Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.560
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Biochem ; 87: 1029-1060, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29709200

RESUMO

Over the past three decades, studies of ancient biomolecules-particularly ancient DNA, proteins, and lipids-have revolutionized our understanding of evolutionary history. Though initially fraught with many challenges, today the field stands on firm foundations. Researchers now successfully retrieve nucleotide and amino acid sequences, as well as lipid signatures, from progressively older samples, originating from geographic areas and depositional environments that, until recently, were regarded as hostile to long-term preservation of biomolecules. Sampling frequencies and the spatial and temporal scope of studies have also increased markedly, and with them the size and quality of the data sets generated. This progress has been made possible by continuous technical innovations in analytical methods, enhanced criteria for the selection of ancient samples, integrated experimental methods, and advanced computational approaches. Here, we discuss the history and current state of ancient biomolecule research, its applications to evolutionary inference, and future directions for this young and exciting field.


Assuntos
DNA Antigo , Evolução Molecular , Animais , Evolução Biológica , Extinção Biológica , Fósseis , Genômica , Humanos , Lipídeos/genética , Paleontologia , Filogenia , Proteínas/genética , Proteômica
2.
Nature ; 615(7950): 117-126, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859578

RESUMO

Modern humans have populated Europe for more than 45,000 years1,2. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe4, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants.


Assuntos
Arqueologia , Genoma Humano , Genômica , Genética Humana , Caça , Paleontologia , Humanos , Europa (Continente)/etnologia , Pool Gênico , História Antiga , Genoma Humano/genética
3.
Nature ; 623(7987): 550-554, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914937

RESUMO

The origin of vertebrate paired appendages is one of the most investigated and debated examples of evolutionary novelty1-7. Paired appendages are widely considered as key innovations that enabled new opportunities for controlled swimming and gill ventilation and were prerequisites for the eventual transition from water to land. The past 150 years of debate8-10 has been shaped by two contentious theories4,5: the ventrolateral fin-fold hypothesis9,10 and the archipterygium hypothesis8. The latter proposes that fins and girdles evolved from an ancestral gill arch. Although studies in animal development have revived interest in this idea11-13, it is apparently unsupported by fossil evidence. Here we present palaeontological support for a pharyngeal basis for the vertebrate shoulder girdle. We use computed tomography scanning to reveal details of the braincase of Kolymaspis sibirica14, an Early Devonian placoderm fish from Siberia, that suggests a pharyngeal component of the shoulder. We combine these findings with refreshed comparative anatomy of placoderms and jawless outgroups to place the origin of the shoulder girdle on the sixth branchial arch. These findings provide a novel framework for understanding the origin of the pectoral girdle. Our evidence clarifies the location of the presumptive head-trunk interface in jawless fishes and explains the constraint on branchial arch number in gnathostomes15. The results revive a key aspect of the archipterygium hypothesis and help reconcile it with the ventrolateral fin-fold model.


Assuntos
Nadadeiras de Animais , Evolução Biológica , Peixes , Fósseis , Vertebrados , Animais , Nadadeiras de Animais/anatomia & histologia , Peixes/anatomia & histologia , Paleontologia , Tomografia Computadorizada por Raios X , Vertebrados/anatomia & histologia , Sibéria
4.
Annu Rev Microbiol ; 77: 173-191, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713454

RESUMO

The origin of modern eukaryotes is one of the key transitions in life's history, and also one of the least understood. Although the fossil record provides the most direct view of this process, interpreting the fossils of early eukaryotes and eukaryote-grade organisms is not straightforward. We present two end-member models for the evolution of modern (i.e., crown) eukaryotes-one in which modern eukaryotes evolved early, and another in which they evolved late-and interpret key fossils within these frameworks, including where they might fit in eukaryote phylogeny and what they may tell us about the evolution of eukaryotic cell biology and ecology. Each model has different implications for understanding the rise of complex life on Earth, including different roles of Earth surface oxygenation, and makes different predictions that future paleontological studies can test.


Assuntos
Eucariotos , Fósseis , Eucariotos/genética , Células Eucarióticas , Paleontologia , Ecologia
5.
Nature ; 601(7893): 388-391, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34671168

RESUMO

Transatlantic exploration took place centuries before the crossing of Columbus. Physical evidence for early European presence in the Americas can be found in Newfoundland, Canada1,2. However, it has thus far not been possible to determine when this activity took place3-5. Here we provide evidence that the Vikings were present in Newfoundland in AD 1021. We overcome the imprecision of previous age estimates by making use of the cosmic-ray-induced upsurge in atmospheric radiocarbon concentrations in AD 993 (ref. 6). Our new date lays down a marker for European cognisance of the Americas, and represents the first known point at which humans encircled the globe. It also provides a definitive tie point for future research into the initial consequences of transatlantic activity, such as the transference of knowledge, and the potential exchange of genetic information, biota and pathologies7,8.


Assuntos
Emigrantes e Imigrantes , América , Canadá , Radiação Cósmica , Humanos , Terra Nova e Labrador , Paleontologia
6.
Nature ; 609(7927): 541-546, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35978194

RESUMO

The early history of deuterostomes, the group composed of the chordates, echinoderms and hemichordates1, is still controversial, not least because of a paucity of stem representatives of these clades2-5. The early Cambrian microscopic animal Saccorhytus coronarius was interpreted as an early deuterostome on the basis of purported pharyngeal openings, providing evidence for a meiofaunal ancestry6 and an explanation for the temporal mismatch between palaeontological and molecular clock timescales of animal evolution6-8. Here we report new material of S. coronarius, which is reconstructed as a millimetric and ellipsoidal meiobenthic animal with spinose armour and a terminal mouth but no anus. Purported pharyngeal openings in support of the deuterostome hypothesis6 are shown to be taphonomic artefacts. Phylogenetic analyses indicate that S. coronarius belongs to total-group Ecdysozoa, expanding the morphological disparity and ecological diversity of early Cambrian ecdysozoans.


Assuntos
Cordados , Filogenia , Animais , Cordados/anatomia & histologia , Fósseis , Boca , Paleontologia
7.
Nature ; 597(7876): 376-380, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34471286

RESUMO

Pleistocene hominin dispersals out of, and back into, Africa necessarily involved traversing the diverse and often challenging environments of Southwest Asia1-4. Archaeological and palaeontological records from the Levantine woodland zone document major biological and cultural shifts, such as alternating occupations by Homo sapiens and Neanderthals. However, Late Quaternary cultural, biological and environmental records from the vast arid zone that constitutes most of Southwest Asia remain scarce, limiting regional-scale insights into changes in hominin demography and behaviour1,2,5. Here we report a series of dated palaeolake sequences, associated with stone tool assemblages and vertebrate fossils, from the Khall Amayshan 4 and Jubbah basins in the Nefud Desert. These findings, including the oldest dated hominin occupations in Arabia, reveal at least five hominin expansions into the Arabian interior, coinciding with brief 'green' windows of reduced aridity approximately 400, 300, 200, 130-75 and 55 thousand years ago. Each occupation phase is characterized by a distinct form of material culture, indicating colonization by diverse hominin groups, and a lack of long-term Southwest Asian population continuity. Within a general pattern of African and Eurasian hominin groups being separated by Pleistocene Saharo-Arabian aridity, our findings reveal the tempo and character of climatically modulated windows for dispersal and admixture.


Assuntos
Hominidae , Migração Humana/história , Animais , Antropologia , Arábia , Ásia , História Antiga , Paleontologia , Comportamento de Utilização de Ferramentas
8.
Nature ; 591(7848): 87-91, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33442059

RESUMO

Dire wolves are considered to be one of the most common and widespread large carnivores in Pleistocene America1, yet relatively little is known about their evolution or extinction. Here, to reconstruct the evolutionary history of dire wolves, we sequenced five genomes from sub-fossil remains dating from 13,000 to more than 50,000 years ago. Our results indicate that although they were similar morphologically to the extant grey wolf, dire wolves were a highly divergent lineage that split from living canids around 5.7 million years ago. In contrast to numerous examples of hybridization across Canidae2,3, there is no evidence for gene flow between dire wolves and either North American grey wolves or coyotes. This suggests that dire wolves evolved in isolation from the Pleistocene ancestors of these species. Our results also support an early New World origin of dire wolves, while the ancestors of grey wolves, coyotes and dholes evolved in Eurasia and colonized North America only relatively recently.


Assuntos
Extinção Biológica , Filogenia , Lobos/classificação , Animais , Fósseis , Fluxo Gênico , Genoma/genética , Genômica , Mapeamento Geográfico , América do Norte , Paleontologia , Fenótipo , Lobos/genética
9.
Proc Natl Acad Sci U S A ; 121(24): e2316419121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38830089

RESUMO

The extinction of the woolly rhinoceros (Coelodonta antiquitatis) at the onset of the Holocene remains an enigma, with conflicting evidence regarding its cause and spatiotemporal dynamics. This partly reflects challenges in determining demographic responses of late Quaternary megafauna to climatic and anthropogenic causal drivers with available genetic and paleontological techniques. Here, we show that elucidating mechanisms of ancient extinctions can benefit from a detailed understanding of fine-scale metapopulation dynamics, operating over many millennia. Using an abundant fossil record, ancient DNA, and high-resolution simulation models, we untangle the ecological mechanisms and causal drivers that are likely to have been integral in the decline and later extinction of the woolly rhinoceros. Our 52,000-y reconstruction of distribution-wide metapopulation dynamics supports a pathway to extinction that began long before the Holocene, when the combination of cooling temperatures and low but sustained hunting by humans trapped woolly rhinoceroses in suboptimal habitats along the southern edge of their range. Modeling indicates that this ecological trap intensified after the end of the last ice age, preventing colonization of newly formed suitable habitats, weakening stabilizing metapopulation processes, triggering the extinction of the woolly rhinoceros in the early Holocene. Our findings suggest that fragmentation and resultant metapopulation dynamics should be explicitly considered in explanations of late Quaternary megafauna extinctions, sending a clarion call to the fragility of the remaining large-bodied grazers restricted to disjunct fragments of poor-quality habitat due to anthropogenic environmental change.


Assuntos
Extinção Biológica , Fósseis , Perissodáctilos , Dinâmica Populacional , Animais , Ecossistema , DNA Antigo/análise , Paleontologia
10.
Genome Res ; 33(8): 1299-1316, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37463752

RESUMO

Paleogenomics continues to yield valuable insights into the evolution, population dynamics, and ecology of our ancestors and other extinct species. However, DNA sequencing cannot reveal tissue-specific gene expression, cellular identity, or gene regulation, which are only attainable at the transcriptional level. Pioneering studies have shown that useful RNA can be extracted from ancient specimens preserved in permafrost and historical skins from extant canids, but no attempts have been made so far on extinct species. We extract, sequence, and analyze historical RNA from muscle and skin tissue of a ∼130-year-old Tasmanian tiger (Thylacinus cynocephalus) preserved in desiccation at room temperature in a museum collection. The transcriptional profiles closely resemble those of extant species, revealing specific anatomical features such as slow muscle fibers or blood infiltration. Metatranscriptomic analysis, RNA damage, tissue-specific RNA profiles, and expression hotspots genome-wide further confirm the thylacine origin of the sequences. RNA sequences are used to improve protein-coding and noncoding annotations, evidencing missing exonic loci and the location of ribosomal RNA genes while increasing the number of annotated thylacine microRNAs from 62 to 325. We discover a thylacine-specific microRNA isoform that could not have been confirmed without RNA evidence. Finally, we detect traces of RNA viruses, suggesting the possibility of profiling viral evolution. Our results represent the first successful attempt to obtain transcriptional profiles from an extinct animal species, providing thought-to-be-lost information on gene expression dynamics. These findings hold promising implications for the study of RNA molecules across the vast collections of natural history museums and from well-preserved permafrost remains.


Assuntos
Genômica , Marsupiais , Animais , Genômica/métodos , Filogenia , Extinção Biológica , Paleontologia , Marsupiais/genética , RNA/genética
11.
Nature ; 580(7804): 502-505, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32322065

RESUMO

Time-calibrated phylogenies of extant species (referred to here as 'extant timetrees') are widely used for estimating diversification dynamics1. However, there has been considerable debate surrounding the reliability of these inferences2-5 and, to date, this critical question remains unresolved. Here we clarify the precise information that can be extracted from extant timetrees under the generalized birth-death model, which underlies most existing methods of estimation. We prove that, for any diversification scenario, there exists an infinite number of alternative diversification scenarios that are equally likely to have generated any given extant timetree. These 'congruent' scenarios cannot possibly be distinguished using extant timetrees alone, even in the presence of infinite data. Importantly, congruent diversification scenarios can exhibit markedly different and yet similarly plausible dynamics, which suggests that many previous studies may have over-interpreted phylogenetic evidence. We introduce identifiable and easily interpretable variables that contain all available information about past diversification dynamics, and demonstrate that these can be estimated from extant timetrees. We suggest that measuring and modelling these identifiable variables offers a more robust way to study historical diversification dynamics. Our findings also make it clear that palaeontological data will continue to be crucial for answering some macroevolutionary questions.


Assuntos
Biodiversidade , Modelos Biológicos , Filogenia , Animais , Calibragem , Extinção Biológica , Especiação Genética , Paleontologia , Reprodutibilidade dos Testes , Fatores de Tempo
12.
Annu Rev Genomics Hum Genet ; 23: 627-652, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35537469

RESUMO

Over the past two decades, the study of ancient genomes from Ancestral humans, or human paleogenomic research, has expanded rapidly in both scale and scope. Ethical discourse has subsequently emerged to address issues of social responsibility and scientific robusticity in conducting research. Here, we highlight and contextualize the primary sources of professional ethical guidance aimed at paleogenomic researchers. We describe the tension among existing guidelines, while addressing core issues such as consent, destructive research methods, and data access and management. Currently, there is a dissonance between guidelines that focus on scientific outcomes and those that hold scientists accountable to stakeholder communities,such as descendants. Thus, we provide additional tools to navigate the complexities of ancient DNA research while centering engagement with stakeholder communities in the scientific process.


Assuntos
Genômica , Paleontologia , DNA Antigo , Humanos , Consentimento Livre e Esclarecido , Pesquisadores
14.
18.
Nature ; 627(8004): 474-475, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38454037
19.
Nature ; 573(7773): 220-224, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31462773

RESUMO

A fossil hominin cranium was discovered in mid-Pliocene deltaic strata in the Godaya Valley of the northwestern Woranso-Mille study area in Ethiopia. Here we show that analyses of chemically correlated volcanic layers and the palaeomagnetic stratigraphy, combined with Bayesian modelling of dated tuffs, yield an age range of 3.804 ± 0.013 to 3.777 ± 0.014 million years old (mean ± 1σ) for the deltaic strata and the fossils that they contain. We also document deposits of a perennial lake beneath the deltaic sequence. Mammalian fossils associated with the cranium represent taxa that were widespread at the time and data from botanical remains indicate that the vegetation in the lake and delta catchment was predominantly dry shrubland with varying proportions of grassland, wetland and riparian forest. In addition, we report high rates of sediment accumulation and depositional features that are typical of a steep topographic relief and differ from younger Woranso-Mille fossil localities, reflecting the influence of active rift processes on the palaeolandscape.


Assuntos
Fósseis , Hominidae/anatomia & histologia , Crânio/anatomia & histologia , Animais , Etiópia , Lagos , Paleontologia , Datação Radiométrica , Fatores de Tempo
20.
Bioessays ; 45(3): e2200167, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36693795

RESUMO

Paleoneuranatomy is an emerging subfield of paleontological research with great potential for the study of evolution. However, the interpretation of fossilized nervous tissues is a difficult task and presently lacks a rigorous methodology. We critically review here cases of neural tissue preservation reported in Cambrian arthropods, following a set of fundamental paleontological criteria for their recognition. These criteria are based on a variety of taphonomic parameters and account for morphoanatomical complexity. Application of these criteria shows that firm evidence for fossilized nervous tissues is less abundant and detailed than previously reported, and we synthesize here evidence that has stronger support. We argue that the vascular system, and in particular its lacunae, may be central to the understanding of many of the fossilized peri-intestinal features known across Cambrian arthropods. In conclusion, our results suggest the need for caution in the interpretation of evidence for fossilized neural tissue, which will increase the accuracy of evolutionary scenarios. Also see the video abstract here: https://youtu.be/2_JlQepRTb0.


Assuntos
Artrópodes , Tecido Nervoso , Animais , Evolução Biológica , Fósseis , Artrópodes/anatomia & histologia , Artrópodes/fisiologia , Paleontologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA