Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98.430
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 41: 375-404, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37126421

RESUMO

Myeloid cells are a significant proportion of leukocytes within tissues, comprising granulocytes, monocytes, dendritic cells, and macrophages. With the identification of various myeloid cells that perform separate but complementary functions during homeostasis and disease, our understanding of tissue myeloid cells has evolved significantly. Exciting findings from transcriptomics profiling and fate-mapping mouse models have facilitated the identification of their developmental origins, maturation, and tissue-specific specializations. This review highlights the current understanding of tissue myeloid cells and the contributing factors of functional heterogeneity to better comprehend the complex and dynamic immune interactions within the healthy or inflamed tissue. Specifically, we discuss the new understanding of the contributions of granulocyte-monocyte progenitor-derived phagocytes to tissue myeloid cell heterogeneity as well as the impact of niche-specific factors on monocyte and neutrophil phenotype and function. Lastly, we explore the developing paradigm of myeloid cell heterogeneity during inflammation and disease.


Assuntos
Monócitos , Neutrófilos , Camundongos , Humanos , Animais , Macrófagos , Células Mieloides , Inflamação , Diferenciação Celular
2.
Cell ; 187(4): 846-860.e17, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262409

RESUMO

RNAs localizing to the outer cell surface have been recently identified in mammalian cells, including RNAs with glycan modifications known as glycoRNAs. However, the functional significance of cell surface RNAs and their production are poorly known. We report that cell surface RNAs are critical for neutrophil recruitment and that the mammalian homologs of the sid-1 RNA transporter are required for glycoRNA expression. Cell surface RNAs can be readily detected in murine neutrophils, the elimination of which substantially impairs neutrophil recruitment to inflammatory sites in vivo and reduces neutrophils' adhesion to and migration through endothelial cells. Neutrophil glycoRNAs are predominantly on cell surface, important for neutrophil-endothelial interactions, and can be recognized by P-selectin (Selp). Knockdown of the murine Sidt genes abolishes neutrophil glycoRNAs and functionally mimics the loss of cell surface RNAs. Our data demonstrate the biological importance of cell surface glycoRNAs and highlight a noncanonical dimension of RNA-mediated cellular functions.


Assuntos
Células Endoteliais , Infiltração de Neutrófilos , Neutrófilos , RNA , Animais , Camundongos , Células Endoteliais/metabolismo , Neutrófilos/metabolismo , RNA/química , RNA/metabolismo , Proteínas de Transporte de Nucleotídeos/genética , Proteínas de Transporte de Nucleotídeos/metabolismo
3.
Cell ; 187(6): 1422-1439.e24, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38447573

RESUMO

Neutrophils, the most abundant and efficient defenders against pathogens, exert opposing functions across cancer types. However, given their short half-life, it remains challenging to explore how neutrophils adopt specific fates in cancer. Here, we generated and integrated single-cell neutrophil transcriptomes from 17 cancer types (225 samples from 143 patients). Neutrophils exhibited extraordinary complexity, with 10 distinct states including inflammation, angiogenesis, and antigen presentation. Notably, the antigen-presenting program was associated with favorable survival in most cancers and could be evoked by leucine metabolism and subsequent histone H3K27ac modification. These neutrophils could further invoke both (neo)antigen-specific and antigen-independent T cell responses. Neutrophil delivery or a leucine diet fine-tuned the immune balance to enhance anti-PD-1 therapy in various murine cancer models. In summary, these data not only indicate the neutrophil divergence across cancers but also suggest therapeutic opportunities such as antigen-presenting neutrophil delivery.


Assuntos
Apresentação de Antígeno , Neoplasias , Neutrófilos , Animais , Humanos , Camundongos , Antígenos de Neoplasias , Leucina/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Neutrófilos/metabolismo , Linfócitos T , Análise da Expressão Gênica de Célula Única
4.
Cell ; 187(4): 897-913.e18, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280374

RESUMO

Canonically, the complement system is known for its rapid response to remove microbes in the bloodstream. However, relatively little is known about a functioning complement system on intestinal mucosal surfaces. Herein, we report the local synthesis of complement component 3 (C3) in the gut, primarily by stromal cells. C3 is expressed upon commensal colonization and is regulated by the composition of the microbiota in healthy humans and mice, leading to an individual host's specific luminal C3 levels. The absence of membrane attack complex (MAC) components in the gut ensures that C3 deposition does not result in the lysis of commensals. Pathogen infection triggers the immune system to recruit neutrophils to the infection site for pathogen clearance. Basal C3 levels directly correlate with protection against enteric infection. Our study reveals the gut complement system as an innate immune mechanism acting as a vigilant sentinel that combats pathogens and spares commensals.


Assuntos
Complemento C3 , Mucosa Intestinal , Microbiota , Animais , Humanos , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Neutrófilos , Complemento C3/metabolismo , Células Estromais/metabolismo
5.
Cell ; 187(9): 2324-2335.e19, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38599211

RESUMO

Microbial communities are resident to multiple niches of the human body and are important modulators of the host immune system and responses to anticancer therapies. Recent studies have shown that complex microbial communities are present within primary tumors. To investigate the presence and relevance of the microbiome in metastases, we integrated mapping and assembly-based metagenomics, genomics, transcriptomics, and clinical data of 4,160 metastatic tumor biopsies. We identified organ-specific tropisms of microbes, enrichments of anaerobic bacteria in hypoxic tumors, associations between microbial diversity and tumor-infiltrating neutrophils, and the association of Fusobacterium with resistance to immune checkpoint blockade (ICB) in lung cancer. Furthermore, longitudinal tumor sampling revealed temporal evolution of the microbial communities and identified bacteria depleted upon ICB. Together, we generated a pan-cancer resource of the metastatic tumor microbiome that may contribute to advancing treatment strategies.


Assuntos
Microbiota , Metástase Neoplásica , Neoplasias , Humanos , Neoplasias/microbiologia , Neoplasias/patologia , Metagenômica/métodos , Neoplasias Pulmonares/microbiologia , Neoplasias Pulmonares/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Neutrófilos/imunologia , Microambiente Tumoral , Bactérias/genética , Bactérias/classificação
6.
Cell ; 186(7): 1304-1306, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001496

RESUMO

The discovery of immune checkpoint inhibitors that boost T cell activity has revolutionized cancer treatment. However, these therapies do not work in all patients, and the quest is on to understand why. Two new studies published in this issue of Cell reveal the surprising finding that activated T cells can recruit neutrophils to kill cancer cells.


Assuntos
Neoplasias , Neutrófilos , Humanos , Linfócitos T , Neoplasias/terapia , Imunoterapia
7.
Cell ; 186(7): 1448-1464.e20, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001504

RESUMO

Neutrophils accumulate in solid tumors, and their abundance correlates with poor prognosis. Neutrophils are not homogeneous, however, and could play different roles in cancer therapy. Here, we investigate the role of neutrophils in immunotherapy, leading to tumor control. We show that successful therapies acutely expanded tumor neutrophil numbers. This expansion could be attributed to a Sellhi state rather than to other neutrophils that accelerate tumor progression. Therapy-elicited neutrophils acquired an interferon gene signature, also seen in human patients, and appeared essential for successful therapy, as loss of the interferon-responsive transcription factor IRF1 in neutrophils led to failure of immunotherapy. The neutrophil response depended on key components of anti-tumor immunity, including BATF3-dependent DCs, IL-12, and IFNγ. In addition, we found that a therapy-elicited systemic neutrophil response positively correlated with disease outcome in lung cancer patients. Thus, we establish a crucial role of a neutrophil state in mediating effective cancer therapy.


Assuntos
Neoplasias Pulmonares , Neutrófilos , Humanos , Neoplasias Pulmonares/genética , Transdução de Sinais/genética , Imunoterapia , Interferons
8.
Cell ; 186(25): 5536-5553.e22, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38029747

RESUMO

Mycobacterium tuberculosis (Mtb) causes 1.6 million deaths annually. Active tuberculosis correlates with a neutrophil-driven type I interferon (IFN) signature, but the cellular mechanisms underlying tuberculosis pathogenesis remain poorly understood. We found that interstitial macrophages (IMs) and plasmacytoid dendritic cells (pDCs) are dominant producers of type I IFN during Mtb infection in mice and non-human primates, and pDCs localize near human Mtb granulomas. Depletion of pDCs reduces Mtb burdens, implicating pDCs in tuberculosis pathogenesis. During IFN-driven disease, we observe abundant DNA-containing neutrophil extracellular traps (NETs) described to activate pDCs. Cell-type-specific disruption of the type I IFN receptor suggests that IFNs act on IMs to inhibit Mtb control. Single-cell RNA sequencing (scRNA-seq) indicates that type I IFN-responsive cells are defective in their response to IFNγ, a cytokine critical for Mtb control. We propose that pDC-derived type I IFNs act on IMs to permit bacterial replication, driving further neutrophil recruitment and active tuberculosis disease.


Assuntos
Interferon Tipo I , Tuberculose , Humanos , Camundongos , Animais , Macrófagos/microbiologia , Citocinas , Neutrófilos , Células Dendríticas
9.
Cell ; 186(7): 1432-1447.e17, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001503

RESUMO

Cancer immunotherapies, including adoptive T cell transfer, can be ineffective because tumors evolve to display antigen-loss-variant clones. Therapies that activate multiple branches of the immune system may eliminate escape variants. Here, we show that melanoma-specific CD4+ T cell therapy in combination with OX40 co-stimulation or CTLA-4 blockade can eradicate melanomas containing antigen escape variants. As expected, early on-target recognition of melanoma antigens by tumor-specific CD4+ T cells was required. Surprisingly, complete tumor eradication was dependent on neutrophils and partly dependent on inducible nitric oxide synthase. In support of these findings, extensive neutrophil activation was observed in mouse tumors and in biopsies of melanoma patients treated with immune checkpoint blockade. Transcriptomic and flow cytometry analyses revealed a distinct anti-tumorigenic neutrophil subset present in treated mice. Our findings uncover an interplay between T cells mediating the initial anti-tumor immune response and neutrophils mediating the destruction of tumor antigen loss variants.


Assuntos
Melanoma , Linfócitos T , Camundongos , Animais , Linfócitos T/patologia , Neutrófilos/patologia , Deriva e Deslocamento Antigênicos , Imunoterapia , Antígeno CTLA-4
10.
Cell ; 186(25): 5500-5516.e21, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38016470

RESUMO

Most animals require sleep, and sleep loss induces serious pathophysiological consequences, including death. Previous experimental approaches for investigating sleep impacts in mice have been unable to persistently deprive animals of both rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS). Here, we report a "curling prevention by water" paradigm wherein mice remain awake 96% of the time. After 4 days of exposure, mice exhibit severe inflammation, and approximately 80% die. Sleep deprivation increases levels of prostaglandin D2 (PGD2) in the brain, and we found that elevated PGD2 efflux across the blood-brain-barrier-mediated by ATP-binding cassette subfamily C4 transporter-induces both accumulation of circulating neutrophils and a cytokine-storm-like syndrome. Experimental disruption of the PGD2/DP1 axis dramatically reduced sleep-deprivation-induced inflammation. Thus, our study reveals that sleep-related changes in PGD2 in the central nervous system drive profound pathological consequences in the peripheral immune system.


Assuntos
Privação do Sono , Animais , Camundongos , Citocinas/metabolismo , Inflamação , Prostaglandina D2 , Sono/fisiologia , Privação do Sono/genética , Privação do Sono/metabolismo , Síndrome , Humanos , Ratos , Linhagem Celular , Tempestades Ciclônicas , Neutrófilos/metabolismo
11.
Cell ; 185(5): 759-761, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35245478

RESUMO

Neutrophil recruitment from blood into tissues is a hallmark of inflammation and anti-microbial host defense. In this issue, De Giovanni et al. describe an unanticipated role for a serotonin metabolite, 5-HIAA, which is produced by activated platelets and mast cells and engages the orphan receptor, GPR35, to recruit neutrophils to inflamed tissues.


Assuntos
Plaquetas , Neutrófilos , Plaquetas/metabolismo , Humanos , Inflamação/metabolismo , Mastócitos/metabolismo , Infiltração de Neutrófilos , Neutrófilos/metabolismo
12.
Cell ; 185(5): 815-830.e19, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35148838

RESUMO

Rapid neutrophil recruitment to sites of inflammation is crucial for innate immune responses. Here, we reveal that the G-protein-coupled receptor GPR35 is upregulated in activated neutrophils, and it promotes their migration. GPR35-deficient neutrophils are less recruited from blood vessels into inflamed tissue, and the mice are less efficient in clearing peritoneal bacteria. Using a bioassay, we find that serum and activated platelet supernatant stimulate GPR35, and we identify the platelet-derived serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) as a GPR35 ligand. GPR35 function in neutrophil recruitment is strongly dependent on platelets, with the receptor promoting transmigration across platelet-coated endothelium. Mast cells also attract GPR35+ cells via 5-HIAA. Mice deficient in 5-HIAA show a loss of GPR35-mediated neutrophil recruitment to inflamed tissue. These findings identify 5-HIAA as a GPR35 ligand and neutrophil chemoattractant and establish a role for platelet- and mast cell-produced 5-HIAA in cell recruitment to the sites of inflammation and bacterial clearance.


Assuntos
Ácido Hidroxi-Indolacético/metabolismo , Neutrófilos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Inflamação/metabolismo , Ligantes , Camundongos , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Serotonina/metabolismo
13.
Cell ; 185(3): 493-512.e25, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35032429

RESUMO

Severe COVID-19 is linked to both dysfunctional immune response and unrestrained immunopathology, and it remains unclear whether T cells contribute to disease pathology. Here, we combined single-cell transcriptomics and single-cell proteomics with mechanistic studies to assess pathogenic T cell functions and inducing signals. We identified highly activated CD16+ T cells with increased cytotoxic functions in severe COVID-19. CD16 expression enabled immune-complex-mediated, T cell receptor-independent degranulation and cytotoxicity not found in other diseases. CD16+ T cells from COVID-19 patients promoted microvascular endothelial cell injury and release of neutrophil and monocyte chemoattractants. CD16+ T cell clones persisted beyond acute disease maintaining their cytotoxic phenotype. Increased generation of C3a in severe COVID-19 induced activated CD16+ cytotoxic T cells. Proportions of activated CD16+ T cells and plasma levels of complement proteins upstream of C3a were associated with fatal outcome of COVID-19, supporting a pathological role of exacerbated cytotoxicity and complement activation in COVID-19.


Assuntos
COVID-19/imunologia , COVID-19/patologia , Ativação do Complemento , Proteoma , SARS-CoV-2/imunologia , Linfócitos T Citotóxicos/imunologia , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/virologia , Fatores Quimiotáticos/metabolismo , Citotoxicidade Imunológica , Células Endoteliais/virologia , Feminino , Humanos , Ativação Linfocitária , Masculino , Microvasos/virologia , Pessoa de Meia-Idade , Monócitos/metabolismo , Neutrófilos/metabolismo , Receptores de IgG/metabolismo , Análise de Célula Única , Adulto Jovem
14.
Nat Immunol ; 25(5): 820-833, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600356

RESUMO

Human bone marrow permanently harbors high numbers of neutrophils, and a tumor-supportive bias of these cells could significantly impact bone marrow-confined malignancies. In individuals with multiple myeloma, the bone marrow is characterized by inflammatory stromal cells with the potential to influence neutrophils. We investigated myeloma-associated alterations in human marrow neutrophils and the impact of stromal inflammation on neutrophil function. Mature neutrophils in myeloma marrow are activated and tumor supportive and transcribe increased levels of IL1B and myeloma cell survival factor TNFSF13B (BAFF). Interactions with inflammatory stromal cells induce neutrophil activation, including BAFF secretion, in a STAT3-dependent manner, and once activated, neutrophils gain the ability to reciprocally induce stromal activation. After first-line myeloid-depleting antimyeloma treatment, human bone marrow retains residual stromal inflammation, and newly formed neutrophils are reactivated. Combined, we identify a neutrophil-stromal cell feed-forward loop driving tumor-supportive inflammation that persists after treatment and warrants novel strategies to target both stromal and immune microenvironments in multiple myeloma.


Assuntos
Fator Ativador de Células B , Interleucina-1beta , Mieloma Múltiplo , Neutrófilos , Células Estromais , Microambiente Tumoral , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Humanos , Microambiente Tumoral/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Células Estromais/metabolismo , Células Estromais/imunologia , Fator Ativador de Células B/metabolismo , Interleucina-1beta/metabolismo , Ativação de Neutrófilo , Fator de Transcrição STAT3/metabolismo , Medula Óssea/imunologia , Medula Óssea/patologia
15.
Nat Immunol ; 25(5): 743-754, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38698239

RESUMO

Human autoimmunity against elements conferring protective immunity can be symbolized by the 'ouroboros', a snake eating its own tail. Underlying infection is autoimmunity against three immunological targets: neutrophils, complement and cytokines. Autoantibodies against neutrophils can cause peripheral neutropenia underlying mild pyogenic bacterial infections. The pathogenic contribution of autoantibodies against molecules of the complement system is often unclear, but autoantibodies specific for C3 convertase can enhance its activity, lowering complement levels and underlying severe bacterial infections. Autoantibodies neutralizing granulocyte-macrophage colony-stimulating factor impair alveolar macrophages, thereby underlying pulmonary proteinosis and airborne infections, type I interferon viral diseases, type II interferon intra-macrophagic infections, interleukin-6 pyogenic bacterial diseases and interleukin-17A/F mucocutaneous candidiasis. Each of these five cytokine autoantibodies underlies a specific range of infectious diseases, phenocopying infections that occur in patients with the corresponding inborn errors. In this Review, we analyze this ouroboros of immunity against immunity and posit that it should be considered as a factor in patients with unexplained infection.


Assuntos
Autoanticorpos , Autoimunidade , Humanos , Autoanticorpos/imunologia , Animais , Citocinas/metabolismo , Citocinas/imunologia , Neutrófilos/imunologia , Proteínas do Sistema Complemento/imunologia , Doenças Autoimunes/imunologia
16.
Nat Immunol ; 25(6): 957-968, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811815

RESUMO

The adult central nervous system (CNS) possesses a limited capacity for self-repair. Severed CNS axons typically fail to regrow. There is an unmet need for treatments designed to enhance neuronal viability, facilitate axon regeneration and ultimately restore lost neurological functions to individuals affected by traumatic CNS injury, multiple sclerosis, stroke and other neurological disorders. Here we demonstrate that both mouse and human bone marrow neutrophils, when polarized with a combination of recombinant interleukin-4 (IL-4) and granulocyte colony-stimulating factor (G-CSF), upregulate alternative activation markers and produce an array of growth factors, thereby gaining the capacity to promote neurite outgrowth. Moreover, adoptive transfer of IL-4/G-CSF-polarized bone marrow neutrophils into experimental models of CNS injury triggered substantial axon regeneration within the optic nerve and spinal cord. These findings have far-reaching implications for the future development of autologous myeloid cell-based therapies that may bring us closer to effective solutions for reversing CNS damage.


Assuntos
Axônios , Fator Estimulador de Colônias de Granulócitos , Interleucina-4 , Camundongos Endogâmicos C57BL , Regeneração Nervosa , Neutrófilos , Animais , Neutrófilos/imunologia , Regeneração Nervosa/imunologia , Camundongos , Humanos , Axônios/metabolismo , Axônios/fisiologia , Fator Estimulador de Colônias de Granulócitos/metabolismo , Fator Estimulador de Colônias de Granulócitos/farmacologia , Interleucina-4/metabolismo , Ativação de Neutrófilo , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/metabolismo , Transferência Adotiva , Citocinas/metabolismo , Células Cultivadas
17.
Nat Immunol ; 25(7): 1296-1305, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806708

RESUMO

Inflammatory pain results from the heightened sensitivity and reduced threshold of nociceptor sensory neurons due to exposure to inflammatory mediators. However, the cellular and transcriptional diversity of immune cell and sensory neuron types makes it challenging to decipher the immune mechanisms underlying pain. Here we used single-cell transcriptomics to determine the immune gene signatures associated with pain development in three skin inflammatory pain models in mice: zymosan injection, skin incision and ultraviolet burn. We found that macrophage and neutrophil recruitment closely mirrored the kinetics of pain development and identified cell-type-specific transcriptional programs associated with pain and its resolution. Using a comprehensive list of potential interactions mediated by receptors, ligands, ion channels and metabolites to generate injury-specific neuroimmune interactomes, we also uncovered that thrombospondin-1 upregulated by immune cells upon injury inhibited nociceptor sensitization. This study lays the groundwork for identifying the neuroimmune axes that modulate pain in diverse disease contexts.


Assuntos
Nociceptores , Dor , Animais , Camundongos , Dor/imunologia , Dor/metabolismo , Nociceptores/metabolismo , Transcriptoma , Camundongos Endogâmicos C57BL , Inflamação/imunologia , Masculino , Macrófagos/imunologia , Macrófagos/metabolismo , Modelos Animais de Doenças , Trombospondina 1/metabolismo , Trombospondina 1/genética , Pele/imunologia , Pele/metabolismo , Pele/patologia , Zimosan , Análise de Célula Única , Neuroimunomodulação , Perfilação da Expressão Gênica , Neutrófilos/imunologia , Neutrófilos/metabolismo
18.
Cell ; 184(12): 3081-3083, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34115969

RESUMO

In this issue of Cell, Cui et al. demonstrate a previously unknown capacity for neutrophils to selectively kill cancer cells. How this killing is effected unfolds as a story of classical biochemistry, novel cell biology, and innate and adaptive immunity.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Neutrófilos
19.
Cell ; 184(15): 4090-4104.e15, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34129837

RESUMO

The oral mucosa remains an understudied barrier tissue. This is a site of rich exposure to antigens and commensals, and a tissue susceptible to one of the most prevalent human inflammatory diseases, periodontitis. To aid in understanding tissue-specific pathophysiology, we compile a single-cell transcriptome atlas of human oral mucosa in healthy individuals and patients with periodontitis. We uncover the complex cellular landscape of oral mucosal tissues and identify epithelial and stromal cell populations with inflammatory signatures that promote antimicrobial defenses and neutrophil recruitment. Our findings link exaggerated stromal cell responsiveness with enhanced neutrophil and leukocyte infiltration in periodontitis. Our work provides a resource characterizing the role of tissue stroma in regulating mucosal tissue homeostasis and disease pathogenesis.


Assuntos
Imunidade nas Mucosas , Mucosa Bucal/citologia , Mucosa Bucal/imunologia , Neutrófilos/citologia , Adulto , Células Epiteliais/citologia , Regulação da Expressão Gênica , Predisposição Genética para Doença , Gengiva/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Microbiota , Células Mieloides/citologia , Periodontite/genética , Periodontite/imunologia , Periodontite/patologia , Análise de Célula Única , Células Estromais/citologia , Linfócitos T/citologia
20.
Cell ; 184(12): 3163-3177.e21, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33964209

RESUMO

Cancer cell genetic variability and similarity to host cells have stymied development of broad anti-cancer therapeutics. Our innate immune system evolved to clear genetically diverse pathogens and limit host toxicity; however, whether/how innate immunity can produce similar effects in cancer is unknown. Here, we show that human, but not murine, neutrophils release catalytically active neutrophil elastase (ELANE) to kill many cancer cell types while sparing non-cancer cells. ELANE proteolytically liberates the CD95 death domain, which interacts with histone H1 isoforms to selectively eradicate cancer cells. ELANE attenuates primary tumor growth and produces a CD8+T cell-mediated abscopal effect to attack distant metastases. Porcine pancreatic elastase (ELANE homolog) resists tumor-derived protease inhibitors and exhibits markedly improved therapeutic efficacy. Altogether, our studies suggest that ELANE kills genetically diverse cancer cells with minimal toxicity to non-cancer cells, raising the possibility of developing it as a broad anti-cancer therapy.


Assuntos
Carcinogênese/patologia , Elastase de Leucócito/metabolismo , Neoplasias/enzimologia , Neoplasias/patologia , Regulação Alostérica/efeitos dos fármacos , Animais , Linfócitos T CD8-Positivos/imunologia , Carcinogênese/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteína Catiônica de Eosinófilo/metabolismo , Histonas/metabolismo , Humanos , Camundongos , Neoplasias/imunologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/enzimologia , Elastase Pancreática/metabolismo , Inibidores de Proteases/farmacologia , Domínios Proteicos , Isoformas de Proteínas/metabolismo , Proteólise/efeitos dos fármacos , Inibidor Secretado de Peptidases Leucocitárias/metabolismo , Suínos , Receptor fas/química , Receptor fas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA