Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.424
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Virol ; 98(2): e0126123, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38226813

RESUMO

Human norovirus (HuNoV) causes gastroenteritis, a disease with no effective therapy or vaccine, and does not grow well in culture. Murine norovirus (MNV) easily replicates in cell cultures and small animals and has often been used as a model to elucidate the structural and functional characteristics of HuNoV. An MNV plasmid-based reverse genetics system was developed to produce the modified recombinant virus. In this study, we attempted to construct the recombinant virus by integrating a foreign gene into MNV ORF3, which encodes the minor structural protein VP2. Deletion of VP2 expression abolished infectious particles from MNV cDNA clones, and supplying exogenous VP2 to the cells rescued the infectivity of cDNA clones without VP2 expression. In addition, the coding sequence of C-terminal ORF3 was essential for cDNA clones compensated with VP2 to produce infectious particles. Furthermore, the recombinant virus with exogenous reporter genes in place of the dispensable region of ORF3 was propagated when VP2 was constitutively supplied. Our findings indicate that foreign genes can be transduced into the norovirus ORF3 region when VP2 is supplied and that successive propagation of modified recombinant norovirus could lead to the development of norovirus-based vaccines or therapeutics.IMPORTANCEIn this study, we revealed that some of the coding regions of ORF3 could be replaced by a foreign gene and infectious virus could be produced when VP2 was supplied. Propagation of this virus depended on VP2 being supplied in trans, indicating that this virus could infect only once. Our findings help to elucidate the functions of VP2 in the virus lifecycle and to develop other caliciviral vectors for recombinant attenuated live enteric virus vaccines or therapeutics tools.


Assuntos
Proteínas do Capsídeo , Norovirus , Animais , Humanos , Camundongos , DNA Complementar/genética , Genes Reporter , Norovirus/genética , Plasmídeos/genética , Vacinas Virais/metabolismo , Proteínas do Capsídeo/metabolismo
2.
J Virol ; 98(5): e0004724, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38651898

RESUMO

RNA viruses lack proofreading in their RNA polymerases and therefore exist as genetically diverse populations. By exposing these diverse viral populations to selective pressures, viruses with mutations that confer fitness advantages can be enriched. To examine factors important for viral tropism and host restriction, we passaged murine norovirus (MNV) in a human cell line, HeLa cells, to select mutant viruses with increased fitness in non-murine cells. A major determinant of host range is expression of the MNV receptor CD300lf on mouse cells, but additional host factors may limit MNV replication in human cells. We found that viruses passaged six times in HeLa cells had enhanced replication compared with the parental virus. The passaged viruses had several mutations throughout the viral genome, which were primarily located in the viral non-structural coding regions. Although viral attachment was not altered for the passaged viruses, their replication was higher than the parental virus when the entry was bypassed, suggesting that the mutant viruses overcame a post-entry block in human cells. Three mutations in the viral NS1 protein were sufficient for enhanced post-entry replication in human cells. We found that the human cell-adapted MNV variants had reduced fitness in murine BV2 cells and infected mice, with reduced viral titers. These results suggest a fitness tradeoff, where increased fitness in a non-native host cell reduces fitness in a natural host environment. Overall, this work suggests that MNV tropism is determined by the presence of not only the viral receptor but also post-entry factors. IMPORTANCE: Viruses infect specific species and cell types, which is dictated by the expression of host factors required for viral entry as well as downstream replication steps. Murine norovirus (MNV) infects mouse cells, but not human cells. However, human cells expressing the murine CD300lf receptor support MNV replication, suggesting that receptor expression is a major determinant of MNV tropism. To determine whether other factors influence MNV tropism, we selected for variants with enhanced replication in human cells. We identified mutations that enhance MNV replication in human cells and demonstrated that these mutations enhance infection at a post-entry replication step. Therefore, MNV infection of human cells is restricted at both entry and post-entry stages. These results shed new light on factors that influence viral tropism and host range.


Assuntos
Norovirus , Tropismo Viral , Internalização do Vírus , Animais , Humanos , Camundongos , Infecções por Caliciviridae/virologia , Genoma Viral , Células HeLa , Especificidade de Hospedeiro , Mutação , Norovirus/genética , Norovirus/fisiologia , Receptores Virais/metabolismo , Receptores Virais/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Ligação Viral , Replicação Viral
3.
Emerg Infect Dis ; 30(1): 163-167, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38063078

RESUMO

We detected a novel GII.4 variant with an amino acid insertion at the start of epitope A in viral protein 1 of noroviruses from the United States, Gabon, South Africa, and the United Kingdom collected during 2017-2022. Early identification of GII.4 variants is crucial for assessing pandemic potential and informing vaccine development.


Assuntos
Infecções por Caliciviridae , Gastroenterite , Norovirus , Humanos , Gastroenterite/epidemiologia , Norovirus/genética , Infecções por Caliciviridae/epidemiologia , Genótipo , Pandemias , Filogenia
4.
Emerg Infect Dis ; 30(1): 194-197, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147526

RESUMO

Acute gastroenteritis associated with human norovirus infection was reported in Phuket, Thailand, in June 2023. We amplified GII.8[P8] from the outbreak stool specimens. Retrospective sample analysis identified infrequent GII.8[P8] in the country beginning in 2018. In all, the 10 whole-genome GII.8[P8] sequences from Thailand we examined had no evidence of genotypic recombination.


Assuntos
Infecções por Caliciviridae , Gastroenterite , Norovirus , Humanos , Norovirus/genética , Tailândia/epidemiologia , Estudos Retrospectivos , Fezes , Filogenia , Gastroenterite/epidemiologia , Genótipo , Infecções por Caliciviridae/epidemiologia
6.
Clin Immunol ; 259: 109901, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38218209

RESUMO

Chronic human norovirus (HuNoV) infections in immunocompromised patients result in severe disease, yet approved antivirals are lacking. RNA-dependent RNA polymerase (RdRp) inhibitors inducing viral mutagenesis display broad-spectrum in vitro antiviral activity, but clinical efficacy in HuNoV infections is anecdotal and the potential emergence of drug-resistant variants is concerning. Upon favipiravir (and nitazoxanide) treatment of four immunocompromised patients with life-threatening HuNoV infections, viral whole-genome sequencing showed accumulation of favipiravir-induced mutations which coincided with clinical improvement although treatment failed to clear HuNoV. Infection of zebrafish larvae demonstrated drug-associated loss of viral infectivity and favipiravir treatment showed efficacy despite occurrence of RdRp variants potentially causing favipiravir resistance. This indicates that within-host resistance evolution did not reverse loss of viral fitness caused by genome-wide accumulation of sequence changes. This off-label approach supports the use of mutagenic antivirals for treating prolonged RNA viral infections and further informs the debate surrounding their impact on virus evolution.


Assuntos
Amidas , Norovirus , Pirazinas , Vírus , Animais , Humanos , Norovirus/genética , Antivirais/farmacologia , Antivirais/uso terapêutico , Peixe-Zebra , Mutagênese , RNA Polimerase Dependente de RNA/genética , Hospedeiro Imunocomprometido
7.
J Virol ; 97(2): e0171622, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36688654

RESUMO

Norovirus is a major human pathogen that can cause severe gastroenteritis in vulnerable populations. The extensive viral diversity presented by human noroviruses constitutes a major roadblock for the development of effective vaccines. In addition to the large number of genotypes, antigenically distinct variants of GII.4 noroviruses have chronologically emerged over the last 3 decades. The last variant to emerge, Sydney_2012, has been circulating at high incidence worldwide for over a decade. We analyzed 1449 capsid sequences from GII.4 Sydney_2012 viruses to determine genetic changes indicative of antigenic diversification. Phylogenetic analyses show that Sydney_2012 viruses scattered within the tree topology with no single cluster dominating during a given year or geographical location. Fourteen residues presented high variability, 7 of which mapped to 4 antigenic sites. Notably, ~52% of viruses presented mutations at 2 or more antigenic sites. Mutational patterns showed that residues 297 and 372, which map to antigenic site A, changed over time. Virus-like particles (VLPs) developed from wild-type Sydney_2012 viruses and engineered to display all mutations detected at antigenic sites were tested against polyclonal sera and monoclonal antibodies raised against Sydney_2012 and Farmington_Hills_2002 VLPs. Minimal changes in reactivity were detected with polyclonal sera and only 4 MAbs lost binding, with all mapping to antigenic site A. Notably, reversion of residues from Sydney_2012 reconstituted epitopes from ancestral GII.4 variants. Overall, this study demonstrates that, despite circulating for over a decade, Sydney_2012 viruses present minimal antigenic diversification and provides novel insights on the diversification of GII.4 noroviruses that could inform vaccine design. IMPORTANCE GII.4 noroviruses are the major cause of acute gastroenteritis in all age groups. This predominance has been attributed to the continued emergence of phylogenetically discrete variants that escape immune responses to previous infections. The last GII.4 variant to emerge, Sydney_2012, has been circulating at high incidence for over a decade, raising the question of whether this variant is undergoing antigenic diversification without presenting a major distinction at the phylogenetic level. Sequence analyses that include >1400 capsid sequences from GII.4 Sydney_2012 showed changes in 4 out of the 6 major antigenic sites. Notably, while changes were detected in one of the most immunodominant sites over time, these resulted in minimal changes in the antigenic profile of these viruses. This study provides new insights on the mechanism governing the antigenic diversification of GII.4 norovirus that could help in the development of cross-protective vaccines to human noroviruses.


Assuntos
Antígenos Virais , Infecções por Caliciviridae , Norovirus , Humanos , Anticorpos Monoclonais/metabolismo , Infecções por Caliciviridae/virologia , Proteínas do Capsídeo/genética , Epitopos/genética , Gastroenterite/virologia , Genótipo , Norovirus/classificação , Norovirus/genética , Filogenia , Evolução Molecular , Antígenos Virais/genética
8.
J Virol ; 97(10): e0093823, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37792003

RESUMO

IMPORTANCE: Human norovirus (HuNoV) is highly infectious and can result in severe illnesses in the elderly and children. So far, there is no effective antiviral drug to treat HuNoV infection, and thus, the development of HuNoV vaccines is urgent. However, NoV evolves rapidly, and currently, at least 10 genogroups with numerous genotypes have been found. The genetic diversity of NoV and the lack of cross-protection between different genotypes pose challenges to the development of broadly protective vaccines. In this study, guided by structural alignment between GI.1 and GII.4 HuNoV VP1 proteins, several chimeric-type virus-like particles (VLPs) were designed through surface-exposed loop grafting. Mouse immunization studies show that two of the designed chimeric VLPs induced cross-immunity against both GI.1 and GII.4 HuNoVs. To our knowledge, this is the first designed chimeric VLPs that can induce cross-immune activities across different genogroups of HuNoV, which provides valuable strategies for the development of cross-reactive HuNoV vaccines.


Assuntos
Infecções por Caliciviridae , Epitopos , Genótipo , Norovirus , Vacinas Virais , Vírion , Animais , Humanos , Camundongos , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/prevenção & controle , Infecções por Caliciviridae/virologia , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Imunização , Norovirus/química , Norovirus/classificação , Norovirus/genética , Norovirus/imunologia , Vacinas Virais/química , Vacinas Virais/genética , Vacinas Virais/imunologia , Quimera/genética , Quimera/imunologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Vírion/química , Vírion/genética , Vírion/imunologia
9.
Int J Med Microbiol ; 314: 151600, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246091

RESUMO

Human norovirus is a major cause of viral gastroenteritis in all age groups. The virus is constantly and rapidly changing, allowing mutations and recombination events to create great diversity of circulating viruses. With the start of the COVID-19 pandemic in 2020, a wide range of public health measures were introduced worldwide to control human-to-human transmission of SARS-CoV-2. In Germany, control measures such as distance rules, contact restrictions, personal protection equipment as well as intensive hand hygiene were introduced. To better understand the effect of the measures to control the COVID-19 pandemic on incidence and the molecular epidemiological dynamics of norovirus outbreaks in Germany, we analyzed national notification data between July 2017 and December 2022 and characterized norovirus sequences circulating between January 2018 and December 2022. Compared to a reference period before the pandemic, the incidence of notified norovirus gastroenteritis decreased by 89.7% to 9.6 per 100,000 during the 2020/2021 norovirus season, corresponding to an incidence rate ratio (IRR) of 0.10. Samples from 539 outbreaks were genotyped in two regions of the viral genome from pre-pandemic (January 2018 to February 2020) and samples from 208 outbreaks during pandemic time period (March 2020 to December 2022). As expected, norovirus outbreaks were mainly found in child care facilities and nursing homes. In total, 36 genotypes were detected in the study period. A high proportion of recombinant strains (86%) was found in patients, the proportion of detected recombinant viruses did not vary between the pre-pandemic and pandemic phase. The proportion of the predominant recombinant strain GII.4 Sydney[P16] was unchanged before pandemic and during pandemic at 37.5%. The diversity of most common genotypes in nursing homes and child care facilities showed a different proportion of genotypes causing outbreaks. In nursing homes as well as in child care facilities GII.4 Sydney[P16] was predominant during the whole study period. Compared to the nursing homes, a greater variety of genotypes at the expense of GII.4 Sydney[P16] was detected in child care facilities. Furthermore, the overall proportion of recombinant strain GII.3[P12] increased during the pandemic, due to outbreaks in child care facilities. The COVID-19 pandemic had a high impact on the occurrence of sporadic cases and norovirus outbreaks in Germany, leading to a near suppression of the typical norovirus winter season following the start of the pandemic. The number of norovirus-associated outbreak samples sent to the Consultant Laboratory dropped by 63% during the pandemic. We could not identify a clear influence on circulating norovirus genotypes. The dominance of GII.4 Sydney recombinant strains was independent from the pandemic. Further studies are needed to follow up on the diversity of less predominant genotypes to see if the pandemic could have acted as a bottleneck to the spread of previously minoritized genotypes like GII.3[P12].


Assuntos
COVID-19 , Infecções por Caliciviridae , Gastroenterite , Norovirus , Humanos , Gastroenterite/epidemiologia , Norovirus/genética , Pandemias , COVID-19/epidemiologia , Infecções por Caliciviridae/epidemiologia , SARS-CoV-2/genética , Genótipo , Surtos de Doenças , Filogenia
10.
J Med Virol ; 96(3): e29487, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38482901

RESUMO

Human norovirus (HuNoV) is the most predominant viral agents of acute gastroenteritis. Point-of-care testing (POCT) based on lateral flow immunochromatography (LIFC) has become an important tool for rapid diagnosis of HuNoVs. However, low sensitivity and lack of quantitation are the bottlenecks of traditional LIFC. Thus, we established a rapid and accurate technique that combined immunomagnetic enrichment (IM) with LFIC to identify GII HuNoVs in fecal specimens. Before preparing immunofluorescent nanomagnetic microspheres and achieving the effect of HuNoV enrichment in IM and fluorescent signal in LFIC, amino-functionalized magnetic beads (MBs) and carboxylated quantum dots (QDs) were coupled at a mass ratio of 4:10. Anti-HuNoV monoclonal antibody was then conjugated with QDs-MB. The limit of detection was 1.56 × 104 copies/mL, and the quantitative detection range was 1.56 × 104 copies/mL-1 × 106 copies/mL under optimal circumstances. The common HuNoV genotypes GII.2, GII.3, GII.4, and GII.17 can be detected, there was no cross-reaction with various enteric viruses, including rotavirus, astrovirus, enterovirus, and sapovirus. A comparison between IM-LFIC and RT-qPCR for the detection of 87 fecal specimens showed a high level of agreement (kappa = 0.799). This suggested that the method is rapid and sensitive, making it a promising option for point-of-care testing in the future.


Assuntos
Infecções por Caliciviridae , Gastroenterite , Norovirus , Rotavirus , Sapovirus , Humanos , Norovirus/genética , Microesferas , Rotavirus/genética , Sapovirus/genética , Fezes , Infecções por Caliciviridae/diagnóstico
11.
J Med Virol ; 96(1): e29384, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38235830

RESUMO

After the introduction of the rotavirus vaccine into the Universal Immunization Program in India in 2016, relatively few studies have assessed the prevalence and epidemiological patterns of acute gastroenteritis (AGE) among hospitalized children ≤5 years of age. We used a uniform protocol to recruit children with AGE as well as standardized testing and typing protocols. Stool specimens from children with AGE younger than 5 years of age admitted to six hospitals in three cities in India were collected from January 2017 through December 2019. Norovirus was detected by real-time reverse transcription-polymerase chain reaction (RT-qPCR) followed by typing positive specimens by conventional RT-PCR and Sanger sequencing. Norovirus was detected in 322 (14.8%) of 2182 specimens with the highest rate in 2018 (17.6%, 146/829), followed by 2019 (14.4%, 122/849) and 2017 (10.7%, 54/504). Rotavirus vaccine status was known for 91.6% of the children of which 70.4% were vaccinated and 29.6% not. Norovirus positivity in rotavirus-vaccinated children was 16.3% and 12% in unvaccinated children. GII.4 Sydney[P16] (39.3%), GII.4 Sydney[P31] (18.7%), GII.2[P16] (10%), GI.3[P13] (6.8%), GII.3[P16] (5.9%), and GII.13[P16] (5%) accounted for 85.8% (188/219) of the typed strains. Our data highlight the importance of norovirus in Indian children hospitalized with AGE.


Assuntos
Infecções por Caliciviridae , Norovirus , Vacinas contra Rotavirus , Rotavirus , Criança , Humanos , Lactente , Pré-Escolar , Norovirus/genética , Infecções por Caliciviridae/epidemiologia , Fezes , Genótipo , Hospitais , Índia/epidemiologia , Filogenia
12.
J Med Virol ; 96(1): e29344, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38149453

RESUMO

Utilizing multiplex real time polymerase chain reaction (RT-PCR) for rapid diagnosis of gastroenteritis, enables simultaneous detection of multiple pathogens. A comparative analysis of disease characteristics was conducted between cases with single and multiple viruses. Rotavirus vaccine was introduced in 2010, reaching a 70% coverage in 2 years. All rectal swabs collected from diarrheic children (<5 years) between December 2017 and March 2022 were included. Detection of the same viruses within 2 months was considered a single episode. Episodes with positive stool bacterial PCR were excluded. A total of 5879 samples were collected, revealing 86.9% (1509) with single virus detection and 13.1% (227) with multiple viruses. The most frequent combination was rotavirus and norovirus (27.8%), these infections followed a winter-spring seasonality akin to rotavirus. Children with multivirus infections exhibited higher immunodeficiency (OR 2.06) rates, but lower food allergy (OR 0.45) and prematurity rates (OR 0.55) compared to single infections. Greater disease severity, evaluated by the Vesikari score, was observed in multivirus episodes (p < 0.001, OR 1.12). Multivirus infections accounted for 13.1% of symptomatic cases in hospitalized young children. Despite vaccination efforts, rotavirus remained prominent, frequently in co-infections with norovirus. Overall, multivirus infections were linked to more severe diseases than single virus cases.


Assuntos
Gastroenterite , Norovirus , Infecções por Rotavirus , Rotavirus , Vírus , Criança , Humanos , Lactente , Pré-Escolar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Gastroenterite/diagnóstico , Gastroenterite/epidemiologia , Rotavirus/genética , Infecções por Rotavirus/diagnóstico , Infecções por Rotavirus/epidemiologia , Vírus/genética , Norovirus/genética , Reação em Cadeia da Polimerase Multiplex , Técnicas e Procedimentos Diagnósticos , Fezes
13.
J Med Virol ; 96(5): e29679, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38767190

RESUMO

Acute gastroenteritis (AGE) represents a world public health relevant problem especially in children. Enteric viruses are the pathogens mainly involved in the episodes of AGE, causing about 70.00% of the cases. Apart from well-known rotavirus (RVA), adenovirus (AdV) and norovirus (NoV), there are various emerging viral pathogens potentially associated with AGE episodes. In this study, the presence of ten different enteric viruses was investigated in 152 fecal samples collected from children hospitalized for gastroenteritis. Real time PCR results showed that 49.3% of them were positive for viral detection with the following prevalence: norovirus GII 19.7%, AdV 15.8%, RVA 10.5%, human parechovirus (HPeV) 5.3%, enterovirus (EV) 3.3%, sapovirus (SaV) 2.6%. Salivirus (SalV), norovirus GI and astrovirus (AstV) 1.3% each, aichivirus (AiV) found in only one patient. In 38.2% of feces only one virus was detected, while co-infections were identified in 11.8% of the cases. Among young patients, 105 were ≤5 years old and 56.0% tested positive for viral detection, while 47 were >5 years old with 40.0% of them infected. Results obtained confirm a complex plethora of viruses potentially implicated in gastroenteritis in children, with some of them previously known for other etiologies but detectable in fecal samples. Subsequent studies should investigate the role of these viruses in causing gastroenteritis and explore the possibility that other symptoms may be ascribed to multiple infections.


Assuntos
COVID-19 , Coinfecção , Fezes , Gastroenterite , Humanos , Gastroenterite/virologia , Gastroenterite/epidemiologia , Pré-Escolar , Coinfecção/virologia , Coinfecção/epidemiologia , Fezes/virologia , Lactente , Itália/epidemiologia , Criança , Masculino , Feminino , COVID-19/epidemiologia , COVID-19/virologia , Sapovirus/isolamento & purificação , Sapovirus/genética , Vírus/isolamento & purificação , Vírus/classificação , Vírus/genética , Prevalência , Norovirus/isolamento & purificação , Norovirus/genética , Adolescente , Viroses/epidemiologia , Viroses/virologia , Recém-Nascido , SARS-CoV-2 , Rotavirus/isolamento & purificação , Rotavirus/genética , Adenoviridae/isolamento & purificação
14.
Anal Biochem ; 692: 115576, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38796118

RESUMO

Regular monitoring of Norovirus presence in environmental and food samples is crucial due to its high transmission rates and outbreak potential. For detecting Norovirus GI, reverse transcription qPCR method is commonly used, but its sensitivity can be affected by assay performance. This study shows significantly reduced assay performance in digital PCR or qPCR when using primers targeting Norovirus GI genome 5291-5319 (NC_001959), located on the hairpin of the predicted RNA structure. It is highly recommended to avoid this region in commercial kit development or diagnosis to minimizing potential risk of false negatives.


Assuntos
Norovirus , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Norovirus/genética , Norovirus/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , RNA Viral/genética , RNA Viral/análise , Humanos , Infecções por Caliciviridae/diagnóstico , Infecções por Caliciviridae/virologia
15.
Virol J ; 21(1): 21, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243289

RESUMO

BACKGROUND: Sentinel laboratory surveillance for diarrheal disease determined norovirus to be the most common cause of non-bacterial gastroenteritis in people during the COVID-19 pandemic in Thailand. An increase in patients presenting with diarrhea and vomiting in hospitals across Chanthaburi province between December 2021 and January 2022 led to the need for the identification of viral pathogens that may be responsible for the outbreak. METHODS: Fecal samples (rectal swabs or stool) from 93 patients, of which 65 patients were collected during the December 2021 to January 2022 outbreak, were collected and screened for viral infection by real-time RT-PCR. Positive samples for norovirus GII were then genotyped by targeted amplification and sequencing of partial polymerase and capsid genes. Full genome sequencing was performed from the predominant strain, GII.3[P25]. RESULTS: Norovirus was the most common virus detected in human fecal samples in this study. 39 of 65 outbreak samples (60%) and 3 of 28 (10%) non-outbreak samples were positive for norovirus genogroup II. One was positive for rotavirus, and one indicated co-infection with rotavirus and norovirus genogroups I and II. Nucleotide sequences of VP1 and RdRp gene were successfully obtained from 28 of 39 positive norovirus GII and used for dual-typing; 25/28 (89.3%) were GII.3, and 24/28 (85.7) were GII.P25, respectively. Norovirus GII.3[P25] was the predominant strain responsible for this outbreak. The full genome sequence of norovirus GII.3[P25] from our study is the first reported in Thailand and has 98.62% and 98.57% similarity to norovirus found in China in 2021 and the USA in 2022, respectively. We further demonstrate the presence of multiple co-circulating norovirus genotypes, including GII.21[P21], GII.17[P17], GII.3[P12] and GII.4[P31] in our study. CONCLUSIONS: An unusual diarrhea outbreak was found in December 2021 in eastern Thailand. Norovirus strain GII.3[P25] was the cause of the outbreak and was first detected in Thailand. The positive rate during GII.3[P25] outbreak was six times higher than sporadic cases (GII.4), and, atypically, adults were the primary infected population rather than children.


Assuntos
Infecções por Caliciviridae , Gastroenterite , Norovirus , Criança , Adulto , Humanos , Gastroenterite/epidemiologia , Norovirus/genética , Pandemias , Tailândia/epidemiologia , Infecções por Caliciviridae/epidemiologia , Filogenia , Diarreia/epidemiologia , Genótipo , Fezes , Surtos de Doenças
16.
Eur J Clin Microbiol Infect Dis ; 43(3): 525-531, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216845

RESUMO

BACKGROUND: Multiplex syndromic gastrointestinal panels (GIPCR) have streamlined the diagnosis of infectious diarrhea. Additionally, they have expanded the number of pathogens that can be routinely evaluated, allowing further understanding of the prevalence of enteric pathogens in various patient populations. The goal of this study was to investigate the prevalence and clinical presentation of astrovirus and sapovirus gastroenteritis in adult oncology patients as detected by the FilmArray GIPCR. METHODS: All GIPCR panel results from December 2017 to June 2021 were retrospectively reviewed to determine the prevalence of astrovirus and sapovirus in adult oncology patients. Medical records were also reviewed to obtain clinical information. Repeat GIPCR positivity and symptom duration were used to estimate prolonged viral shedding. RESULTS: A total of 18,014 panels were performed on samples collected from 9303 adults. Overall, astrovirus and sapovirus were detected in 0.35% (33/9303) and 0.45% (42/9303) GIPCRs respectively. At least one viral target was detected in 424 (4.4%) patients. Astrovirus accounted for 7.8% (33/424) and sapovirus 9.9% (42/424) of patients. Diarrhea was the most common symptom documented. A subset of transplant patients had protracted viral detection with a median of ~27 days (range 23-43 days) for astrovirus and 97 days (range 11-495) for sapovirus. No clusters or outbreaks were identified during the study period. CONCLUSION: In oncology patients with viral gastroenteritis, astrovirus and sapovirus were the causative agents in 18% of the cases. Both viruses were associated with mild disease. Prolonged diarrhea and viral shedding were observed in a few transplant patients.


Assuntos
Gastroenterite , Neoplasias , Norovirus , Sapovirus , Adulto , Humanos , Lactente , Sapovirus/genética , Prevalência , Estudos Retrospectivos , Norovirus/genética , Gastroenterite/diagnóstico , Diarreia/epidemiologia , Neoplasias/complicações , Fezes , Reação em Cadeia da Polimerase
17.
Arch Virol ; 169(3): 55, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386207

RESUMO

When expressed in vitro, the major capsid protein VP1 of a norovirus (NoV) can self-assemble into virus-like particles (VLPs), and its N-terminus can tolerate foreign sequences without the assembly being affected. We explored the effects of adding an N-terminal sequence to the VP1 of a GII.6 NoV strain on its cleavage and assembly. Sequences of varying lengths derived from the minor capsid protein VP2 were added to the VP1 N-terminus. Using a recombinant baculovirus expression system, the fusion proteins were expressed, and their cleavage patterns and assembly were analyzed using mass spectrometry and transmission electron microscopy, respectively. All of the fusion proteins were successfully expressed and exhibited varying degrees of enzyme cleavage, most probably at the N-terminus. LC-MS results revealed that similar fragments were obtained for wild-type VP1 and fusion proteins, indicating that the cleavage sites were conserved. EM analysis indicated that VLPs of different sizes were successfully assembled for certain fusion proteins. The study data demonstrate that NoV VP1 can tolerate foreign sequences of a certain length at its N-terminus and that a conserved cleavage pattern exists, which might facilitate further investigation of the assembly and cleavage mechanisms of NoV.


Assuntos
Proteínas do Capsídeo , Norovirus , Proteínas do Capsídeo/genética , Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Norovirus/genética
18.
Arch Virol ; 169(1): 16, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172375

RESUMO

Noroviruses are among the major causative agents of human acute gastroenteritis, and the nature of norovirus outbreaks can differ considerably. The number of single-nucleotide polymorphisms (SNPs) between strains is used to assess their relationships. There is currently no universally accepted cutoff value for clustering strains that define an outbreak or linking the individuals involved. This study was conducted to estimate the threshold value of genomic variations among related strains within norovirus outbreaks. We carried out a literature search in the PubMed and Web of Science databases. SNP rates were defined as the number of SNPs/sequence length (bp) × 100%. The Mann-Whitney U-test was used in comparisons of the distribution of SNP rates for different sequence regions, genogroups (GI and GII), transmission routes, and sequencing methods. A total of 25 articles reporting on 108 norovirus outbreaks were included. In 99.1% of the outbreaks, the SNP rates were below 0.50%, and in 89.8%, the SNP rates were under 0.20%. Outbreak strains showed higher SNP rates when the P2 domain was used for sequence analysis (Z = -2.652, p = 0.008) and when an NGS method was used (Z = -3.686, p < 0.001). Outbreaks caused by different norovirus genotypes showed no significant difference in SNP rates. Compared with person-to-person outbreaks, SNP rates were lower in common-source outbreaks, but no significant difference was found when differences in sequencing methods were taken into consideraton. SNP rates under 0.20% and 0.50% could be considered as the rigorous and relaxed threshold, respectively, of strain similarity within a norovirus outbreak. More data are needed to evaluate differences within and between various norovirus outbreaks.


Assuntos
Infecções por Caliciviridae , Gastroenterite , Norovirus , Humanos , Norovirus/genética , Gastroenterite/epidemiologia , Genótipo , Análise de Sequência , Surtos de Doenças , Infecções por Caliciviridae/epidemiologia , Filogenia
19.
Arch Virol ; 169(7): 138, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847856

RESUMO

Human norovirus (HuNoV) is responsible for most cases of gastroenteritis worldwide, but information about the prevalence and diversity of HuNoV infections in lower-income settings is lacking. In order to provide more information about the burden and distribution of norovirus in Nigeria, we systematically reviewed original published research articles on the prevalence of HuNoV in Nigeria by accessing databases, including PubMed, Web of Science, ScienceDirect, Google Scholar, and African Journals Online (AJOL). The protocol for the review was registered on PROSPERO (registration number CRD42022308857). Thirteen relevant articles were included in the review, and 10 of them were used for meta-analysis. The pooled prevalence of HuNoV-associated gastroenteritis among children below 5 years of age in Nigeria, determined using the random-effects model, was 10.9% (95% CI, 6.7-16.7%). Among children below the age of 5 presenting with HuNoV infections, the highest prevalence was in children ≤2 years old (n = 127, 83%). The prevalence of HuNoV infections was seen to decrease with increasing age. In addition, HuNoV was detected in asymptomatic food handlers, bats, and seafoods. A total of 85 sequences of HuNoV isolates from Nigeria have been determined, and based on those sequences, the most prevalent norovirus genogroup was GII (84%). Genotypes GII.4 and GI.3 were the most frequently identified genotypes, with GII.4 constituting 46% of all of the HuNoVs identified in Nigeria. These results suggest a risk associated with cocirculation of emerging variants with known genotypes because of their recombination potential. Larger molecular epidemiological studies are still needed to fully understand the extent and pattern of circulation of HuNoVs in Nigeria.


Assuntos
Infecções por Caliciviridae , Gastroenterite , Norovirus , Pré-Escolar , Humanos , Lactente , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/virologia , Gastroenterite/epidemiologia , Gastroenterite/virologia , Genótipo , Nigéria/epidemiologia , Norovirus/genética , Norovirus/classificação , Norovirus/isolamento & purificação , Filogenia , Prevalência , Recém-Nascido
20.
Arch Virol ; 169(6): 131, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819530

RESUMO

Noroviruses (NoVs) are the chief cause of acute viral gastroenteritis worldwide. By employing the major capsid protein VP1 of a GII.6 NoV strain as an immunogen, we generated two monoclonal antibodies (mAbs) with wide-spectrum binding activities against NoV genogroup II (GII) VP1 proteins. One mAb (10G7) could bind to native and denatured GII-specific VP1 proteins. The other mAb (10F2) could bind to all tested native GII VP1 proteins, but not to denatured GII.3, GII.4, GII.7, or GII.17 VP1 proteins. Using GII.6/GII.4 fusion proteins, the mAb 10F2 binding region was confirmed to be located in the C-terminal P1 domain. An enzyme-linked immunosorbent assay based on peptides covering the P domain did not detect any binding. Using a panel of VP1 proteins with swapped regions, deletions, and mutations, the mAb 10F2 binding region was determined to be located between residues 496 and 513. However, the residue(s) responsible for its varied binding affinity for different denatured GII VP1 proteins remain to be identified. In summary, two NoV GII-specific cross-reactive mAbs were generated, and their binding regions were determined. Our results might facilitate the detection and immunogenic study of NoVs.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Proteínas do Capsídeo , Epitopos , Norovirus , Norovirus/genética , Norovirus/imunologia , Anticorpos Monoclonais/imunologia , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , Epitopos/imunologia , Epitopos/genética , Anticorpos Antivirais/imunologia , Animais , Antígenos Virais/imunologia , Antígenos Virais/genética , Camundongos , Humanos , Infecções por Caliciviridae/virologia , Infecções por Caliciviridae/imunologia , Camundongos Endogâmicos BALB C , Mapeamento de Epitopos , Reações Cruzadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA