVs have only a modest impact on antigen discrimination. The model highlights that MV contacts optimize the competing demands of fast scanning speeds of the APC surface with antigen sensitivity. Our model predicts an interface packing fraction that corresponds closely to those observed experimentally, indicating that T cells operate their MVs near the limits imposed by anatomical and geometric constraints. Finally, we find that observed MV contact lifetimes can be largely influenced by conditions in the T cell/APC interface, with these lifetimes often being longer than the simulation or experimental observation period. This work highlights the role of MVs in antigen recognition.


Assuntos
Receptores de Antígenos de Linfócitos T , Linfócitos T , Linfócitos T/metabolismo , Microvilosidades/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Células Apresentadoras de Antígenos/metabolismo
14.
Am J Physiol Cell Physiol ; 322(5): C803-C813, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35264014

RESUMO

Nicotinamide is an important regulator of Pi homeostasis after conversion into NAD+/NADH. In this work, we have studied the classical inhibition of Pi transport by these compounds in the brush border membrane vesicles (BBMV) of rat kidney and rat intestine, and we examined the effects in opossum kidney (OK) cells and in phosphate transporter-expressing Xenopus laevis oocytes. In BBMV, NAD+ required preincubation at either room temperature or on ice to inhibit Pi uptake in BBMV. However, no effects were observed in the known Slc34 or Slc20 Pi transporters expressed in Xenopus oocytes, in OK cells, or in isolated rat cortical nephron segments. In BBMV from jejunum or kidney cortex, the inhibition of Pi transport was specific, dose-related, and followed a competitive inhibition pattern, as shown by linear transformation and nonlinear regression analyses. A Ki value of 538 µM NAD+ in kidney BBMV was obtained. Ribosylation inhibitors and ribosylation assays revealed no evidence that this reaction was responsible for inhibiting Pi transport. An analysis of the persistence of NAD+/NADH revealed a half-life of just 2 min during preincubation. Out of several metabolites of NAD degradation, only ADP-ribose was able to inhibit Pi uptake. Pi concentration also increased during 30 min of preincubation, up to 0.67 mM, most likely as a metabolic end product. In conclusion, the classical inhibition of Pi transport by NAD+/NADH in BBMV seems to be caused by the degradation metabolites of these compounds during the preincubation time.


Assuntos
NAD , Fosfatos , Animais , Transporte Biológico , Córtex Renal/metabolismo , Microvilosidades/metabolismo , NAD/metabolismo , Fosfatos/metabolismo , Ratos
15.
Am J Physiol Gastrointest Liver Physiol ; 323(5): G501-G510, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36218265

RESUMO

Intestinal enterocytes have an elaborate apical membrane of actin-rich protrusions known as microvilli. The organization of microvilli is orchestrated by the intermicrovillar adhesion complex (IMAC), which connects the distal tips of adjacent microvilli. The IMAC is composed of CDHR2 and CDHR5 as well as the scaffolding proteins USH1C, ANKS4B, and Myosin 7b (MYO7B). To create an IMAC, cells must transport the proteins to the apical membrane. Myosin 5b (MYO5B) is a molecular motor that traffics ion transporters to the apical membrane of enterocytes, and we hypothesized that MYO5B may also be responsible for the localization of IMAC proteins. To address this question, we used two different mouse models: 1) neonatal germline MYO5B knockout (MYO5B KO) mice and 2) adult intestinal-specific tamoxifen-inducible VillinCreERT2;MYO5Bflox/flox mice. In control mice, immunostaining revealed that CDHR2, CDHR5, USH1C, and MYO7B were highly enriched at the tips of the microvilli. In contrast, neonatal germline and adult MYO5B-deficient mice showed loss of apical CDHR2, CDHR5, and MYO7B in the brush border and accumulation in a subapical compartment. Colocalization analysis revealed decreased Mander's coefficients in adult inducible MYO5B-deficient mice compared with control mice for CDHR2, CDHR5, USH1C, and MYO7B. Scanning electron microscopy images further demonstrated aberrant microvilli packing in adult inducible MYO5B-deficient mouse small intestine. These data indicate that MYO5B is responsible for the delivery of IMAC components to the apical membrane.NEW & NOTEWORTHY The intestinal epithelium absorbs nutrients and water through an elaborate apical membrane of highly organized microvilli. Microvilli organization is regulated by the intermicrovillar adhesion complexes, which create links between neighboring microvilli and control microvilli packing and density. In this study, we report a new trafficking partner of the IMAC, Myosin 5b. Loss of Myosin 5b results in a disorganized brush border and failure of IMAC proteins to reach the distal tips of microvilli.


Assuntos
Enterócitos , Microvilosidades , Miosina Tipo V , Animais , Camundongos , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Enterócitos/metabolismo , Mucosa Intestinal/metabolismo , Intestinos , Microvilosidades/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/genética , Miosina Tipo V/metabolismo
16.
Biochem Biophys Res Commun ; 635: 114-119, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36265284

RESUMO

Microvilli are membrane protrusions involved in many membrane-associated physiological processes. Previous studies have focused on the dynamics of individual microvilli, however, the morphological classification of microvilli and the dynamics of microvillar clusters as the basic functional domain remain largely unknown. Here we used atomic force microscopy (AFM) to achieve nanoscale resolution 3D microvilli images of living HeLa cells. We found that there were mainly two subtypes of microvilli with different morphologies and lifecycle that were unequally present on the cell membrane. Employing a strategy to track microvillar cluster movement at nanometer resolution, we further revealed the polymorphic movement of microvillar clusters in 3D. Overall, these data strengthened the morphology and dynamics of cell membranes and associated structures, which provided a new perspective for microvillar function research.


Assuntos
Endocitose , Humanos , Microvilosidades/metabolismo , Células HeLa , Membrana Celular/metabolismo , Microscopia de Força Atômica/métodos
17.
Nat Rev Mol Cell Biol ; 11(4): 276-87, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20308985

RESUMO

Specialized membrane domains are an important feature of almost all cells. In particular, they are essential to tissues that have a highly organized cell cortex, such as the intestinal brush border epithelium. The ERM proteins (ezrin, radixin and moesin) have a crucial role in organizing membrane domains through their ability to interact with transmembrane proteins and the cytoskeleton. In doing so, they can provide structural links to strengthen the cell cortex and regulate the activities of signal transduction pathways. Recent studies examining the structure and in vivo functions of ERMs have greatly advanced our understanding of the importance of membrane-cytoskeleton interactions.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microvilosidades/metabolismo , Transdução de Sinais , Animais , Humanos
18.
J Pathol ; 253(3): 304-314, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33159698

RESUMO

Apical microvilli of polarized epithelial cells govern the absorption of metabolites and the transport of fluid in tissues. Previously, we reported that tall and dense basal microvilli present on the endothelial cells of pancreatic cancers, a lethal malignancy with a high metabolism and unusual hypomicrovascularity, contain nutrient trafficking vesicles and glucose; their length and density were related to the glucose uptake of pancreatic cancers in a small-scale analysis. However, the implications of basal microvilli on pancreatic cancers are unknown. Here, we evaluated the clinical implications of basal microvilli in 106 pancreatic cancers. We found that basal microvilli are a dominant change in pancreatic cancers. The presence of longer and denser basal microvilli on the microvessels in pancreatic cancer tissues positively correlated with increased glucose uptake and higher metastatic (or invasive) and proliferative potentials of neoplastic cells and vice versa. Clinically, postoperative patients with longer and denser basal microvilli were more prone to unfavorable pathological characteristics and dismal prognoses. They were even more refractory to adjuvant therapy than those with shorter and thinner basal microvilli were. Our findings show that basal microvilli define the metabolic capacity and lethal phenotype of pancreatic cancers. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Endotélio Vascular/patologia , Microvilosidades/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Adulto , Idoso , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Microvasos/patologia , Microvilosidades/metabolismo , Pessoa de Meia-Idade , Neoplasias Pancreáticas/irrigação sanguínea , Fenótipo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Prognóstico
19.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430658

RESUMO

The transcytosis of lipids through enterocytes occurs through the delivery of lipid micelles to the microvilli of enterocytes, consumption of lipid derivates by the apical plasma membrane (PM) and then their delivery to the membrane of the smooth ER attached to the basolateral PM. The SER forms immature chylomicrons (iChMs) in the ER lumen. iChMs are delivered at the Golgi complex (GC) where they are subjected to additional glycosylation resulting in maturation of iChMs. ChMs are secreted into the intercellular space and delivered into the lumen of lymphatic capillaries (LCs). The overloading of enterocytes with lipids induces the formation of lipid droplets inside the lipid bilayer of the ER membranes and transcytosis becomes slower. Here, we examined components of the enterocyte-to-lymphatic barriers in newly born rats before the first feeding and after it. In contrast to adult animals, enterocytes of newborns rats exhibited apical endocytosis and a well-developed subapical endosomal tubular network. These enterocytes uptake membranes from amniotic fluid. Then these membranes are transported across the polarized GC and secreted into the intercellular space. The enterocytes did not contain COPII-coated buds on the granular ER. The endothelium of blood capillaries situated near the enterocytes contained only a few fenestrae. The LCs were similar to those in adult animals. The first feeding induced specific alterations of enterocytes, which were similar to those observed after the lipid overloading of enterocytes in adult rats. Enlarged chylomicrons were stopped at the level of the LAMP2 and Neu1 positive post-Golgi structures, secreted, fused, delivered to the interstitial space, captured by the LCs and transported to the lymph node, inducing the movement of macrophages from lymphatic follicles into its sinuses. The macrophages captured the ChMs, preventing their delivery into the blood.


Assuntos
Quilomícrons , Enterócitos , Ratos , Animais , Enterócitos/metabolismo , Animais Recém-Nascidos , Quilomícrons/metabolismo , Transporte Biológico , Microvilosidades/metabolismo
20.
Traffic ; 20(1): 39-60, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30328220

RESUMO

Prominin-1 is a cell surface biomarker that allows the identification of stem and cancer stem cells from different organs. It is also expressed in several differentiated epithelial and non-epithelial cells. Irrespective of the cell type, prominin-1 is associated with plasma membrane protrusions. Here, we investigate its impact on the architecture of membrane protrusions using microvilli of Madin-Darby canine kidney cells as the main model. Our high-resolution analysis revealed that upon the overexpression of prominin-1 the number of microvilli and clusters of them increased. Microvilli with branched and/or knob-like morphologies were observed and stimulated by mutations in the ganglioside-binding site of prominin-1. The altered phenotypes were caused by the interaction of prominin-1 with phosphoinositide 3-kinase and Arp2/3 complex. Mutation of tyrosine 828 of prominin-1 impaired its phosphorylation and thereby inhibited the aforementioned interactions abolishing altered microvilli. This suggests that the interplay of prominin-1-ganglioside membrane complexes, phosphoinositide 3-kinase and cytoskeleton components regulates microvillar architecture. Lastly, the expression of prominin-1 and its mutants modified the structure of filopodia emerging from fibroblast-like cells and silencing human prominin-1 in primary hematopoietic stem cells resulted in the loss of uropod-associated microvilli. Altogether, these findings strengthen the role of prominin-1 as an organizer of cellular protrusions.


Assuntos
Antígeno AC133/metabolismo , Microvilosidades/metabolismo , Antígeno AC133/química , Antígeno AC133/genética , Animais , Sítios de Ligação , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Cães , Gangliosídeos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Microvilosidades/ultraestrutura , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA