Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35.438
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(11): 2801-2816.e17, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38657601

RESUMO

The niche is typically considered as a pre-established structure sustaining stem cells. Therefore, the regulation of its formation remains largely unexplored. Whether distinct molecular mechanisms control the establishment versus maintenance of a stem cell niche is unknown. To address this, we compared perinatal and adult bone marrow mesenchymal stromal cells (MSCs), a key component of the hematopoietic stem cell (HSC) niche. MSCs exhibited enrichment in genes mediating m6A mRNA methylation at the perinatal stage and downregulated the expression of Mettl3, the m6A methyltransferase, shortly after birth. Deletion of Mettl3 from developing MSCs but not osteoblasts led to excessive osteogenic differentiation and a severe HSC niche formation defect, which was significantly rescued by deletion of Klf2, an m6A target. In contrast, deletion of Mettl3 from MSCs postnatally did not affect HSC niche. Stem cell niche generation and maintenance thus depend on divergent molecular mechanisms, which may be exploited for regenerative medicine.


Assuntos
Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Metiltransferases , Camundongos Endogâmicos C57BL , Nicho de Células-Tronco , Animais , Camundongos , Adenosina/metabolismo , Adenosina/análogos & derivados , Diferenciação Celular , Epigênese Genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Fatores de Transcrição Kruppel-Like , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Metiltransferases/metabolismo , Metiltransferases/genética , Osteoblastos/metabolismo , Osteoblastos/citologia , Osteogênese , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Transcriptoma/genética , Humanos
2.
Cell ; 177(7): 1915-1932.e16, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31130381

RESUMO

Stroma is a poorly defined non-parenchymal component of virtually every organ with key roles in organ development, homeostasis, and repair. Studies of the bone marrow stroma have defined individual populations in the stem cell niche regulating hematopoietic regeneration and capable of initiating leukemia. Here, we use single-cell RNA sequencing (scRNA-seq) to define a cellular taxonomy of the mouse bone marrow stroma and its perturbation by malignancy. We identified seventeen stromal subsets expressing distinct hematopoietic regulatory genes spanning new fibroblastic and osteoblastic subpopulations including distinct osteoblast differentiation trajectories. Emerging acute myeloid leukemia impaired mesenchymal osteogenic differentiation and reduced regulatory molecules necessary for normal hematopoiesis. These data suggest that tissue stroma responds to malignant cells by disadvantaging normal parenchymal cells. Our taxonomy of the stromal compartment provides a comprehensive bone marrow cell census and experimental support for cancer cell crosstalk with specific stromal elements to impair normal tissue function and thereby enable emergent cancer.


Assuntos
Células da Medula Óssea/metabolismo , Diferenciação Celular , Homeostase , Leucemia Mieloide Aguda/metabolismo , Osteoblastos/metabolismo , Osteogênese , Microambiente Tumoral , Animais , Células da Medula Óssea/patologia , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Osteoblastos/patologia , Células Estromais/metabolismo , Células Estromais/patologia
3.
Cell ; 161(7): 1576-1591, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26091038

RESUMO

The synthesis of type I collagen, the main component of bone matrix, precedes the expression of Runx2, the earliest determinant of osteoblast differentiation. We hypothesized that the energetic needs of osteoblasts might explain this apparent paradox. We show here that glucose, the main nutrient of osteoblasts, is transported in these cells through Glut1, whose expression precedes that of Runx2. Glucose uptake favors osteoblast differentiation by suppressing the AMPK-dependent proteasomal degradation of Runx2 and promotes bone formation by inhibiting another function of AMPK. While RUNX2 cannot induce osteoblast differentiation when glucose uptake is compromised, raising blood glucose levels restores collagen synthesis in Runx2-null osteoblasts and initiates bone formation in Runx2-deficient embryos. Moreover, RUNX2 favors Glut1 expression, and this feedforward regulation between RUNX2 and Glut1 determines the onset of osteoblast differentiation during development and the extent of bone formation throughout life. These results reveal an unexpected intricacy between bone and glucose metabolism.


Assuntos
Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Glucose/metabolismo , Osteoblastos/metabolismo , Osteogênese , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Sequência de Aminoácidos , Animais , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Homeostase , Camundongos , Osteoblastos/citologia , Alinhamento de Sequência , Crânio/citologia
4.
Cell ; 161(2): 240-54, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25860607

RESUMO

In vitro modeling of human disease has recently become feasible with induced pluripotent stem cell (iPSC) technology. Here, we established patient-derived iPSCs from a Li-Fraumeni syndrome (LFS) family and investigated the role of mutant p53 in the development of osteosarcoma (OS). LFS iPSC-derived osteoblasts (OBs) recapitulated OS features including defective osteoblastic differentiation as well as tumorigenic ability. Systematic analyses revealed that the expression of genes enriched in LFS-derived OBs strongly correlated with decreased time to tumor recurrence and poor patient survival. Furthermore, LFS OBs exhibited impaired upregulation of the imprinted gene H19 during osteogenesis. Restoration of H19 expression in LFS OBs facilitated osteoblastic differentiation and repressed tumorigenic potential. By integrating human imprinted gene network (IGN) into functional genomic analyses, we found that H19 mediates suppression of LFS-associated OS through the IGN component DECORIN (DCN). In summary, these findings demonstrate the feasibility of studying inherited human cancer syndromes with iPSCs.


Assuntos
Redes Reguladoras de Genes , Células-Tronco Pluripotentes Induzidas/citologia , Síndrome de Li-Fraumeni/complicações , Osteossarcoma/etiologia , Adolescente , Adulto , Animais , Criança , Decorina/metabolismo , Feminino , Humanos , Síndrome de Li-Fraumeni/genética , Síndrome de Li-Fraumeni/patologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Modelos Biológicos , Transplante de Neoplasias , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese , Osteossarcoma/genética , Osteossarcoma/patologia , RNA Longo não Codificante/metabolismo , Transplante Heterólogo , Proteína Supressora de Tumor p53/metabolismo
5.
Nature ; 626(8001): 1102-1107, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355795

RESUMO

Plasma cells produce large quantities of antibodies and so play essential roles in immune protection1. Plasma cells, including a long-lived subset, reside in the bone marrow where they depend on poorly defined microenvironment-linked survival signals1. We show that bone marrow plasma cells use the ligand-gated purinergic ion channel P2RX4 to sense extracellular ATP released by bone marrow osteoblasts through the gap-junction protein pannexin 3 (PANX3). Mutation of Panx3 or P2rx4 each caused decreased serum antibodies and selective loss of bone marrow plasma cells. Compared to their wild-type counterparts, PANX3-null osteoblasts secreted less extracellular ATP and failed to support plasma cells in vitro. The P2RX4-specific inhibitor 5-BDBD abrogated the impact of extracellular ATP on bone marrow plasma cells in vitro, depleted bone marrow plasma cells in vivo and reduced pre-induced antigen-specific serum antibody titre with little posttreatment rebound. P2RX4 blockade also reduced autoantibody titre and kidney disease in two mouse models of humoral autoimmunity. P2RX4 promotes plasma cell survival by regulating endoplasmic reticulum homeostasis, as short-term P2RX4 blockade caused accumulation of endoplasmic reticulum stress-associated regulatory proteins including ATF4 and B-lineage mutation of the pro-apoptotic ATF4 target Chop prevented bone marrow plasma cell demise on P2RX4 inhibition. Thus, generating mature protective and pathogenic plasma cells requires P2RX4 signalling controlled by PANX3-regulated extracellular ATP release from bone marrow niche cells.


Assuntos
Trifosfato de Adenosina , Células da Medula Óssea , Plasmócitos , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Autoanticorpos/imunologia , Autoimunidade/imunologia , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Linhagem da Célula , Conexinas/genética , Conexinas/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Mutação , Osteoblastos/metabolismo , Plasmócitos/citologia , Plasmócitos/imunologia , Plasmócitos/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Transdução de Sinais
6.
Nature ; 621(7979): 602-609, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37704733

RESUMO

Vertebral bone is subject to a distinct set of disease processes from long bones, including a much higher rate of solid tumour metastases1-4. The basis for this distinct biology of vertebral bone has so far remained unknown. Here we identify a vertebral skeletal stem cell (vSSC) that co-expresses ZIC1 and PAX1 together with additional cell surface markers. vSSCs display formal evidence of stemness, including self-renewal, label retention and sitting at the apex of their differentiation hierarchy. vSSCs are physiologic mediators of vertebral bone formation, as genetic blockade of the ability of vSSCs to generate osteoblasts results in defects in the vertebral neural arch and body. Human counterparts of vSSCs can be identified in vertebral endplate specimens and display a conserved differentiation hierarchy and stemness features. Multiple lines of evidence indicate that vSSCs contribute to the high rates of vertebral metastatic tropism observed in breast cancer, owing in part to increased secretion of the novel metastatic trophic factor MFGE8. Together, our results indicate that vSSCs are distinct from other skeletal stem cells and mediate the unique physiology and pathology of vertebrae, including contributing to the high rate of vertebral metastasis.


Assuntos
Neoplasias da Mama , Linhagem da Célula , Metástase Neoplásica , Coluna Vertebral , Células-Tronco , Humanos , Neoplasias da Mama/patologia , Diferenciação Celular , Autorrenovação Celular , Metástase Neoplásica/patologia , Osteoblastos/citologia , Osteoblastos/patologia , Coluna Vertebral/citologia , Coluna Vertebral/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco/patologia , Biomarcadores
7.
Mol Cell ; 81(2): 340-354.e5, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33450210

RESUMO

In addition to its role as an electron transporter, mitochondrial nicotinamide adenine dinucleotide (NAD+) is an important co-factor for enzymatic reactions, including ADP-ribosylation. Although mitochondria harbor the most intra-cellular NAD+, mitochondrial ADP-ribosylation remains poorly understood. Here we provide evidence for mitochondrial ADP-ribosylation, which was identified using various methodologies including immunofluorescence, western blot, and mass spectrometry. We show that mitochondrial ADP-ribosylation reversibly increases in response to respiratory chain inhibition. Conversely, H2O2-induced oxidative stress reciprocally induces nuclear and reduces mitochondrial ADP-ribosylation. Elevated mitochondrial ADP-ribosylation, in turn, dampens H2O2-triggered nuclear ADP-ribosylation and increases MMS-induced ARTD1 chromatin retention. Interestingly, co-treatment of cells with the mitochondrial uncoupler FCCP decreases PARP inhibitor efficacy. Together, our results suggest that mitochondrial ADP-ribosylation is a dynamic cellular process that impacts nuclear ADP-ribosylation and provide evidence for a NAD+-mediated mitochondrial-nuclear crosstalk.


Assuntos
ADP-Ribosilação , Núcleo Celular/enzimologia , Mitocôndrias/enzimologia , NAD/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , ADP-Ribosilação/efeitos dos fármacos , Animais , Antimicina A/análogos & derivados , Antimicina A/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Cromatina/química , Cromatina/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Células HeLa , Humanos , Peróxido de Hidrogênio/farmacologia , Metacrilatos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/enzimologia , Oligomicinas/farmacologia , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/enzimologia , Poli(ADP-Ribose) Polimerase-1/genética , Rotenona/farmacologia , Tiazóis/farmacologia
8.
EMBO J ; 43(17): 3587-3603, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38951609

RESUMO

Transposable elements (TEs) are mobile genetic modules of viral derivation that have been co-opted to become modulators of mammalian gene expression. TEs are a major source of endogenous dsRNAs, signaling molecules able to coordinate inflammatory responses in various physiological processes. Here, we provide evidence for a positive involvement of TEs in inflammation-driven bone repair and mineralization. In newly fractured mice bone, we observed an early transient upregulation of repeats occurring concurrently with the initiation of the inflammatory stage. In human bone biopsies, analysis revealed a significant correlation between repeats expression, mechanical stress and bone mineral density. We investigated a potential link between LINE-1 (L1) expression and bone mineralization by delivering a synthetic L1 RNA to osteoporotic patient-derived mesenchymal stem cells and observed a dsRNA-triggered protein kinase (PKR)-mediated stress response that led to strongly increased mineralization. This response was associated with a strong and transient inflammation, accompanied by a global translation attenuation induced by eIF2α phosphorylation. We demonstrated that L1 transfection reshaped the secretory profile of osteoblasts, triggering a paracrine activity that stimulated the mineralization of recipient cells.


Assuntos
Inflamação , Elementos Nucleotídeos Longos e Dispersos , Células-Tronco Mesenquimais , eIF-2 Quinase , Animais , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Camundongos , Humanos , Inflamação/metabolismo , Inflamação/genética , Inflamação/patologia , Células-Tronco Mesenquimais/metabolismo , Elementos Nucleotídeos Longos e Dispersos/genética , Osteoblastos/metabolismo , Calcificação Fisiológica/genética
9.
Mol Cell ; 79(3): 425-442.e7, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32615088

RESUMO

Double-strand breaks (DSBs) are the most deleterious DNA lesions, which, if left unrepaired, may lead to genome instability or cell death. Here, we report that, in response to DSBs, the RNA methyltransferase METTL3 is activated by ATM-mediated phosphorylation at S43. Phosphorylated METTL3 is then localized to DNA damage sites, where it methylates the N6 position of adenosine (m6A) in DNA damage-associated RNAs, which recruits the m6A reader protein YTHDC1 for protection. In this way, the METTL3-m6A-YTHDC1 axis modulates accumulation of DNA-RNA hybrids at DSBs sites, which then recruit RAD51 and BRCA1 for homologous recombination (HR)-mediated repair. METTL3-deficient cells display defective HR, accumulation of unrepaired DSBs, and genome instability. Accordingly, depletion of METTL3 significantly enhances the sensitivity of cancer cells and murine xenografts to DNA damage-based therapy. These findings uncover the function of METTL3 and YTHDC1 in HR-mediated DSB repair, which may have implications for cancer therapy.


Assuntos
Adenosina/análogos & derivados , Neoplasias de Cabeça e Pescoço/genética , Metiltransferases/genética , Proteínas do Tecido Nervoso/genética , Fatores de Processamento de RNA/genética , Reparo de DNA por Recombinação/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Adenosina/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Bleomicina/farmacologia , Linhagem Celular Tumoral , DNA/genética , DNA/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Células HEK293 , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/mortalidade , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Metiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas do Tecido Nervoso/metabolismo , Hibridização de Ácido Nucleico , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/patologia , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Processamento de RNA/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Ribonuclease H/genética , Ribonuclease H/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Am J Hum Genet ; 111(9): 1914-1931, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39079539

RESUMO

A major fraction of loci identified by genome-wide association studies (GWASs) mediate alternative splicing, but mechanistic interpretation is hindered by the technical limitations of short-read RNA sequencing (RNA-seq), which cannot directly link splicing events to full-length protein isoforms. Long-read RNA-seq represents a powerful tool to characterize transcript isoforms, and recently, infer protein isoform existence. Here, we present an approach that integrates information from GWASs, splicing quantitative trait loci (sQTLs), and PacBio long-read RNA-seq in a disease-relevant model to infer the effects of sQTLs on the ultimate protein isoform products they encode. We demonstrate the utility of our approach using bone mineral density (BMD) GWAS data. We identified 1,863 sQTLs from the Genotype-Tissue Expression (GTEx) project in 732 protein-coding genes that colocalized with BMD associations (H4PP ≥ 0.75). We generated PacBio Iso-Seq data (N = ∼22 million full-length reads) on human osteoblasts, identifying 68,326 protein-coding isoforms, of which 17,375 (25%) were unannotated. By casting the sQTLs onto protein isoforms, we connected 809 sQTLs to 2,029 protein isoforms from 441 genes expressed in osteoblasts. Overall, we found that 74 sQTLs influenced isoforms likely impacted by nonsense-mediated decay and 190 that potentially resulted in the expression of unannotated protein isoforms. Finally, we functionally validated colocalizing sQTLs in TPM2, in which siRNA-mediated knockdown in osteoblasts showed two TPM2 isoforms with opposing effects on mineralization but exhibited no effect upon knockdown of the entire gene. Our approach should be to generalize across diverse clinical traits and to provide insights into protein isoform activities modulated by GWAS loci.


Assuntos
Processamento Alternativo , Densidade Óssea , Estudo de Associação Genômica Ampla , Isoformas de Proteínas , Proteogenômica , Locos de Características Quantitativas , Humanos , Isoformas de Proteínas/genética , Densidade Óssea/genética , Processamento Alternativo/genética , Proteogenômica/métodos , Osteoblastos/metabolismo , Polimorfismo de Nucleotídeo Único
11.
Development ; 151(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39250530

RESUMO

Developing bones can adapt their shape in response to mechanical stresses from neighbouring growing organs. In a new study, Koichi Matsuo and colleagues examine how bone-forming osteoblasts and bone-resorbing osteoclasts coordinate growth in the mouse fibula. They describe the process called 'endo-forming trans-pairing', where bone resorption by osteoclasts in the outer periosteum is paired with bone formation by osteoblasts in the inner endosteum to shape the growing bone. To learn more about the story behind the paper, we caught up with first author Yukiko Kuroda and the corresponding author Koichi Matsuo, Professor at the School of Medicine, Keio University, Japan.


Assuntos
Osso e Ossos , Microscopia/métodos , Osso e Ossos/citologia , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Nervo Isquiático , Desenvolvimento Ósseo , Animais , Morfogênese
12.
Development ; 151(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39119717

RESUMO

Developing long bones alter their shape while maintaining uniform cortical thickness via coordinated activity of bone-forming osteoblasts and bone-resorbing osteoclasts at periosteal and endosteal surfaces, a process we designate trans-pairing. Two types of trans-pairing shift cortical bone in opposite orientations: peri-forming trans-pairing (peri-t-p) increases bone marrow space and endo-forming trans-pairing (endo-t-p) decreases it, via paired activity of bone resorption and formation across the cortex. Here, we focused on endo-t-p in growing bones. Analysis of endo-t-p activity in the cortex of mouse fibulae revealed osteoclasts under the periosteum compressed by muscles, and expression of RANKL in periosteal cells of the cambium layer. Furthermore, mature osteoblasts were localized on the endosteum, while preosteoblasts were at the periosteum and within cortical canals. X-ray tomographic microscopy revealed the presence of cortical canals more closely associated with endo- than with peri-t-p. Sciatic nerve transection followed by muscle atrophy and unloading induced circumferential endo-t-p with concomitant spread of cortical canals. Such canals likely supply the endosteum with preosteoblasts from the periosteum under endo-t-p, allowing bone shape to change in response to mechanical stress or nerve injury.


Assuntos
Osteoblastos , Osteoclastos , Periósteo , Animais , Osteoblastos/metabolismo , Osteoblastos/citologia , Periósteo/citologia , Periósteo/metabolismo , Osteoclastos/metabolismo , Osteoclastos/citologia , Camundongos , Desenvolvimento Ósseo , Osteogênese/fisiologia , Reabsorção Óssea/patologia , Osso Cortical , Ligante RANK/metabolismo , Camundongos Endogâmicos C57BL
13.
Development ; 151(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38814743

RESUMO

Apical expansion of calvarial osteoblast progenitors from the cranial mesenchyme (CM) above the eye is integral to calvarial growth and enclosure of the brain. The cellular behaviors and signals underlying the morphogenetic process of calvarial expansion are unknown. Time-lapse light-sheet imaging of mouse embryos revealed calvarial progenitors intercalate in 3D in the CM above the eye, and exhibit protrusive and crawling activity more apically. CM cells express non-canonical Wnt/planar cell polarity (PCP) core components and calvarial osteoblasts are bidirectionally polarized. We found non-canonical ligand Wnt5a-/- mutants have less dynamic cell rearrangements and protrusive activity. Loss of CM-restricted Wntless (CM-Wls), a gene required for secretion of all Wnt ligands, led to diminished apical expansion of Osx+ calvarial osteoblasts in the frontal bone primordia in a non-cell autonomous manner without perturbing proliferation or survival. Calvarial osteoblast polarization, progressive cell elongation and enrichment for actin along the baso-apical axis were dependent on CM-Wnts. Thus, CM-Wnts regulate cellular behaviors during calvarial morphogenesis for efficient apical expansion of calvarial osteoblasts. These findings also offer potential insights into the etiologies of calvarial dysplasias.


Assuntos
Mesoderma , Morfogênese , Osteoblastos , Crânio , Proteínas Wnt , Animais , Osteoblastos/metabolismo , Osteoblastos/citologia , Crânio/embriologia , Camundongos , Mesoderma/citologia , Mesoderma/metabolismo , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Polaridade Celular , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Movimento Celular , Proliferação de Células
14.
Development ; 151(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39136544

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) give rise to all cell types of the hematopoietic system through various processes, including asymmetric divisions. However, the contribution of stromal cells of the hematopoietic niches in the control of HSPC asymmetric divisions remains unknown. Using polyacrylamide microwells as minimalist niches, we show that specific heterotypic interactions with osteoblast and endothelial cells promote asymmetric divisions of human HSPCs. Upon interaction, HSPCs polarize in interphase with the centrosome, the Golgi apparatus, and lysosomes positioned close to the site of contact. Subsequently, during mitosis, HSPCs orient their spindle perpendicular to the plane of contact. This division mode gives rise to siblings with unequal amounts of lysosomes and of the differentiation marker CD34. Such asymmetric inheritance generates heterogeneity in the progeny, which is likely to contribute to the plasticity of the early steps of hematopoiesis.


Assuntos
Células-Tronco Hematopoéticas , Humanos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hematopoese/fisiologia , Diferenciação Celular , Mitose , Osteoblastos/citologia , Osteoblastos/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Divisão Celular Assimétrica , Lisossomos/metabolismo , Centrossomo/metabolismo , Antígenos CD34/metabolismo , Complexo de Golgi/metabolismo , Divisão Celular
15.
Development ; 151(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38063851

RESUMO

Cornelia de Lange syndrome (CdLS) is a congenital disorder featuring facial dysmorphism, postnatal growth deficits, cognitive disability and upper limb abnormalities. CdLS is genetically heterogeneous, with cases arising from mutation of BRD4, a bromodomain protein that binds and reads acetylated histones. In this study, we have modeled CdLS facial pathology through mouse neural crest cell (NCC)-specific mutation of BRD4 to characterize cellular and molecular function in craniofacial development. Mice with BRD4 NCC loss of function died at birth with severe facial hypoplasia, cleft palate, mid-facial clefting and exencephaly. Following migration, BRD4 mutant NCCs initiated RUNX2 expression for differentiation to osteoblast lineages but failed to induce downstream RUNX2 targets required for lineage commitment. BRD4 bound to active enhancers to regulate expression of osteogenic transcription factors and extracellular matrix components integral for bone formation. RUNX2 physically interacts with a C-terminal domain in the long isoform of BRD4 and can co-occupy osteogenic enhancers. This BRD4 association is required for RUNX2 recruitment and appropriate osteoblast differentiation. We conclude that BRD4 controls facial bone development through osteoblast enhancer regulation of the RUNX2 transcriptional program.


Assuntos
Síndrome de Cornélia de Lange , Fatores de Transcrição , Animais , Camundongos , Proteínas de Ciclo Celular/genética , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core , Síndrome de Cornélia de Lange/genética , Crista Neural/metabolismo , Proteínas Nucleares/metabolismo , Osteoblastos/metabolismo , Osteogênese , Fatores de Transcrição/metabolismo
16.
Development ; 151(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602508

RESUMO

The skull roof, or calvaria, is comprised of interlocking plates of bones that encase the brain. Separating these bones are fibrous sutures that permit growth. Currently, we do not understand the instructions for directional growth of the calvaria, a process which is error-prone and can lead to skeletal deficiencies or premature suture fusion (craniosynostosis, CS). Here, we identify graded expression of fibronectin (FN1) in the mouse embryonic cranial mesenchyme (CM) that precedes the apical expansion of calvaria. Conditional deletion of Fn1 or Wasl leads to diminished frontal bone expansion by altering cell shape and focal actin enrichment, respectively, suggesting defective migration of calvarial progenitors. Interestingly, Fn1 mutants have premature fusion of coronal sutures. Consistently, syndromic forms of CS in humans exhibit dysregulated FN1 expression, and we also find FN1 expression altered in a mouse CS model of Apert syndrome. These data support a model of FN1 as a directional substrate for calvarial osteoblast migration that may be a common mechanism underlying many cranial disorders of disparate genetic etiologies.


Assuntos
Fibronectinas , Nascimento Prematuro , Crânio , Animais , Feminino , Humanos , Camundongos , Sinais (Psicologia) , Modelos Animais de Doenças , Fibronectinas/metabolismo , Osteoblastos , Crânio/citologia , Crânio/crescimento & desenvolvimento , Crânio/metabolismo , Suturas
17.
Immunity ; 49(6): 1116-1131.e7, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30446387

RESUMO

Nutritional supplementation with probiotics can prevent pathologic bone loss. Here we examined the impact of supplementation with Lactobacillus rhamnosus GG (LGG) on bone homeostasis in eugonadic young mice. Micro-computed tomography revealed that LGG increased trabecular bone volume in mice, which was due to increased bone formation. Butyrate produced in the gut following LGG ingestion, or butyrate fed directly to germ-free mice, induced the expansion of intestinal and bone marrow (BM) regulatory T (Treg) cells. Interaction of BM CD8+ T cells with Treg cells resulted in increased secretion of Wnt10b, a bone anabolic Wnt ligand. Mechanistically, Treg cells promoted the assembly of a NFAT1-SMAD3 transcription complex in CD8+ cells, which drove expression of Wnt10b. Reducing Treg cell numbers, or reconstitution of TCRß-/- mice with CD8+ T cells from Wnt10b-/- mice, prevented butyrate-induced bone formation and bone mass acquisition. Thus, butyrate concentrations regulate bone anabolism via Treg cell-mediated regulation of CD8+ T cell Wnt10b production.


Assuntos
Butiratos/farmacologia , Osteogênese/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Proteínas Wnt/metabolismo , Animais , Butiratos/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Comunicação Celular , Proliferação de Células/efeitos dos fármacos , Feminino , Lacticaseibacillus rhamnosus/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Probióticos/administração & dosagem , Probióticos/metabolismo , Linfócitos T Reguladores/citologia , Proteínas Wnt/genética
18.
Cell ; 149(1): 63-74, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22464323

RESUMO

Osteoblasts are an important component of the hematopoietic microenvironment in bone. However, the mechanisms by which osteoblasts control hematopoiesis remain unknown. We show that augmented HIF signaling in osteoprogenitors results in HSC niche expansion associated with selective expansion of the erythroid lineage. Increased red blood cell production occurred in an EPO-dependent manner with increased EPO expression in bone and suppressed EPO expression in the kidney. In contrast, inactivation of HIF in osteoprogenitors reduced EPO expression in bone. Importantly, augmented HIF activity in osteoprogenitors protected mice from stress-induced anemia. Pharmacologic or genetic inhibition of prolyl hydroxylases1/2/3 in osteoprogenitors elevated EPO expression in bone and increased hematocrit. These data reveal an unexpected role for osteoblasts in the production of EPO and modulation of erythropoiesis. Furthermore, these studies demonstrate a molecular role for osteoblastic PHD/VHL/HIF signaling that can be targeted to elevate both HSCs and erythroid progenitors in the local hematopoietic microenvironment.


Assuntos
Eritropoese , Eritropoetina/metabolismo , Osteoblastos/metabolismo , Transdução de Sinais , Anemia/prevenção & controle , Animais , Células Precursoras Eritroides/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rim/metabolismo , Camundongos , Fator de Transcrição Sp7 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
19.
Nature ; 590(7844): 129-133, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33408418

RESUMO

Regeneration is a complex chain of events that restores a tissue to its original size and shape. The tissue-wide coordination of cellular dynamics that is needed for proper morphogenesis is challenged by the large dimensions of regenerating body parts. Feedback mechanisms in biochemical pathways can provide effective communication across great distances1-5, but how they might regulate growth during tissue regeneration is unresolved6,7. Here we report that rhythmic travelling waves of Erk activity control the growth of bone in time and space in regenerating zebrafish scales, millimetre-sized discs of protective body armour. We find that waves of Erk activity travel across the osteoblast population as expanding concentric rings that are broadcast from a central source, inducing ring-like patterns of tissue growth. Using a combination of theoretical and experimental analyses, we show that Erk activity propagates as excitable trigger waves that are able to traverse the entire scale in approximately two days and that the frequency of wave generation controls the rate of scale regeneration. Furthermore, the periodic induction of synchronous, tissue-wide activation of Erk in place of travelling waves impairs tissue growth, which indicates that wave-distributed Erk activation is key to regeneration. Our findings reveal trigger waves as a regulatory strategy to coordinate cell behaviour and instruct tissue form during regeneration.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Osteoblastos/citologia , Osteoblastos/metabolismo , Regeneração , Peixe-Zebra/fisiologia , Escamas de Animais/citologia , Escamas de Animais/enzimologia , Escamas de Animais/crescimento & desenvolvimento , Escamas de Animais/fisiologia , Animais , Difusão , Feminino , Masculino , Peixe-Zebra/crescimento & desenvolvimento
20.
Nature ; 593(7857): 61-66, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953410

RESUMO

In only a few decades, lithium-ion batteries have revolutionized technologies, enabling the proliferation of portable devices and electric vehicles1, with substantial benefits for society. However, the rapid growth in technology has highlighted the ethical and environmental challenges of mining lithium, cobalt and other mineral ore resources, and the issues associated with the safe usage and non-hazardous disposal of batteries2. Only a small fraction of lithium-ion batteries are recycled, further exacerbating global material supply of strategic elements3-5. A potential alternative is to use organic-based redox-active materials6-8 to develop rechargeable batteries that originate from ethically sourced, sustainable materials and enable on-demand deconstruction and reconstruction. Making such batteries is challenging because the active materials must be stable during operation but degradable at end of life. Further, the degradation products should be either environmentally benign or recyclable for reconstruction into a new battery. Here we demonstrate a metal-free, polypeptide-based battery, in which viologens and nitroxide radicals are incorporated as redox-active groups along polypeptide backbones to function as anode and cathode materials, respectively. These redox-active polypeptides perform as active materials that are stable during battery operation and subsequently degrade on demand in acidic conditions to generate amino acids, other building blocks and degradation products. Such a polypeptide-based battery is a first step to addressing the need for alternative chemistries for green and sustainable batteries in a future circular economy.


Assuntos
Fontes de Energia Elétrica , Eletroquímica , Peptídeos/química , Animais , Bovinos , Linhagem Celular , Sobrevivência Celular , Óxidos N-Cíclicos/química , Camundongos , Osteoblastos/citologia , Oxirredução , Peptídeos/síntese química , Desenvolvimento Sustentável , Viologênios/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA