Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154.715
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 175(1): 277-291.e31, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241608

RESUMO

Human health is dependent upon environmental exposures, yet the diversity and variation in exposures are poorly understood. We developed a sensitive method to monitor personal airborne biological and chemical exposures and followed the personal exposomes of 15 individuals for up to 890 days and over 66 distinct geographical locations. We found that individuals are potentially exposed to thousands of pan-domain species and chemical compounds, including insecticides and carcinogens. Personal biological and chemical exposomes are highly dynamic and vary spatiotemporally, even for individuals located in the same general geographical region. Integrated analysis of biological and chemical exposomes revealed strong location-dependent relationships. Finally, construction of an exposome interaction network demonstrated the presence of distinct yet interconnected human- and environment-centric clouds, comprised of interacting ecosystems such as human, flora, pets, and arthropods. Overall, we demonstrate that human exposomes are diverse, dynamic, spatiotemporally-driven interaction networks with the potential to impact human health.


Assuntos
Exposição Ambiental/análise , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Adulto , Animais , Ecossistema , Doença Ambiental/etiologia , Humanos
2.
Cell ; 170(5): 828-843, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28841416

RESUMO

The foundation for a new era of data-driven medicine has been set by recent technological advances that enable the assessment and management of human health at an unprecedented level of resolution-what we refer to as high-definition medicine. Our ability to assess human health in high definition is enabled, in part, by advances in DNA sequencing, physiological and environmental monitoring, advanced imaging, and behavioral tracking. Our ability to understand and act upon these observations at equally high precision is driven by advances in genome editing, cellular reprogramming, tissue engineering, and information technologies, especially artificial intelligence. In this review, we will examine the core disciplines that enable high-definition medicine and project how these technologies will alter the future of medicine.


Assuntos
Medicina de Precisão/métodos , Conjuntos de Dados como Assunto , Doença/genética , Monitoramento Ambiental , Monitores de Aptidão Física , Engenharia Genética , Predisposição Genética para Doença , Genoma Humano , Inquéritos Epidemiológicos , Humanos , Avaliação Nutricional
3.
Nature ; 620(7974): 582-588, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37558875

RESUMO

Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.


Assuntos
Biodiversidade , Conservação dos Recursos Hídricos , Monitoramento Ambiental , Água Doce , Invertebrados , Animais , Espécies Introduzidas/tendências , Invertebrados/classificação , Invertebrados/fisiologia , Europa (Continente) , Atividades Humanas , Conservação dos Recursos Hídricos/estatística & dados numéricos , Conservação dos Recursos Hídricos/tendências , Hidrobiologia , Fatores de Tempo , Produção Agrícola , Urbanização , Aquecimento Global , Poluentes da Água/análise
4.
Nature ; 620(7976): 1013-1017, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37438527

RESUMO

Pesticides are ubiquitous environmental pollutants negatively affecting ecosystem and human health1,2. About 3 Tg of pesticides are used annually in agriculture to protect crops3. How much of these pesticides remain on land and reach the aquifer or the ocean is uncertain. Monitoring their environmental fate is challenging, and a detailed picture of their mobility in time and space is largely missing4. Here, we develop a process-based model accounting for the hydrology and biogeochemistry of the 92 most used agricultural pesticide active substances to assess their pathways through the principal catchments of the world and draw a near-present picture of the global land and river budgets, including discharge to oceans. Of the 0.94 Tg net annual pesticide input in 2015 used in this study, 82% is biologically degraded, 10% remains as residue in soil and 7.2% leaches below the root zone. Rivers receive 0.73 Gg of pesticides from their drainage at a rate of 10 to more than 100 kg yr-1 km-1. By contrast to their fate in soil, only 1.1% of pesticides entering rivers are degraded along streams, exceeding safety levels (concentrations >1 µg l-1) in more than 13,000 km of river length, with 0.71 Gg of pesticide active ingredients released to oceans every year. Herbicides represent the prevalent pesticide residue on both land (72%) and river outlets (62%).


Assuntos
Agricultura , Monitoramento Ambiental , Poluentes Ambientais , Oceanos e Mares , Praguicidas , Rios , Solo , Humanos , Ecossistema , Praguicidas/análise , Rios/química , Solo/química , Poluentes Químicos da Água/análise , Água do Mar/química , Herbicidas/análise , Poluentes do Solo/análise , Poluentes Ambientais/análise
5.
Nature ; 601(7891): 74-78, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34912113

RESUMO

Anthropogenic releases of mercury (Hg)1-3 are a human health issue4 because the potent toxicant methylmercury (MeHg), formed primarily by microbial methylation of inorganic Hg in aquatic ecosystems, bioaccumulates to high concentrations in fish consumed by humans5,6. Predicting the efficacy of Hg pollution controls on fish MeHg concentrations is complex because many factors influence the production and bioaccumulation of MeHg7-9. Here we conducted a 15-year whole-ecosystem, single-factor experiment to determine the magnitude and timing of reductions in fish MeHg concentrations following reductions in Hg additions to a boreal lake and its watershed. During the seven-year addition phase, we applied enriched Hg isotopes to increase local Hg wet deposition rates fivefold. The Hg isotopes became increasingly incorporated into the food web as MeHg, predominantly from additions to the lake because most of those in the watershed remained there. Thereafter, isotopic additions were stopped, resulting in an approximately 100% reduction in Hg loading to the lake. The concentration of labelled MeHg quickly decreased by up to 91% in lower trophic level organisms, initiating rapid decreases of 38-76% of MeHg concentration in large-bodied fish populations in eight years. Although Hg loading from watersheds may not decline in step with lowering deposition rates, this experiment clearly demonstrates that any reduction in Hg loadings to lakes, whether from direct deposition or runoff, will have immediate benefits to fish consumers.


Assuntos
Monitoramento Ambiental , Recuperação e Remediação Ambiental , Peixes/metabolismo , Cadeia Alimentar , Lagos/química , Intoxicação por Mercúrio/veterinária , Mercúrio/análise , Animais , Isótopos/análise , Fatores de Tempo
6.
Nature ; 607(7919): 555-562, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35483403

RESUMO

At least 10,000 virus species have the ability to infect humans but, at present, the vast majority are circulating silently in wild mammals1,2. However, changes in climate and land use will lead to opportunities for viral sharing among previously geographically isolated species of wildlife3,4. In some cases, this will facilitate zoonotic spillover-a mechanistic link between global environmental change and disease emergence. Here we simulate potential hotspots of future viral sharing, using a phylogeographical model of the mammal-virus network, and projections of geographical range shifts for 3,139 mammal species under climate-change and land-use scenarios for the year 2070. We predict that species will aggregate in new combinations at high elevations, in biodiversity hotspots, and in areas of high human population density in Asia and Africa, causing the cross-species transmission of their associated viruses an estimated 4,000 times. Owing to their unique dispersal ability, bats account for the majority of novel viral sharing and are likely to share viruses along evolutionary pathways that will facilitate future emergence in humans. Notably, we find that this ecological transition may already be underway, and holding warming under 2 °C within the twenty-first century will not reduce future viral sharing. Our findings highlight an urgent need to pair viral surveillance and discovery efforts with biodiversity surveys tracking the range shifts of species, especially in tropical regions that contain the most zoonoses and are experiencing rapid warming.


Assuntos
Mudança Climática , Mamíferos , Zoonoses Virais , Vírus , Migração Animal , Animais , Biodiversidade , Quirópteros/virologia , Mudança Climática/estatística & dados numéricos , Monitoramento Ambiental , Humanos , Mamíferos/classificação , Mamíferos/virologia , Filogeografia , Medição de Risco , Clima Tropical , Zoonoses Virais/epidemiologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Vírus/isolamento & purificação
8.
Nature ; 597(7877): 503-510, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34552257

RESUMO

Large, distributed collections of miniaturized, wireless electronic devices1,2 may form the basis of future systems for environmental monitoring3, population surveillance4, disease management5 and other applications that demand coverage over expansive spatial scales. Aerial schemes to distribute the components for such networks are required, and-inspired by wind-dispersed seeds6-we examined passive structures designed for controlled, unpowered flight across natural environments or city settings. Techniques in mechanically guided assembly of three-dimensional (3D) mesostructures7-9 provide access to miniature, 3D fliers optimized for such purposes, in processes that align with the most sophisticated production techniques for electronic, optoelectronic, microfluidic and microelectromechanical technologies. Here we demonstrate a range of 3D macro-, meso- and microscale fliers produced in this manner, including those that incorporate active electronic and colorimetric payloads. Analytical, computational and experimental studies of the aerodynamics of high-performance structures of this type establish a set of fundamental considerations in bio-inspired design, with a focus on 3D fliers that exhibit controlled rotational kinematics and low terminal velocities. An approach that represents these complex 3D structures as discrete numbers of blades captures the essential physics in simple, analytical scaling forms, validated by computational and experimental results. Battery-free, wireless devices and colorimetric sensors for environmental measurements provide simple examples of a wide spectrum of applications of these unusual concepts.


Assuntos
Biomimética , Equipamentos e Provisões Elétricas , Miniaturização/instrumentação , Sementes , Vento , Tecnologia sem Fio/instrumentação , Colorimetria , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Fenômenos Mecânicos , Microfluídica , Vigilância da População/métodos , Rotação
9.
Nature ; 597(7876): 370-375, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34526706

RESUMO

Droughts and climate-change-driven warming are leading to more frequent and intense wildfires1-3, arguably contributing to the severe 2019-2020 Australian wildfires4. The environmental and ecological impacts of the fires include loss of habitats and the emission of substantial amounts of atmospheric aerosols5-7. Aerosol emissions from wildfires can lead to the atmospheric transport of macronutrients and bio-essential trace metals such as nitrogen and iron, respectively8-10. It has been suggested that the oceanic deposition of wildfire aerosols can relieve nutrient limitations and, consequently, enhance marine productivity11,12, but direct observations are lacking. Here we use satellite and autonomous biogeochemical Argo float data to evaluate the effect of 2019-2020 Australian wildfire aerosol deposition on phytoplankton productivity. We find anomalously widespread phytoplankton blooms from December 2019 to March 2020 in the Southern Ocean downwind of Australia. Aerosol samples originating from the Australian wildfires contained a high iron content and atmospheric trajectories show that these aerosols were likely to be transported to the bloom regions, suggesting that the blooms resulted from the fertilization of the iron-limited waters of the Southern Ocean. Climate models project more frequent and severe wildfires in many regions1-3. A greater appreciation of the links between wildfires, pyrogenic aerosols13, nutrient cycling and marine photosynthesis could improve our understanding of the contemporary and glacial-interglacial cycling of atmospheric CO2 and the global climate system.


Assuntos
Monitoramento Ambiental , Eutrofização , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/isolamento & purificação , Incêndios Florestais/estatística & dados numéricos , Aerossóis/análise , Aerossóis/química , Atmosfera/química , Austrália , Clorofila A/análise , Imagens de Satélites , Estações do Ano , Fuligem/análise
10.
Nature ; 597(7876): 360-365, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34526707

RESUMO

Fish and other aquatic foods (blue foods) present an opportunity for more sustainable diets1,2. Yet comprehensive comparison has been limited due to sparse inclusion of blue foods in environmental impact studies3,4 relative to the vast diversity of production5. Here we provide standardized estimates of greenhouse gas, nitrogen, phosphorus, freshwater and land stressors for species groups covering nearly three quarters of global production. We find that across all blue foods, farmed bivalves and seaweeds generate the lowest stressors. Capture fisheries predominantly generate greenhouse gas emissions, with small pelagic fishes generating lower emissions than all fed aquaculture, but flatfish and crustaceans generating the highest. Among farmed finfish and crustaceans, silver and bighead carps have the lowest greenhouse gas, nitrogen and phosphorus emissions, but highest water use, while farmed salmon and trout use the least land and water. Finally, we model intervention scenarios and find improving feed conversion ratios reduces stressors across all fed groups, increasing fish yield reduces land and water use by up to half, and optimizing gears reduces capture fishery emissions by more than half for some groups. Collectively, our analysis identifies high-performing blue foods, highlights opportunities to improve environmental performance, advances data-poor environmental assessments, and informs sustainable diets.


Assuntos
Aquicultura , Ecossistema , Monitoramento Ambiental , Alimentos Marinhos , Desenvolvimento Sustentável , Animais , Aquicultura/tendências , Mudança Climática , Dieta , Ecologia , Política Ambiental , Pesqueiros , Abastecimento de Alimentos/métodos , Gases de Efeito Estufa , Humanos , Moluscos , Nitrogênio , Fósforo , Alimentos Marinhos/provisão & distribuição , Alga Marinha , Desenvolvimento Sustentável/tendências
11.
Nature ; 600(7889): 456-461, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34912090

RESUMO

Commercial chemicals are used extensively across urban centres worldwide1, posing a potential exposure risk to 4.2 billion people2. Harmful chemicals are often assessed on the basis of their environmental persistence, accumulation in biological organisms and toxic properties, under international and national initiatives such as the Stockholm Convention3. However, existing regulatory frameworks rely largely upon knowledge of the properties of the parent chemicals, with minimal consideration given to the products of their transformation in the atmosphere. This is mainly due to a dearth of experimental data, as identifying transformation products in complex mixtures of airborne chemicals is an immense analytical challenge4. Here we develop a new framework-combining laboratory and field experiments, advanced techniques for screening suspect chemicals, and in silico modelling-to assess the risks of airborne chemicals, while accounting for atmospheric chemical reactions. By applying this framework to organophosphate flame retardants, as representative chemicals of emerging concern5, we find that their transformation products are globally distributed across 18 megacities, representing a previously unrecognized exposure risk for the world's urban populations. More importantly, individual transformation products can be more toxic and up to an order-of-magnitude more persistent than the parent chemicals, such that the overall risks associated with the mixture of transformation products are also higher than those of the parent flame retardants. Together our results highlight the need to consider atmospheric transformations when assessing the risks of commercial chemicals.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Atmosfera/química , Monitoramento Ambiental , Retardadores de Chama/efeitos adversos , Substâncias Perigosas/análise , Internacionalidade , Organofosfatos/efeitos adversos , Ar/análise , Poluentes Atmosféricos/química , Poluentes Atmosféricos/intoxicação , Animais , Bioacumulação , Cidades/estatística & dados numéricos , Simulação por Computador , Ecossistema , Retardadores de Chama/análise , Retardadores de Chama/intoxicação , Substâncias Perigosas/efeitos adversos , Substâncias Perigosas/química , Substâncias Perigosas/intoxicação , Humanos , Intoxicação por Organofosfatos , Organofosfatos/análise , Organofosfatos/química , Medição de Risco
12.
Proc Natl Acad Sci U S A ; 121(33): e2407357121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39110724

RESUMO

Satellite-based land use monitoring and farm-level traceability offer opportunities for targeted zero-deforestation interventions on private lands. Brazil's Rural Environmental Registry (Cadastro Ambiental Rural, or "CAR"), a land cadaster based on self-declaration of property boundaries, was created to monitor compliance with national forest laws. It has become an important enabling measure for sustainable supply chain initiatives like the Amazon Soy Moratorium. However, CAR enrollment is increasingly used to bolster illegal land claims, putting it at the heart of land grabbing dynamics. Self-declaration of properties in the CAR offers a unique situation to study land conflicts and their impact on land use decisions on a large scale. We quantified competing land claims among 846,420 registrations in the Brazilian Legal Amazon and applied a series of generalized linear mixed-effects models. We determined that CAR overlaps are more prevalent on larger registrations, in more densely settled areas, and in areas with less secure land tenure. We tested how landholders respond to land conflicts, finding significantly more deforestation and declared legal forest reserve on lands with multiple claims. CAR overlap results in an overestimation of forest reserves by up to 9.7 million hectares when considering double-counted and deforested areas of reserves, highlighting an overlooked form of Forest Code noncompliance. While the CAR continues to be used as evidence of land tenure, we conclude that the formalization of land claims through self-declarations is inadequate to decrease conflicts. CAR overlap information provides objective evidence of land conflict that authorities can leverage with field inspection to ensure peaceful occupation before issuing land titles.


Assuntos
Conservação dos Recursos Naturais , Brasil , Florestas , Humanos , Agricultura , Sistema de Registros , População Rural , Monitoramento Ambiental/métodos
13.
Proc Natl Acad Sci U S A ; 121(12): e2315058121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466839

RESUMO

Mercury (Hg) is a contaminant of global concern, and an accurate understanding of its atmospheric fate is needed to assess its risks to humans and ecosystem health. Atmospheric oxidation of Hg is key to the deposition of this toxic metal to the Earth's surface. Short-lived halogens (SLHs) can provide halogen radicals to directly oxidize Hg and perturb the budget of other Hg oxidants (e.g., OH and O3). In addition to known ocean emissions of halogens, recent observational evidence has revealed abundant anthropogenic emissions of SLHs over continental areas. However, the impacts of anthropogenic SLHs emissions on the atmospheric fate of Hg and human exposure to Hg contamination remain unknown. Here, we show that the inclusion of anthropogenic SLHs substantially increased local Hg oxidation and, consequently, deposition in/near Hg continental source regions by up to 20%, thereby decreasing Hg export from source regions to clean environments. Our modeling results indicated that the inclusion of anthropogenic SLHs can lead to higher Hg exposure in/near Hg source regions than estimated in previous assessments, e.g., with increases of 8.7% and 7.5% in China and India, respectively, consequently leading to higher Hg-related human health risks. These results highlight the urgent need for policymakers to reduce local Hg and SLHs emissions. We conclude that the substantial impacts of anthropogenic SLHs emissions should be included in model assessments of the Hg budget and associated health risks at local and global scales.


Assuntos
Mercúrio , Humanos , Mercúrio/toxicidade , Mercúrio/análise , Monitoramento Ambiental/métodos , Ecossistema , China , Índia
14.
Proc Natl Acad Sci U S A ; 121(21): e2315513121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739784

RESUMO

Mercury (Hg) is a heterogeneously distributed toxicant affecting wildlife and human health. Yet, the spatial distribution of Hg remains poorly documented, especially in food webs, even though this knowledge is essential to assess large-scale risk of toxicity for the biota and human populations. Here, we used seabirds to assess, at an unprecedented population and geographic magnitude and high resolution, the spatial distribution of Hg in North Atlantic marine food webs. To this end, we combined tracking data of 837 seabirds from seven different species and 27 breeding colonies located across the North Atlantic and Atlantic Arctic together with Hg analyses in feathers representing individual seabird contamination based on their winter distribution. Our results highlight an east-west gradient in Hg concentrations with hot spots around southern Greenland and the east coast of Canada and a cold spot in the Barents and Kara Seas. We hypothesize that those gradients are influenced by eastern (Norwegian Atlantic Current and West Spitsbergen Current) and western (East Greenland Current) oceanic currents and melting of the Greenland Ice Sheet. By tracking spatial Hg contamination in marine ecosystems and through the identification of areas at risk of Hg toxicity, this study provides essential knowledge for international decisions about where the regulation of pollutants should be prioritized.


Assuntos
Plumas , Mercúrio , Animais , Mercúrio/análise , Oceano Atlântico , Plumas/química , Regiões Árticas , Groenlândia , Monitoramento Ambiental/métodos , Aves , Cadeia Alimentar , Poluentes Químicos da Água/análise , Ecossistema
15.
Proc Natl Acad Sci U S A ; 121(14): e2317574121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38530899

RESUMO

Fine particulate matter (PM2.5) is globally recognized for its adverse implications on human health. Yet, remain limited the individual contribution of particular PM2.5 components to its toxicity, especially considering regional disparities. Moreover, prevention solutions for PM2.5-associated health effects are scarce. In the present study, we comprehensively characterized and compared the primary PM2.5 constituents and their altered metabolites from two locations: Taiyuan and Guangzhou. Analysis of year-long PM2.5 samples revealed 84 major components, encompassing organic carbon, elemental carbon, ions, metals, and organic chemicals. PM2.5 from Taiyuan exhibited higher contamination, associated health risks, dithiothreitol activity, and cytotoxicities than Guangzhou's counterpart. Applying metabolomics, BEAS-2B lung cells exposed to PM2.5 from both cities were screened for significant alterations. A correlation analysis revealed the metabolites altered by PM2.5 and the critical toxic PM2.5 components in both regions. Among the PM2.5-down-regulated metabolites, phosphocholine emerged as a promising intervention for PM2.5 cytotoxicities. Its supplementation effectively attenuated PM2.5-induced energy metabolism disorder and cell death via activating fatty acid oxidation and inhibiting Phospho1 expression. The highlighted toxic chemicals displayed combined toxicities, potentially counteracted by phosphocholine. Our study offered a promising functional metabolite to alleviate PM2.5-induced cellular disorder and provided insights into the geo-based variability in toxic PM2.5 components.


Assuntos
Poluentes Atmosféricos , Doenças Mitocondriais , Humanos , Poluentes Atmosféricos/análise , Fosforilcolina , Material Particulado/análise , Pulmão , Carbono/análise , Monitoramento Ambiental
16.
PLoS Biol ; 21(5): e3001646, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37141195

RESUMO

Floating life (obligate neuston) is a core component of the ocean surface food web. However, only 1 region of high neustonic abundance is known so far, the Sargasso Sea in the Subtropical North Atlantic gyre, where floating life provides critical habitat structure and ecosystem services. Here, we hypothesize that floating life is also concentrated in other gyres with converging surface currents. To test this hypothesis, we collected samples through the eastern North Pacific Subtropical Gyre in the area of the North Pacific "Garbage Patch" (NPGP) known to accumulate floating anthropogenic debris. We found that densities of floating life were higher inside the central NPGP than on its periphery and that there was a positive relationship between neuston abundance and plastic abundance for 3 out of 5 neuston taxa, Velella, Porpita, and Janthina. This work has implications for the ecology of subtropical oceanic gyre ecosystems.


Assuntos
Resíduos de Alimentos , Hidrozoários , Animais , Ecossistema , Plásticos , Monitoramento Ambiental , Ecologia , Oceano Pacífico
17.
Nature ; 586(7831): 720-723, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33116288

RESUMO

Limiting the rise in global mean temperatures relies on reducing carbon dioxide (CO2) emissions and on the removal of CO2 by land carbon sinks. China is currently the single largest emitter of CO2, responsible for approximately 27 per cent (2.67 petagrams of carbon per year) of global fossil fuel emissions in 20171. Understanding of Chinese land biosphere fluxes has been hampered by sparse data coverage2-4, which has resulted in a wide range of a posteriori estimates of flux. Here we present recently available data on the atmospheric mole fraction of CO2, measured from six sites across China during 2009 to 2016. Using these data, we estimate a mean Chinese land biosphere sink of -1.11 ± 0.38 petagrams of carbon per year during 2010 to 2016, equivalent to about 45 per cent of our estimate of annual Chinese anthropogenic emissions over that period. Our estimate reflects a previously underestimated land carbon sink over southwest China (Yunnan, Guizhou and Guangxi provinces) throughout the year, and over northeast China (especially Heilongjiang and Jilin provinces) during summer months. These provinces have established a pattern of rapid afforestation of progressively larger regions5,6, with provincial forest areas increasing by between 0.04 million and 0.44 million hectares per year over the past 10 to 15 years. These large-scale changes reflect the expansion of fast-growing plantation forests that contribute to timber exports and the domestic production of paper7. Space-borne observations of vegetation greenness show a large increase with time over this study period, supporting the timing and increase in the land carbon sink over these afforestation regions.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Sequestro de Carbono , Monitoramento Ambiental , Mapeamento Geográfico , China , Materiais de Construção , Análise de Dados , Ásia Oriental , Combustíveis Fósseis , Modelos Teóricos , Plantas , Imagens de Satélites
18.
Nature ; 584(7821): 393-397, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32814886

RESUMO

The rate of global-mean sea-level rise since 1900 has varied over time, but the contributing factors are still poorly understood1. Previous assessments found that the summed contributions of ice-mass loss, terrestrial water storage and thermal expansion of the ocean could not be reconciled with observed changes in global-mean sea level, implying that changes in sea level or some contributions to those changes were poorly constrained2,3. Recent improvements to observational data, our understanding of the main contributing processes to sea-level change and methods for estimating the individual contributions, mean another attempt at reconciliation is warranted. Here we present a probabilistic framework to reconstruct sea level since 1900 using independent observations and their inherent uncertainties. The sum of the contributions to sea-level change from thermal expansion of the ocean, ice-mass loss and changes in terrestrial water storage is consistent with the trends and multidecadal variability in observed sea level on both global and basin scales, which we reconstruct from tide-gauge records. Ice-mass loss-predominantly from glaciers-has caused twice as much sea-level rise since 1900 as has thermal expansion. Mass loss from glaciers and the Greenland Ice Sheet explains the high rates of global sea-level rise during the 1940s, while a sharp increase in water impoundment by artificial reservoirs is the main cause of the lower-than-average rates during the 1970s. The acceleration in sea-level rise since the 1970s is caused by the combination of thermal expansion of the ocean and increased ice-mass loss from Greenland. Our results reconcile the magnitude of observed global-mean sea-level rise since 1900 with estimates based on the underlying processes, implying that no additional processes are required to explain the observed changes in sea level since 1900.


Assuntos
Temperatura Alta , Camada de Gelo/química , Água do Mar/análise , Água do Mar/química , Monitoramento Ambiental , Aquecimento Global/estatística & dados numéricos , Groenlândia , História do Século XX , História do Século XXI , Probabilidade , Incerteza
19.
Nature ; 585(7824): 193-202, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908264

RESUMO

Advances in machine learning and contactless sensors have given rise to ambient intelligence-physical spaces that are sensitive and responsive to the presence of humans. Here we review how this technology could improve our understanding of the metaphorically dark, unobserved spaces of healthcare. In hospital spaces, early applications could soon enable more efficient clinical workflows and improved patient safety in intensive care units and operating rooms. In daily living spaces, ambient intelligence could prolong the independence of older individuals and improve the management of individuals with a chronic disease by understanding everyday behaviour. Similar to other technologies, transformation into clinical applications at scale must overcome challenges such as rigorous clinical validation, appropriate data privacy and model transparency. Thoughtful use of this technology would enable us to understand the complex interplay between the physical environment and health-critical human behaviours.


Assuntos
Inteligência Ambiental , Atenção à Saúde/métodos , Monitoramento Ambiental/métodos , Algoritmos , Doença Crônica/terapia , Atenção à Saúde/normas , Unidades Hospitalares , Humanos , Saúde Mental , Segurança do Paciente , Privacidade
20.
Nature ; 583(7814): 72-77, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32612223

RESUMO

Forests provide a series of ecosystem services that are crucial to our society. In the European Union (EU), forests account for approximately 38% of the total land surface1. These forests are important carbon sinks, and their conservation efforts are vital for the EU's vision of achieving climate neutrality by 20502. However, the increasing demand for forest services and products, driven by the bioeconomy, poses challenges for sustainable forest management. Here we use fine-scale satellite data to observe an increase in the harvested forest area (49 per cent) and an increase in biomass loss (69 per cent) over Europe for the period of 2016-2018 relative to 2011-2015, with large losses occurring on the Iberian Peninsula and in the Nordic and Baltic countries. Satellite imagery further reveals that the average patch size of harvested area increased by 34 per cent across Europe, with potential effects on biodiversity, soil erosion and water regulation. The increase in the rate of forest harvest is the result of the recent expansion of wood markets, as suggested by econometric indicators on forestry, wood-based bioenergy and international trade. If such a high rate of forest harvest continues, the post-2020 EU vision of forest-based climate mitigation may be hampered, and the additional carbon losses from forests would require extra emission reductions in other sectors in order to reach climate neutrality by 20503.


Assuntos
Agricultura Florestal/estatística & dados numéricos , Agricultura Florestal/tendências , Florestas , Biodiversidade , Biomassa , Sequestro de Carbono , Monitoramento Ambiental , Política Ambiental/economia , Política Ambiental/legislação & jurisprudência , Europa (Continente) , União Europeia/economia , Agricultura Florestal/economia , Agricultura Florestal/legislação & jurisprudência , Aquecimento Global/prevenção & controle , História do Século XXI , Imagens de Satélites , Madeira/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA