Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105.834
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 42(1): 489-519, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38941607

RESUMO

Recent advances have contributed to a mechanistic understanding of neuroimmune interactions in the intestine and revealed an essential role of this cross talk for gut homeostasis and modulation of inflammatory and infectious intestinal diseases. In this review, we describe the innervation of the intestine by intrinsic and extrinsic neurons and then focus on the bidirectional communication between neurons and immune cells. First, we highlight the contribution of neuronal subtypes to the development of colitis and discuss the different immune and epithelial cell types that are regulated by neurons via the release of neuropeptides and neurotransmitters. Next, we review the role of intestinal inflammation in the development of visceral hypersensitivity and summarize how inflammatory mediators induce peripheral and central sensitization of gut-innervating sensory neurons. Finally, we outline the importance of immune cells and gut microbiota for the survival and function of different neuronal populations at homeostasis and during bacterial and helminth infection.


Assuntos
Neuroimunomodulação , Humanos , Animais , Intestinos/imunologia , Homeostase , Microbioma Gastrointestinal/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Neurônios/metabolismo , Neurônios/imunologia , Neuropeptídeos/metabolismo , Sistema Nervoso Entérico/imunologia , Sistema Nervoso Entérico/metabolismo
2.
Cell ; 187(8): 1936-1954.e24, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38490196

RESUMO

Microglia are brain-resident macrophages that shape neural circuit development and are implicated in neurodevelopmental diseases. Multiple microglial transcriptional states have been defined, but their functional significance is unclear. Here, we identify a type I interferon (IFN-I)-responsive microglial state in the developing somatosensory cortex (postnatal day 5) that is actively engulfing whole neurons. This population expands during cortical remodeling induced by partial whisker deprivation. Global or microglial-specific loss of the IFN-I receptor resulted in microglia with phagolysosomal dysfunction and an accumulation of neurons with nuclear DNA damage. IFN-I gain of function increased neuronal engulfment by microglia in both mouse and zebrafish and restricted the accumulation of DNA-damaged neurons. Finally, IFN-I deficiency resulted in excess cortical excitatory neurons and tactile hypersensitivity. These data define a role for neuron-engulfing microglia during a critical window of brain development and reveal homeostatic functions of a canonical antiviral signaling pathway in the brain.


Assuntos
Encéfalo , Interferon Tipo I , Microglia , Animais , Camundongos , Interferon Tipo I/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Peixe-Zebra , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento
3.
Cell ; 187(16): 4193-4212.e24, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38942014

RESUMO

Neuroimmune interactions mediate intercellular communication and underlie critical brain functions. Microglia, CNS-resident macrophages, modulate the brain through direct physical interactions and the secretion of molecules. One such secreted factor, the complement protein C1q, contributes to complement-mediated synapse elimination in both developmental and disease models, yet brain C1q protein levels increase significantly throughout aging. Here, we report that C1q interacts with neuronal ribonucleoprotein (RNP) complexes in an age-dependent manner. Purified C1q protein undergoes RNA-dependent liquid-liquid phase separation (LLPS) in vitro, and the interaction of C1q with neuronal RNP complexes in vivo is dependent on RNA and endocytosis. Mice lacking C1q have age-specific alterations in neuronal protein synthesis in vivo and impaired fear memory extinction. Together, our findings reveal a biophysical property of C1q that underlies RNA- and age-dependent neuronal interactions and demonstrate a role of C1q in critical intracellular neuronal processes.


Assuntos
Envelhecimento , Encéfalo , Complemento C1q , Homeostase , Microglia , Neurônios , Ribonucleoproteínas , Animais , Complemento C1q/metabolismo , Camundongos , Microglia/metabolismo , Envelhecimento/metabolismo , Encéfalo/metabolismo , Ribonucleoproteínas/metabolismo , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Humanos
4.
Cell ; 187(11): 2767-2784.e23, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38733989

RESUMO

The vasculature of the central nervous system is a 3D lattice composed of laminar vascular beds interconnected by penetrating vessels. The mechanisms controlling 3D lattice network formation remain largely unknown. Combining viral labeling, genetic marking, and single-cell profiling in the mouse retina, we discovered a perivascular neuronal subset, annotated as Fam19a4/Nts-positive retinal ganglion cells (Fam19a4/Nts-RGCs), directly contacting the vasculature with perisomatic endfeet. Developmental ablation of Fam19a4/Nts-RGCs led to disoriented growth of penetrating vessels near the ganglion cell layer (GCL), leading to a disorganized 3D vascular lattice. We identified enriched PIEZO2 expression in Fam19a4/Nts-RGCs. Piezo2 loss from all retinal neurons or Fam19a4/Nts-RGCs abolished the direct neurovascular contacts and phenocopied the Fam19a4/Nts-RGC ablation deficits. The defective vascular structure led to reduced capillary perfusion and sensitized the retina to ischemic insults. Furthermore, we uncovered a Piezo2-dependent perivascular granule cell subset for cerebellar vascular patterning, indicating neuronal Piezo2-dependent 3D vascular patterning in the brain.


Assuntos
Cerebelo , Neurônios , Retina , Animais , Feminino , Masculino , Camundongos , Cerebelo/metabolismo , Cerebelo/irrigação sanguínea , Cerebelo/citologia , Canais Iônicos/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Retina/citologia , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Vasos Retinianos/metabolismo
5.
Cell ; 187(9): 2143-2157.e15, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38670072

RESUMO

A central question for regenerative neuroscience is whether synthetic neural circuits, such as those built from two species, can function in an intact brain. Here, we apply blastocyst complementation to selectively build and test interspecies neural circuits. Despite approximately 10-20 million years of evolution, and prominent species differences in brain size, rat pluripotent stem cells injected into mouse blastocysts develop and persist throughout the mouse brain. Unexpectedly, the mouse niche reprograms the birth dates of rat neurons in the cortex and hippocampus, supporting rat-mouse synaptic activity. When mouse olfactory neurons are genetically silenced or killed, rat neurons restore information flow to odor processing circuits. Moreover, they rescue the primal behavior of food seeking, although less well than mouse neurons. By revealing that a mouse can sense the world using neurons from another species, we establish neural blastocyst complementation as a powerful tool to identify conserved mechanisms of brain development, plasticity, and repair.


Assuntos
Neurônios , Animais , Camundongos , Ratos , Neurônios/metabolismo , Neurônios/citologia , Neurônios/fisiologia , Blastocisto/metabolismo , Blastocisto/citologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Encéfalo/citologia , Encéfalo/fisiologia , Feminino , Hipocampo/citologia , Hipocampo/fisiologia , Especificidade da Espécie , Camundongos Endogâmicos C57BL , Masculino
6.
Cell ; 187(16): 4176-4192.e17, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38959890

RESUMO

Hypothalamic neural circuits regulate instinctive behaviors such as food seeking, the fight/flight response, socialization, and maternal care. Here, we identified microdeletions on chromosome Xq23 disrupting the brain-expressed transient receptor potential (TRP) channel 5 (TRPC5). This family of channels detects sensory stimuli and converts them into electrical signals interpretable by the brain. Male TRPC5 deletion carriers exhibited food seeking, obesity, anxiety, and autism, which were recapitulated in knockin male mice harboring a human loss-of-function TRPC5 mutation. Women carrying TRPC5 deletions had severe postpartum depression. As mothers, female knockin mice exhibited anhedonia and depression-like behavior with impaired care of offspring. Deletion of Trpc5 from oxytocin neurons in the hypothalamic paraventricular nucleus caused obesity in both sexes and postpartum depressive behavior in females, while Trpc5 overexpression in oxytocin neurons in knock-in mice reversed these phenotypes. We demonstrate that TRPC5 plays a pivotal role in mediating innate human behaviors fundamental to survival, including food seeking and maternal care.


Assuntos
Depressão Pós-Parto , Neurônios , Obesidade , Canais de Cátion TRPC , Animais , Feminino , Camundongos , Obesidade/metabolismo , Obesidade/genética , Masculino , Humanos , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPC/genética , Depressão Pós-Parto/metabolismo , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Camundongos Endogâmicos C57BL , Ocitocina/metabolismo , Comportamento Materno
7.
Cell ; 187(13): 3236-3248.e21, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38772369

RESUMO

Leveraging AAVs' versatile tropism and labeling capacity, we expanded the scale of in vivo CRISPR screening with single-cell transcriptomic phenotyping across embryonic to adult brains and peripheral nervous systems. Through extensive tests of 86 vectors across AAV serotypes combined with a transposon system, we substantially amplified labeling efficacy and accelerated in vivo gene delivery from weeks to days. Our proof-of-principle in utero screen identified the pleiotropic effects of Foxg1, highlighting its tight regulation of distinct networks essential for cell fate specification of Layer 6 corticothalamic neurons. Notably, our platform can label >6% of cerebral cells, surpassing the current state-of-the-art efficacy at <0.1% by lentivirus, to achieve analysis of over 30,000 cells in one experiment and enable massively parallel in vivo Perturb-seq. Compatible with various phenotypic measurements (single-cell or spatial multi-omics), it presents a flexible approach to interrogate gene function across cell types in vivo, translating gene variants to their causal function.


Assuntos
Redes Reguladoras de Genes , Análise de Célula Única , Animais , Feminino , Humanos , Camundongos , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Vetores Genéticos/metabolismo , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neurônios/citologia , Análise de Célula Única/métodos , Transcriptoma/genética , Linhagem Celular , Transcrição Gênica
8.
Cell ; 187(10): 2574-2594.e23, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729112

RESUMO

High-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excitatory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural networks can predict transmitter types for presynapses from electron micrographs: a network trained to predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a D. melanogaster whole brain. We visualize the ultrastructural features used for prediction, discovering subtle but significant differences between transmitter phenotypes. We also analyze transmitter distributions across the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetylcholine, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuroscientific hypothesis generation for the fly.


Assuntos
Drosophila melanogaster , Microscopia Eletrônica , Neurotransmissores , Sinapses , Animais , Encéfalo/ultraestrutura , Encéfalo/metabolismo , Conectoma , Drosophila melanogaster/ultraestrutura , Drosophila melanogaster/metabolismo , Ácido gama-Aminobutírico/metabolismo , Microscopia Eletrônica/métodos , Redes Neurais de Computação , Neurônios/metabolismo , Neurônios/ultraestrutura , Neurotransmissores/metabolismo , Sinapses/ultraestrutura , Sinapses/metabolismo
9.
Cell ; 187(8): 1955-1970.e23, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38503282

RESUMO

Characterizing somatic mutations in the brain is important for disentangling the complex mechanisms of aging, yet little is known about mutational patterns in different brain cell types. Here, we performed whole-genome sequencing (WGS) of 86 single oligodendrocytes, 20 mixed glia, and 56 single neurons from neurotypical individuals spanning 0.4-104 years of age and identified >92,000 somatic single-nucleotide variants (sSNVs) and small insertions/deletions (indels). Although both cell types accumulate somatic mutations linearly with age, oligodendrocytes accumulated sSNVs 81% faster than neurons and indels 28% slower than neurons. Correlation of mutations with single-nucleus RNA profiles and chromatin accessibility from the same brains revealed that oligodendrocyte mutations are enriched in inactive genomic regions and are distributed across the genome similarly to mutations in brain cancers. In contrast, neuronal mutations are enriched in open, transcriptionally active chromatin. These stark differences suggest an assortment of active mutagenic processes in oligodendrocytes and neurons.


Assuntos
Envelhecimento , Encéfalo , Neurônios , Oligodendroglia , Humanos , Envelhecimento/genética , Envelhecimento/patologia , Cromatina/genética , Cromatina/metabolismo , Mutação , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Análise da Expressão Gênica de Célula Única , Sequenciamento Completo do Genoma , Encéfalo/metabolismo , Encéfalo/patologia , Polimorfismo de Nucleotídeo Único , Mutação INDEL , Bancos de Espécimes Biológicos , Células Precursoras de Oligodendrócitos/metabolismo , Células Precursoras de Oligodendrócitos/patologia
10.
Cell ; 187(15): 4043-4060.e30, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38878778

RESUMO

Inflammation-induced neurodegeneration is a defining feature of multiple sclerosis (MS), yet the underlying mechanisms remain unclear. By dissecting the neuronal inflammatory stress response, we discovered that neurons in MS and its mouse model induce the stimulator of interferon genes (STING). However, activation of neuronal STING requires its detachment from the stromal interaction molecule 1 (STIM1), a process triggered by glutamate excitotoxicity. This detachment initiates non-canonical STING signaling, which leads to autophagic degradation of glutathione peroxidase 4 (GPX4), essential for neuronal redox homeostasis and thereby inducing ferroptosis. Both genetic and pharmacological interventions that target STING in neurons protect against inflammation-induced neurodegeneration. Our findings position STING as a central regulator of the detrimental neuronal inflammatory stress response, integrating inflammation with glutamate signaling to cause neuronal cell death, and present it as a tractable target for treating neurodegeneration in MS.


Assuntos
Inflamação , Proteínas de Membrana , Esclerose Múltipla , Neurônios , Animais , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Camundongos , Humanos , Inflamação/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Transdução de Sinais , Autofagia , Camundongos Endogâmicos C57BL , Ácido Glutâmico/metabolismo , Ferroptose , Modelos Animais de Doenças , Feminino , Masculino
11.
Cell ; 187(8): 1971-1989.e16, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38521060

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) share many clinical, pathological, and genetic features, but a detailed understanding of their associated transcriptional alterations across vulnerable cortical cell types is lacking. Here, we report a high-resolution, comparative single-cell molecular atlas of the human primary motor and dorsolateral prefrontal cortices and their transcriptional alterations in sporadic and familial ALS and FTLD. By integrating transcriptional and genetic information, we identify known and previously unidentified vulnerable populations in cortical layer 5 and show that ALS- and FTLD-implicated motor and spindle neurons possess a virtually indistinguishable molecular identity. We implicate potential disease mechanisms affecting these cell types as well as non-neuronal drivers of pathogenesis. Finally, we show that neuron loss in cortical layer 5 tracks more closely with transcriptional identity rather than cellular morphology and extends beyond previously reported vulnerable cell types.


Assuntos
Esclerose Lateral Amiotrófica , Degeneração Lobar Frontotemporal , Córtex Pré-Frontal , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/genética , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Perfilação da Expressão Gênica , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Análise da Expressão Gênica de Célula Única
12.
Cell ; 187(10): 2446-2464.e22, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38582079

RESUMO

Tauopathies are age-associated neurodegenerative diseases whose mechanistic underpinnings remain elusive, partially due to a lack of appropriate human models. Here, we engineered human induced pluripotent stem cell (hiPSC)-derived neuronal lines to express 4R Tau and 4R Tau carrying the P301S MAPT mutation when differentiated into neurons. 4R-P301S neurons display progressive Tau inclusions upon seeding with Tau fibrils and recapitulate features of tauopathy phenotypes including shared transcriptomic signatures, autophagic body accumulation, and reduced neuronal activity. A CRISPRi screen of genes associated with Tau pathobiology identified over 500 genetic modifiers of seeding-induced Tau propagation, including retromer VPS29 and genes in the UFMylation cascade. In progressive supranuclear palsy (PSP) and Alzheimer's Disease (AD) brains, the UFMylation cascade is altered in neurofibrillary-tangle-bearing neurons. Inhibiting the UFMylation cascade in vitro and in vivo suppressed seeding-induced Tau propagation. This model provides a robust platform to identify novel therapeutic strategies for 4R tauopathy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neurônios , Tauopatias , Proteínas tau , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas tau/metabolismo , Tauopatias/metabolismo , Tauopatias/patologia , Neurônios/metabolismo , Neurônios/patologia , Animais , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Encéfalo/metabolismo , Encéfalo/patologia , Paralisia Supranuclear Progressiva/metabolismo , Paralisia Supranuclear Progressiva/patologia , Paralisia Supranuclear Progressiva/genética , Diferenciação Celular , Mutação , Autofagia
13.
Cell ; 186(23): 5165-5182.e33, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37852259

RESUMO

Schizophrenia (SCZ) is a highly heritable mental disorder with thousands of associated genetic variants located mostly in the noncoding space of the genome. Translating these associations into insights regarding the underlying pathomechanisms has been challenging because the causal variants, their mechanisms of action, and their target genes remain largely unknown. We implemented a massively parallel variant annotation pipeline (MVAP) to perform SCZ variant-to-function mapping at scale in disease-relevant neural cell types. This approach identified 620 functional variants (1.7%) that operate in a highly developmental context and neuronal-activity-dependent manner. Multimodal integration of epigenomic and CRISPRi screening data enabled us to link these functional variants to target genes, biological processes, and ultimately alterations of neuronal physiology. These results provide a multistage prioritization strategy to map functional single-nucleotide polymorphism (SNP)-to-gene-to-endophenotype relations and offer biological insights into the context-dependent molecular processes modulated by SCZ-associated genetic variation.


Assuntos
Esquizofrenia , Humanos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Neurônios/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética , Animais , Camundongos , Sequenciamento de Nucleotídeos em Larga Escala
14.
Cell ; 186(19): 4134-4151.e31, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37607537

RESUMO

Changes in an animal's behavior and internal state are accompanied by widespread changes in activity across its brain. However, how neurons across the brain encode behavior and how this is impacted by state is poorly understood. We recorded brain-wide activity and the diverse motor programs of freely moving C. elegans and built probabilistic models that explain how each neuron encodes quantitative behavioral features. By determining the identities of the recorded neurons, we created an atlas of how the defined neuron classes in the C. elegans connectome encode behavior. Many neuron classes have conjunctive representations of multiple behaviors. Moreover, although many neurons encode current motor actions, others integrate recent actions. Changes in behavioral state are accompanied by widespread changes in how neurons encode behavior, and we identify these flexible nodes in the connectome. Our results provide a global map of how the cell types across an animal's brain encode its behavior.


Assuntos
Caenorhabditis elegans , Conectoma , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Modelos Estatísticos , Neurônios/metabolismo
15.
Cell ; 186(16): 3386-3399.e15, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541196

RESUMO

The gastrointestinal tract is in a state of constant motion. These movements are tightly regulated by the presence of food and help digestion by mechanically breaking down and propelling gut content. Mechanical sensing in the gut is thought to be essential for regulating motility; however, the identity of the neuronal populations, the molecules involved, and the functional consequences of this sensation are unknown. Here, we show that humans lacking PIEZO2 exhibit impaired bowel sensation and motility. Piezo2 in mouse dorsal root, but not nodose ganglia is required to sense gut content, and this activity slows down food transit rates in the stomach, small intestine, and colon. Indeed, Piezo2 is directly required to detect colon distension in vivo. Our study unveils the mechanosensory mechanisms that regulate the transit of luminal contents throughout the gut, which is a critical process to ensure proper digestion, nutrient absorption, and waste removal.


Assuntos
Trânsito Gastrointestinal , Canais Iônicos , Mecanotransdução Celular , Animais , Humanos , Camundongos , Digestão , Canais Iônicos/metabolismo , Neurônios/metabolismo
16.
Cell ; 186(7): 1352-1368.e18, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001500

RESUMO

Resilience enables mental elasticity in individuals when rebounding from adversity. In this study, we identified a microcircuit and relevant molecular adaptations that play a role in natural resilience. We found that activation of parvalbumin (PV) interneurons in the primary auditory cortex (A1) by thalamic inputs from the ipsilateral medial geniculate body (MG) is essential for resilience in mice exposed to chronic social defeat stress. Early attacks during chronic social defeat stress induced short-term hyperpolarizations of MG neurons projecting to the A1 (MGA1 neurons) in resilient mice. In addition, this temporal neural plasticity of MGA1 neurons initiated synaptogenesis onto thalamic PV neurons via presynaptic BDNF-TrkB signaling in subsequent stress responses. Moreover, optogenetic mimicking of the short-term hyperpolarization of MGA1 neurons, rather than merely activating MGA1 neurons, elicited innate resilience mechanisms in response to stress and achieved sustained antidepressant-like effects in multiple animal models, representing a new strategy for targeted neuromodulation.


Assuntos
Córtex Auditivo , Camundongos , Animais , Córtex Auditivo/metabolismo , Tálamo/fisiologia , Neurônios/metabolismo , Corpos Geniculados , Interneurônios/fisiologia , Parvalbuminas/metabolismo
17.
Cell ; 186(9): 1950-1967.e25, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36996814

RESUMO

Little is known about the critical metabolic changes that neural cells have to undergo during development and how temporary shifts in this program can influence brain circuitries and behavior. Inspired by the discovery that mutations in SLC7A5, a transporter of metabolically essential large neutral amino acids (LNAAs), lead to autism, we employed metabolomic profiling to study the metabolic states of the cerebral cortex across different developmental stages. We found that the forebrain undergoes significant metabolic remodeling throughout development, with certain groups of metabolites showing stage-specific changes, but what are the consequences of perturbing this metabolic program? By manipulating Slc7a5 expression in neural cells, we found that the metabolism of LNAAs and lipids are interconnected in the cortex. Deletion of Slc7a5 in neurons affects the postnatal metabolic state, leading to a shift in lipid metabolism. Additionally, it causes stage- and cell-type-specific alterations in neuronal activity patterns, resulting in a long-term circuit dysfunction.


Assuntos
Aminoácidos Neutros , Transportador 1 de Aminoácidos Neutros Grandes , Feminino , Humanos , Gravidez , Aminoácidos Neutros/genética , Aminoácidos Neutros/metabolismo , Encéfalo/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Mutação , Neurônios/metabolismo , Animais , Camundongos
18.
Cell ; 186(26): 5766-5783.e25, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38134874

RESUMO

The enhanced cognitive abilities characterizing the human species result from specialized features of neurons and circuits. Here, we report that the hominid-specific gene LRRC37B encodes a receptor expressed in human cortical pyramidal neurons (CPNs) and selectively localized to the axon initial segment (AIS), the subcellular compartment triggering action potentials. Ectopic expression of LRRC37B in mouse CPNs in vivo leads to reduced intrinsic excitability, a distinctive feature of some classes of human CPNs. Molecularly, LRRC37B binds to the secreted ligand FGF13A and to the voltage-gated sodium channel (Nav) ß-subunit SCN1B. LRRC37B concentrates inhibitory effects of FGF13A on Nav channel function, thereby reducing excitability, specifically at the AIS level. Electrophysiological recordings in adult human cortical slices reveal lower neuronal excitability in human CPNs expressing LRRC37B. LRRC37B thus acts as a species-specific modifier of human neuron excitability, linking human genome and cell evolution, with important implications for human brain function and diseases.


Assuntos
Neurônios , Células Piramidais , Canais de Sódio Disparados por Voltagem , Animais , Humanos , Camundongos , Potenciais de Ação/fisiologia , Axônios/metabolismo , Neurônios/metabolismo , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/metabolismo
19.
Cell ; 186(20): 4365-4385.e27, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37774677

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia worldwide, but the molecular and cellular mechanisms underlying cognitive impairment remain poorly understood. To address this, we generated a single-cell transcriptomic atlas of the aged human prefrontal cortex covering 2.3 million cells from postmortem human brain samples of 427 individuals with varying degrees of AD pathology and cognitive impairment. Our analyses identified AD-pathology-associated alterations shared between excitatory neuron subtypes, revealed a coordinated increase of the cohesin complex and DNA damage response factors in excitatory neurons and in oligodendrocytes, and uncovered genes and pathways associated with high cognitive function, dementia, and resilience to AD pathology. Furthermore, we identified selectively vulnerable somatostatin inhibitory neuron subtypes depleted in AD, discovered two distinct groups of inhibitory neurons that were more abundant in individuals with preserved high cognitive function late in life, and uncovered a link between inhibitory neurons and resilience to AD pathology.


Assuntos
Doença de Alzheimer , Encéfalo , Idoso , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Cognição , Disfunção Cognitiva/metabolismo , Neurônios/metabolismo
20.
Cell ; 186(24): 5394-5410.e18, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37922901

RESUMO

Parkinson's disease (PD) is a debilitating neurodegenerative disorder. Its symptoms are typically treated with levodopa or dopamine receptor agonists, but its action lacks specificity due to the wide distribution of dopamine receptors in the central nervous system and periphery. Here, we report the development of a gene therapy strategy to selectively manipulate PD-affected circuitry. Targeting striatal D1 medium spiny neurons (MSNs), whose activity is chronically suppressed in PD, we engineered a therapeutic strategy comprised of a highly efficient retrograde adeno-associated virus (AAV), promoter elements with strong D1-MSN activity, and a chemogenetic effector to enable precise D1-MSN activation after systemic ligand administration. Application of this therapeutic approach rescues locomotion, tremor, and motor skill defects in both mouse and primate models of PD, supporting the feasibility of targeted circuit modulation tools for the treatment of PD in humans.


Assuntos
Terapia Genética , Doença de Parkinson , Animais , Humanos , Camundongos , Corpo Estriado/metabolismo , Levodopa/uso terapêutico , Levodopa/genética , Neurônios/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/terapia , Primatas , Receptores de Dopamina D1/metabolismo , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA