Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.700
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(9): 1930-1949.e31, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37071993

RESUMO

Cortical circuits are composed predominantly of pyramidal-to-pyramidal neuron connections, yet their assembly during embryonic development is not well understood. We show that mouse embryonic Rbp4-Cre cortical neurons, transcriptomically closest to layer 5 pyramidal neurons, display two phases of circuit assembly in vivo. At E14.5, they form a multi-layered circuit motif, composed of only embryonic near-projecting-type neurons. By E17.5, this transitions to a second motif involving all three embryonic types, analogous to the three adult layer 5 types. In vivo patch clamp recordings and two-photon calcium imaging of embryonic Rbp4-Cre neurons reveal active somas and neurites, tetrodotoxin-sensitive voltage-gated conductances, and functional glutamatergic synapses, from E14.5 onwards. Embryonic Rbp4-Cre neurons strongly express autism-associated genes and perturbing these genes interferes with the switch between the two motifs. Hence, pyramidal neurons form active, transient, multi-layered pyramidal-to-pyramidal circuits at the inception of neocortex, and studying these circuits could yield insights into the etiology of autism.


Assuntos
Transtorno Autístico , Neocórtex , Células Piramidais , Animais , Feminino , Camundongos , Gravidez , Transtorno Autístico/genética , Transtorno Autístico/patologia , Mutação , Neocórtex/fisiologia , Neurônios/fisiologia , Células Piramidais/fisiologia
2.
Cell ; 186(26): 5892-5909.e22, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38091994

RESUMO

Different functional regions of brain are fundamental for basic neurophysiological activities. However, the regional specification remains largely unexplored during human brain development. Here, by combining spatial transcriptomics (scStereo-seq) and scRNA-seq, we built a spatiotemporal developmental atlas of multiple human brain regions from 6-23 gestational weeks (GWs). We discovered that, around GW8, radial glia (RG) cells have displayed regional heterogeneity and specific spatial distribution. Interestingly, we found that the regional heterogeneity of RG subtypes contributed to the subsequent neuronal specification. Specifically, two diencephalon-specific subtypes gave rise to glutamatergic and GABAergic neurons, whereas subtypes in ventral midbrain were associated with the dopaminergic neurons. Similar GABAergic neuronal subtypes were shared between neocortex and diencephalon. Additionally, we revealed that cell-cell interactions between oligodendrocyte precursor cells and GABAergic neurons influenced and promoted neuronal development coupled with regional specification. Altogether, this study provides comprehensive insights into the regional specification in the developing human brain.


Assuntos
Encéfalo , Transcriptoma , Humanos , Neurônios Dopaminérgicos , Neurônios GABAérgicos , Mesencéfalo , Neocórtex , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo
3.
Cell ; 186(1): 14-16, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608650

RESUMO

How the neocortex modulates hindbrain and spinal circuits is of fundamental interest for understanding motor control and adaptive behaviors. New work from Yang, Kanodia, and Arber demonstrates that there is an exquisite anatomical organization and functional modulation from the anterior (motor) cortex on downstream medulla populations during forelimb behaviors in mice.


Assuntos
Membro Anterior , Neocórtex , Animais , Camundongos , Córtex Motor/fisiologia , Rombencéfalo/fisiologia , Coluna Vertebral/fisiologia
4.
Cell ; 185(6): 1082-1100.e24, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216674

RESUMO

We assembled a semi-automated reconstruction of L2/3 mouse primary visual cortex from ∼250 × 140 × 90 µm3 of electron microscopic images, including pyramidal and non-pyramidal neurons, astrocytes, microglia, oligodendrocytes and precursors, pericytes, vasculature, nuclei, mitochondria, and synapses. Visual responses of a subset of pyramidal cells are included. The data are publicly available, along with tools for programmatic and three-dimensional interactive access. Brief vignettes illustrate the breadth of potential applications relating structure to function in cortical circuits and neuronal cell biology. Mitochondria and synapse organization are characterized as a function of path length from the soma. Pyramidal connectivity motif frequencies are predicted accurately using a configuration model of random graphs. Pyramidal cells receiving more connections from nearby cells exhibit stronger and more reliable visual responses. Sample code shows data access and analysis.


Assuntos
Neocórtex , Animais , Camundongos , Microscopia Eletrônica , Neocórtex/fisiologia , Organelas , Células Piramidais/fisiologia , Sinapses/fisiologia
5.
Cell ; 185(1): 9-41, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34995519

RESUMO

Recent progress in fluorescence imaging allows neuroscientists to observe the dynamics of thousands of individual neurons, identified genetically or by their connectivity, across multiple brain areas and for extended durations in awake behaving mammals. We discuss advances in fluorescent indicators of neural activity, viral and genetic methods to express these indicators, chronic animal preparations for long-term imaging studies, and microscopes to monitor and manipulate the activity of large neural ensembles. Ca2+ imaging studies of neural activity can track brain area interactions and distributed information processing at cellular resolution. Across smaller spatial scales, high-speed voltage imaging reveals the distinctive spiking patterns and coding properties of targeted neuron types. Collectively, these innovations will propel studies of brain function and dovetail with ongoing neuroscience initiatives to identify new neuron types and develop widely applicable, non-human primate models. The optical toolkit's growing sophistication also suggests that "brain observatory" facilities would be useful open resources for future brain-imaging studies.


Assuntos
Mapeamento Encefálico/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neocórtex/diagnóstico por imagem , Neocórtex/metabolismo , Neurônios/metabolismo , Imagem Óptica/métodos , Animais , Cálcio/metabolismo , Camundongos , Modelos Animais , Neurociências/métodos
6.
Cell ; 184(12): 3083-3085, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34115970

RESUMO

A central quest in neuroscience is to gain a holistic understanding of all cell types in the brain. In this issue of Cell, Yao et al. establish a molecular architectural view of cell types across the entire adult mouse isocortex and hippocampal formation and reveal surprising similarities of cell types in these two brain regions.


Assuntos
Neocórtex , Animais , Hipocampo , Camundongos
7.
Cell ; 184(22): 5501-5503, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34715019

RESUMO

Neuropeptides are the most diverse class of signaling molecules in the brain. Despite evidence for their involvement in several behavioral functions, the precise circuit elements and neuronal computations they control remain elusive. In this issue, Melzer et al. (2021) reveal how the neuropeptide GRP facilitates memory in the neocortex.


Assuntos
Neocórtex , Neuropeptídeos , Neocórtex/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo
8.
Cell ; 184(12): 3222-3241.e26, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34004146

RESUMO

The isocortex and hippocampal formation (HPF) in the mammalian brain play critical roles in perception, cognition, emotion, and learning. We profiled ∼1.3 million cells covering the entire adult mouse isocortex and HPF and derived a transcriptomic cell-type taxonomy revealing a comprehensive repertoire of glutamatergic and GABAergic neuron types. Contrary to the traditional view of HPF as having a simpler cellular organization, we discover a complete set of glutamatergic types in HPF homologous to all major subclasses found in the six-layered isocortex, suggesting that HPF and the isocortex share a common circuit organization. We also identify large-scale continuous and graded variations of cell types along isocortical depth, across the isocortical sheet, and in multiple dimensions in hippocampus and subiculum. Overall, our study establishes a molecular architecture of the mammalian isocortex and hippocampal formation and begins to shed light on its underlying relationship with the development, evolution, connectivity, and function of these two brain structures.


Assuntos
Hipocampo/citologia , Neocórtex/citologia , Transcriptoma/genética , Animais , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
9.
Cell ; 183(4): 845-847, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33186526

RESUMO

In this issue of Cell, Gouwens et al. establish the state of the art for defining inhibitory cell types in the mouse neocortex. By combining morphological, electrophysiological, and transcriptomic features to classify interneurons in the mouse visual cortex, this work provides a roadmap for understanding the diversity of cell types and their functional role in cortical computations.


Assuntos
Neocórtex , Transcriptoma , Animais , Fenômenos Eletrofisiológicos , Interneurônios , Camundongos
10.
Cell ; 177(3): 669-682.e24, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30929904

RESUMO

Throughout mammalian neocortex, layer 5 pyramidal (L5) cells project via the pons to a vast number of cerebellar granule cells (GrCs), forming a fundamental pathway. Yet, it is unknown how neuronal dynamics are transformed through the L5→GrC pathway. Here, by directly comparing premotor L5 and GrC activity during a forelimb movement task using dual-site two-photon Ca2+ imaging, we found that in expert mice, L5 and GrC dynamics were highly similar. L5 cells and GrCs shared a common set of task-encoding activity patterns, possessed similar diversity of responses, and exhibited high correlations comparable to local correlations among L5 cells. Chronic imaging revealed that these dynamics co-emerged in cortex and cerebellum over learning: as behavioral performance improved, initially dissimilar L5 cells and GrCs converged onto a shared, low-dimensional, task-encoding set of neural activity patterns. Thus, a key function of cortico-cerebellar communication is the propagation of shared dynamics that emerge during learning.


Assuntos
Cerebelo/metabolismo , Neocórtex/metabolismo , Animais , Comportamento Animal , Cálcio/metabolismo , Membro Anterior/fisiologia , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Neocórtex/patologia , Opsinas/genética , Opsinas/metabolismo , Células Piramidais/metabolismo
11.
Cell ; 174(5): 1264-1276.e15, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30057116

RESUMO

During corticogenesis, ventricular zone progenitors sequentially generate distinct subtypes of neurons, accounting for the diversity of neocortical cells and the circuits they form. While activity-dependent processes are critical for the differentiation and circuit assembly of postmitotic neurons, how bioelectrical processes affect nonexcitable cells, such as progenitors, remains largely unknown. Here, we reveal that, in the developing mouse neocortex, ventricular zone progenitors become more hyperpolarized as they generate successive subtypes of neurons. Experimental in vivo hyperpolarization shifted the transcriptional programs and division modes of these progenitors to a later developmental status, with precocious generation of intermediate progenitors and a forward shift in the laminar, molecular, morphological, and circuit features of their neuronal progeny. These effects occurred through inhibition of the Wnt-beta-catenin signaling pathway by hyperpolarization. Thus, during corticogenesis, bioelectric membrane properties are permissive for specific molecular pathways to coordinate the temporal progression of progenitor developmental programs and thus neocortical neuron diversity.


Assuntos
Potenciais da Membrana , Neocórtex/embriologia , Neurônios/metabolismo , Células-Tronco/citologia , Animais , Encéfalo/citologia , Encéfalo/embriologia , Diferenciação Celular , Progressão da Doença , Eletroporação , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Neocórtex/citologia , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Neurogênese , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Fatores de Tempo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
12.
Cell ; 174(3): 590-606.e21, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-29961574

RESUMO

Cerebral cortex size differs dramatically between reptiles, birds, and mammals, owing to developmental differences in neuron production. In mammals, signaling pathways regulating neurogenesis have been identified, but genetic differences behind their evolution across amniotes remain unknown. We show that direct neurogenesis from radial glia cells, with limited neuron production, dominates the avian, reptilian, and mammalian paleocortex, whereas in the evolutionarily recent mammalian neocortex, most neurogenesis is indirect via basal progenitors. Gain- and loss-of-function experiments in mouse, chick, and snake embryos and in human cerebral organoids demonstrate that high Slit/Robo and low Dll1 signaling, via Jag1 and Jag2, are necessary and sufficient to drive direct neurogenesis. Attenuating Robo signaling and enhancing Dll1 in snakes and birds recapitulates the formation of basal progenitors and promotes indirect neurogenesis. Our study identifies modulation in activity levels of conserved signaling pathways as a primary mechanism driving the expansion and increased complexity of the mammalian neocortex during amniote evolution.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/genética , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Animais , Proteínas de Ligação ao Cálcio , Córtex Cerebral/metabolismo , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína Jagged-1 , Proteína Jagged-2 , Mamíferos/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/fisiologia , Células-Tronco Neurais , Neurogênese/fisiologia , Neuroglia/fisiologia , Neurônios , Fator de Transcrição PAX6/metabolismo , Proteínas Repressoras , Transdução de Sinais , Serpentes/embriologia , Proteínas Roundabout
13.
Cell ; 173(6): 1356-1369.e22, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29856954

RESUMO

Genetic changes causing brain size expansion in human evolution have remained elusive. Notch signaling is essential for radial glia stem cell proliferation and is a determinant of neuronal number in the mammalian cortex. We find that three paralogs of human-specific NOTCH2NL are highly expressed in radial glia. Functional analysis reveals that different alleles of NOTCH2NL have varying potencies to enhance Notch signaling by interacting directly with NOTCH receptors. Consistent with a role in Notch signaling, NOTCH2NL ectopic expression delays differentiation of neuronal progenitors, while deletion accelerates differentiation into cortical neurons. Furthermore, NOTCH2NL genes provide the breakpoints in 1q21.1 distal deletion/duplication syndrome, where duplications are associated with macrocephaly and autism and deletions with microcephaly and schizophrenia. Thus, the emergence of human-specific NOTCH2NL genes may have contributed to the rapid evolution of the larger human neocortex, accompanied by loss of genomic stability at the 1q21.1 locus and resulting recurrent neurodevelopmental disorders.


Assuntos
Encéfalo/embriologia , Córtex Cerebral/fisiologia , Neurogênese/fisiologia , Receptor Notch2/metabolismo , Transdução de Sinais , Animais , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Feminino , Deleção de Genes , Genes Reporter , Gorilla gorilla , Células HEK293 , Humanos , Neocórtex/citologia , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Pan troglodytes , Receptor Notch2/genética , Análise de Sequência de RNA
14.
Annu Rev Cell Dev Biol ; 35: 523-542, 2019 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-31283379

RESUMO

In spite of the high metabolic cost of cellular production, the brain contains only a fraction of the neurons generated during embryonic development. In the rodent cerebral cortex, a first wave of programmed cell death surges at embryonic stages and affects primarily progenitor cells. A second, larger wave unfolds during early postnatal development and ultimately determines the final number of cortical neurons. Programmed cell death in the developing cortex is particularly dependent on neuronal activity and unfolds in a cell-specific manner with precise temporal control. Pyramidal cells and interneurons adjust their numbers in sync, which is likely crucial for the establishment of balanced networks of excitatory and inhibitory neurons. In contrast, several other neuronal populations are almost completely eliminated through apoptosis during the first two weeks of postnatal development, highlighting the importance of programmed cell death in sculpting the mature cerebral cortex.


Assuntos
Apoptose/fisiologia , Neocórtex/citologia , Neocórtex/crescimento & desenvolvimento , Animais , Apoptose/genética , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Humanos , Interneurônios/citologia , Interneurônios/metabolismo , Neocórtex/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Células Piramidais/citologia , Células Piramidais/metabolismo
15.
Annu Rev Neurosci ; 47(1): 41-61, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38382543

RESUMO

To perform computations with the efficiency necessary for animal survival, neocortical microcircuits must be capable of reconfiguring in response to experience, while carefully regulating excitatory and inhibitory connectivity to maintain stable function. This dynamic fine-tuning is accomplished through a rich array of cellular homeostatic plasticity mechanisms that stabilize important cellular and network features such as firing rates, information flow, and sensory tuning properties. Further, these functional network properties can be stabilized by different forms of homeostatic plasticity, including mechanisms that target excitatory or inhibitory synapses, or that regulate intrinsic neuronal excitability. Here we discuss which aspects of neocortical circuit function are under homeostatic control, how this homeostasis is realized on the cellular and molecular levels, and the pathological consequences when circuit homeostasis is impaired. A remaining challenge is to elucidate how these diverse homeostatic mechanisms cooperate within complex circuits to enable them to be both flexible and stable.


Assuntos
Encéfalo , Homeostase , Rede Nervosa , Plasticidade Neuronal , Homeostase/fisiologia , Animais , Humanos , Plasticidade Neuronal/fisiologia , Rede Nervosa/fisiologia , Encéfalo/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Neocórtex/fisiologia
16.
Annu Rev Neurosci ; 45: 533-560, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803587

RESUMO

The neocortex is a complex neurobiological system with many interacting regions. How these regions work together to subserve flexible behavior and cognition has become increasingly amenable to rigorous research. Here, I review recent experimental and theoretical work on the modus operandi of a multiregional cortex. These studies revealed several general principles for the neocortical interareal connectivity, low-dimensional macroscopic gradients of biological properties across cortical areas, and a hierarchy of timescales for information processing. Theoretical work suggests testable predictions regarding differential excitation and inhibition along feedforward and feedback pathways in the cortical hierarchy. Furthermore, modeling of distributed working memory and simple decision-making has given rise to a novel mathematical concept, dubbed bifurcation in space, that potentially explains how different cortical areas, with a canonical circuit organization but gradients of biological heterogeneities, are able to subserve their respective (e.g., sensory coding versus executive control) functions in a modularly organized brain.


Assuntos
Neocórtex , Cognição/fisiologia , Função Executiva , Memória de Curto Prazo/fisiologia , Neocórtex/fisiologia , Rede Nervosa/fisiologia
17.
Cell ; 162(3): 474-5, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26232218

RESUMO

The essential details of cellular interactions at synaptic level in the brain are still largely unknown. In this issue, Kasthuri et al. report new experimental and computational technologies for large-scale electron microscopy data collection and analysis, and through saturated reconstruction uncover synaptic connectional specificity that cannot be predicted by simple axonal-dendritic proximity.


Assuntos
Microscopia Eletrônica de Varredura/métodos , Microtomia/métodos , Neocórtex/ultraestrutura , Neurônios/ultraestrutura , Animais
18.
Cell ; 162(3): 648-61, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26232230

RESUMO

We describe automated technologies to probe the structure of neural tissue at nanometer resolution and use them to generate a saturated reconstruction of a sub-volume of mouse neocortex in which all cellular objects (axons, dendrites, and glia) and many sub-cellular components (synapses, synaptic vesicles, spines, spine apparati, postsynaptic densities, and mitochondria) are rendered and itemized in a database. We explore these data to study physical properties of brain tissue. For example, by tracing the trajectories of all excitatory axons and noting their juxtapositions, both synaptic and non-synaptic, with every dendritic spine we refute the idea that physical proximity is sufficient to predict synaptic connectivity (the so-called Peters' rule). This online minable database provides general access to the intrinsic complexity of the neocortex and enables further data-driven inquiries.


Assuntos
Microscopia Eletrônica de Varredura/métodos , Microtomia/métodos , Neocórtex/ultraestrutura , Neurônios/ultraestrutura , Animais , Automação , Axônios/ultraestrutura , Dendritos/ultraestrutura , Camundongos , Neocórtex/citologia , Sinapses/ultraestrutura , Vesículas Sinápticas/ultraestrutura
19.
Cell ; 163(1): 55-67, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26406371

RESUMO

Radial glia, the neural stem cells of the neocortex, are located in two niches: the ventricular zone and outer subventricular zone. Although outer subventricular zone radial glia may generate the majority of human cortical neurons, their molecular features remain elusive. By analyzing gene expression across single cells, we find that outer radial glia preferentially express genes related to extracellular matrix formation, migration, and stemness, including TNC, PTPRZ1, FAM107A, HOPX, and LIFR. Using dynamic imaging, immunostaining, and clonal analysis, we relate these molecular features to distinctive behaviors of outer radial glia, demonstrate the necessity of STAT3 signaling for their cell cycle progression, and establish their extensive proliferative potential. These results suggest that outer radial glia directly support the subventricular niche through local production of growth factors, potentiation of growth factor signals by extracellular matrix proteins, and activation of self-renewal pathways, thereby enabling the developmental and evolutionary expansion of the human neocortex.


Assuntos
Neocórtex/citologia , Neocórtex/crescimento & desenvolvimento , Animais , Ciclo Celular , Humanos , Macaca , Camundongos , Neocórtex/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Neuroglia/citologia , Neuroglia/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Análise de Célula Única , Nicho de Células-Tronco
20.
Cell ; 163(2): 277-80, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26451478

RESUMO

The digital reconstruction of a slice of rat somatosensory cortex from the Blue Brain Project provides the most complete simulation of a piece of excitable brain matter to date. To place these efforts in context and highlight their strengths and limitations, we introduce a Biological Imitation Game, based on Alan Turing's Imitation Game, that operationalizes the difference between real and simulated brains.


Assuntos
Simulação por Computador , Modelos Neurológicos , Neocórtex/citologia , Neurônios/classificação , Neurônios/citologia , Córtex Somatossensorial/citologia , Animais , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA