Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 35(9): 1570-1578, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36048166

RESUMO

Exposure to organophosphorus pesticides (OP) can have chronic adverse effects that are independent of inhibition of acetylcholinesterase, the classic target for acute OP toxicity. In pure proteins, the organophosphorus pesticide chlorpyrifos oxon induces a cross-link between lysine and glutamate (or aspartate) with loss of water. Tubulin is particularly sensitive to OP-induced cross-linking. Our goal was to explore OP-induced cross-linking in a complex protein sample, MAP-rich tubulin from Sus scrofa and to test 8 OP for their capacity to promote isopeptide cross-linking. We treated 100 µg of MAP-rich tubulin with 100 µM chlorpyrifos, chlorpyrifos oxon, methamidophos, paraoxon, diazinon, diazoxon, monocrotophos, or dichlorvos. Each sample was separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and stained with Coomassie blue. Five gel slices (at about 30, 50, 150, and 300 kDa, and the top of the separating gel) were removed from the lanes for each of the eight OP samples and from untreated control lanes. These gel slices were subjected to in-gel trypsin digestion. MSMS fragmentation spectra of the tryptic peptides were examined for isopeptide cross-links. Sixteen spectra yielded convincing evidence for isopeptide cross-linked peptides. Ten were from the chlorpyrifos oxon reaction, 1 from dichlorvos, 1 from paraoxon, 1 from diazinon, and 3 from diazoxon. It was concluded that catalysis of protein cross-linking is a general property of organophosphorus pesticides and pesticide metabolites. Data are available via ProteomeXchange with identifier PXD034529.


Assuntos
Clorpirifos , Monocrotofós , Praguicidas , Acetilcolinesterase/metabolismo , Ácido Aspártico , Clorpirifos/análogos & derivados , Clorpirifos/química , Diazinon , Diclorvós , Glutamatos , Lisina/química , Compostos Organofosforados/química , Paraoxon/metabolismo , Peptídeos/química , Praguicidas/toxicidade , Dodecilsulfato de Sódio , Tripsina , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Água
2.
J Am Chem Soc ; 143(10): 4005-4016, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33673734

RESUMO

Melanin is a ubiquitous natural pigment found in a diverse array of organisms. Allomelanin is a class of nitrogen-free melanin often found in fungi. Herein, we find artificial allomelanin analogues exhibit high intrinsic microporosity and describe an approach for further increasing and tuning that porosity. Notably, the synthetic method involves an oxidative polymerization of 1,8-DHN in water, negating the need for multiple complex templating steps and avoiding expensive or complex chemical precursors. The well-defined morphologies of these nanomaterials were elucidated by a combination of electron microscopy and scattering methods, yielding to high-resolution 3D reconstruction based on small-angle X-ray scattering (SAXS) results. Synthetic allomelanin nanoparticles exhibit high BET areas, up to 860 m2/g, and are capable of ammonia capture up to 17.0 mmol/g at 1 bar. In addition, these nanomaterials can adsorb nerve agent simulants in solution and as a coating on fabrics with high breathability where they prevent breakthrough. We also confirmed that naturally derived fungal melanin can adsorb nerve gas simulants in solution efficiently despite lower porosity than synthetic analogues. Our approach inspires further analysis of yet to be discovered biological materials of this class where melanins with intrinsic microporosity may be linked to evolutionary advantages in relevant organisms and may in turn inspire the design of new high surface area materials.


Assuntos
Biopolímeros/química , Melaninas/química , Adsorção , Biopolímeros/metabolismo , Fungos/metabolismo , Melaninas/metabolismo , Nanopartículas/química , Naftóis/química , Naftóis/metabolismo , Paraoxon/química , Paraoxon/metabolismo , Porosidade , Espalhamento a Baixo Ângulo , Difração de Raios X
3.
Nat Chem Biol ; 15(1): 34-41, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30510190

RESUMO

Bacterial biofilms can be programmed to produce living materials with self-healing and evolvable functionalities. However, the wider use of artificial biofilms has been hindered by limitations on processability and functional protein secretion capacity. We describe a highly flexible and tunable living functional materials platform based on the TasA amyloid machinery of the bacterium Bacillus subtilis. We demonstrate that genetically programmable TasA fusion proteins harboring diverse functional proteins or domains can be secreted and can assemble into diverse extracellular nano-architectures with tunable physicochemical properties. Our engineered biofilms have the viscoelastic behaviors of hydrogels and can be precisely fabricated into microstructures having a diversity of three-dimensional (3D) shapes using 3D printing and microencapsulation techniques. Notably, these long-lasting and environmentally responsive fabricated living materials remain alive, self-regenerative, and functional. This new tunable platform offers previously unattainable properties for a variety of living functional materials having potential applications in biomaterials, biotechnology, and biomedicine.


Assuntos
Bacillus subtilis/fisiologia , Materiais Biocompatíveis/química , Biofilmes , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Materiais Biocompatíveis/metabolismo , Biodegradação Ambiental , Composição de Medicamentos , Elasticidade , Engenharia Genética/métodos , Nanopartículas/química , Paraoxon/metabolismo , Impressão Tridimensional , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
4.
Biotechnol Bioeng ; 117(9): 2694-2702, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32515491

RESUMO

Enzyme promiscuity is critical to the acquisition of evolutionary plasticity in cells and can be recruited for high-value chemical synthesis or xenobiotic degradation. The molecular determinants of substrate ambiguity are essential to this activity; however, these details remain unknown. Here, we performed the directed evolution of a prolidase to enhance its initially weak paraoxonase activity. The in vitro evolution led to an unexpected 1,000,000-fold switch in substrate selectivity, with a 30-fold increase in paraoxon hydrolysis and 40,000-fold decrease in peptide hydrolysis. Structural and in silico analyses revealed enlarged catalytic cavities and substrate repositioning as responsible for rapid catalytic transitions between distinct chemical reactions.


Assuntos
Proteínas de Bactérias/metabolismo , Domínio Catalítico/genética , Dipeptidases/metabolismo , Paraoxon/metabolismo , Engenharia de Proteínas/métodos , Proteínas de Bactérias/genética , Dipeptidases/genética , Evolução Molecular Direcionada , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrólise , Paraoxon/química , Especificidade por Substrato
5.
Biochemistry ; 58(9): 1246-1259, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30730705

RESUMO

Organophosphorus flame retardants are stable toxic compounds used in nearly all durable plastic products and are considered major emerging pollutants. The phosphotriesterase from Sphingobium sp. TCM1 ( Sb-PTE) is one of the few enzymes known to be able to hydrolyze organophosphorus flame retardants such as triphenyl phosphate and tris(2-chloroethyl) phosphate. The effectiveness of Sb-PTE for the hydrolysis of these organophosphates appears to arise from its ability to hydrolyze unactivated alkyl and phenolic esters from the central phosphorus core. How Sb-PTE is able to catalyze the hydrolysis of the unactivated substituents is not known. To interrogate the catalytic hydrolysis mechanism of Sb-PTE, the pH dependence of the reaction and the effects of changing the solvent viscosity were determined. These experiments were complemented by measurement of the primary and secondary 18-oxygen isotope effects on substrate hydrolysis and a determination of the effects of changing the p Ka of the leaving group on the magnitude of the rate constants for hydrolysis. Collectively, the results indicated that a single group must be ionized for nucleophilic attack and that a separate general acid is not involved in protonation of the leaving group. The Brønsted analysis and the heavy atom kinetic isotope effects are consistent with an early associative transition state with subsequent proton transfers not being rate limiting. A novel binding mode of the substrate to the binuclear metal center and a catalytic mechanism are proposed to explain the unusual ability of Sb-PTE to hydrolyze unactivated esters from a wide range of organophosphate substrates.


Assuntos
Organofosfatos/metabolismo , Hidrolases de Triester Fosfórico/química , Hidrolases de Triester Fosfórico/metabolismo , Sphingomonadaceae/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Catálise , Domínio Catalítico , Deutério/química , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Espectroscopia de Ressonância Magnética , Organofosfatos/química , Paraoxon/química , Paraoxon/metabolismo , Solventes/química , Viscosidade
6.
Chem Res Toxicol ; 32(9): 1801-1810, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31411024

RESUMO

The single residue mutation of butyrylcholinesterase (BChEG117H) hydrolyzes a number of organophosphosphorus (OP) anticholinesterases. Whereas other BChE active site/proximal mutations have been investigated, none are sufficiently active to be prophylactically useful. In a fundamentally different computer simulations driven strategy, we identified a surface peptide loop (residues 278-285) exhibiting dynamic motions during catalysis and modified it via residue insertions. We evaluated these loop mutants using computer simulations, substrate kinetics, resistance to inhibition, and enzyme reactivation assays using both the choline ester and OP substrates. A slight but significant increase in reactivation was noted with paraoxon with one of the mutants, and changes in KM and catalytic efficiency were noted in others. Simulations suggested weaker interactions between OP versus choline substrates and the active site of all engineered versions of the enzyme. The results indicate that an improvement of OP anticholinesterase hydrolysis through surface loop engineering may be a more effective strategy in an enzyme with higher intrinsic OP compound hydrolase activity.


Assuntos
Butirilcolinesterase/química , Inibidores da Colinesterase/química , Iodeto de Ecotiofato/química , Isoflurofato/química , Paraoxon/química , Biocatálise , Butirilcolinesterase/genética , Butirilcolinesterase/metabolismo , Domínio Catalítico , Inibidores da Colinesterase/metabolismo , Iodeto de Ecotiofato/metabolismo , Hidrólise , Isoflurofato/metabolismo , Cinética , Simulação de Dinâmica Molecular , Mutação , Paraoxon/metabolismo , Ligação Proteica , Engenharia de Proteínas , Termodinâmica
7.
Nucleic Acids Res ; 44(17): 8490-500, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27536006

RESUMO

A whole-cell biosensor utilizing a transcription factor (TF) is an effective tool for sensitive and selective detection of specialty chemicals or anthropogenic molecules, but requires access to an expanded repertoire of TFs. Using homology modeling and ligand docking for binding pocket identification, assisted by conservative mutations in the pocket, we engineered a novel specificity in an Acinetobacter TF, PobR, to 'sense' a chemical p-nitrophenol (pNP) and measured the response via a fluorescent protein reporter expressed from a PobR promoter. Out of 10(7) variants of PobR, four were active when dosed with pNP, with two mutants showing a specificity switch from the native effector 4-hydroxybenzoate (4HB). One of the mutants, pNPmut1 was then used to create a smart microbial cell responding to pNP production from hydrolysis of an insecticide, paraoxon, in a coupled assay involving phosphotriesterase (PTE) enzyme expressed from a separate promoter. We show the fluorescence of the cells correlated with the catalytic efficiency of the PTE variant expressed in each cell. High selectivity between similar molecules (4HB versus pNP), high sensitivity for pNP detection (∼2 µM) and agreement of apo- and holo-structures of PobR scaffold with predetermined computational models are other significant results presented in this work.


Assuntos
Proteínas de Bactérias/metabolismo , Técnicas Biossensoriais , Organofosfatos/metabolismo , Engenharia de Proteínas , Fatores de Transcrição/metabolismo , Cristalografia por Raios X , Citometria de Fluxo , Hidrólise , Ligantes , Simulação de Acoplamento Molecular , Nitrofenóis/metabolismo , Organofosfatos/química , Paraoxon/metabolismo , Plasmídeos/metabolismo , Homologia Estrutural de Proteína , Fatores de Transcrição/química
8.
Toxicol Mech Methods ; 28(1): 62-68, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28722512

RESUMO

Organophosphate (OP) poisoning is a major global health issue; while compounds from this group have been used intensively over the last century, an effective antidote is still lacking. Oxime-type acetylcholinesterase (AChE) reactivators are used to reactivate the OP inhibited AChE. Pralidoxime is the only US Food and Drug Administration approved oxime for therapeutic use but its efficacy has been disappointing. Two novel oximes (K378 and K727) were investigated in silico and in vitro and compared with an experimental oxime (kamiloxime; K-27) and pralidoxime. In silico the molecular interactions between AChE and oximes were examined and binding energies were assessed. LogP (predicted log of the octanol/water partition coefficient) was estimated. In vitro the intrinsic ability of the oximes to inhibit AChE (IC50) and their reactivation potency (R50) when used in paraoxon inhibited human RBC-AChE was determined. Molecular docking revealed that K378 and K727 bind to the peripheral site(s) with high binding energies in contrast to the central binding of K-27 and pralidoxime. LogP values indicating that the novel compounds are significantly less hydrophilic than K-27 or pralidoxime. IC50 of K378 and K727 were comparable (0.9 and 1 µM, respectively) but orders of magnitude lower than comparators. R50 values revealed their inability to reactivate paraoxon inhibited AChE. It is concluded that the novel oximes K378 and K727 are unlikely to be clinically useful. The in silico and in vitro studies described allow avoidance of unnecessary in vivo animal work and contribute to the reduction of laboratory animal use.


Assuntos
Antídotos/farmacologia , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/farmacologia , Simulação de Acoplamento Molecular , Intoxicação por Organofosfatos/tratamento farmacológico , Oximas/farmacologia , Paraoxon/análogos & derivados , Compostos de Pralidoxima/farmacologia , Compostos de Piridínio/farmacologia , Acetilcolinesterase/sangue , Acetilcolinesterase/química , Antídotos/química , Antídotos/metabolismo , Sítios de Ligação , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Reativadores da Colinesterase/química , Reativadores da Colinesterase/metabolismo , Relação Dose-Resposta a Droga , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/sangue , Proteínas Ligadas por GPI/química , Humanos , Masculino , Intoxicação por Organofosfatos/sangue , Intoxicação por Organofosfatos/enzimologia , Oximas/química , Oximas/metabolismo , Paraoxon/química , Paraoxon/metabolismo , Paraoxon/toxicidade , Compostos de Pralidoxima/química , Compostos de Pralidoxima/metabolismo , Ligação Proteica , Conformação Proteica , Compostos de Piridínio/química , Compostos de Piridínio/metabolismo , Relação Estrutura-Atividade
9.
J Am Chem Soc ; 139(3): 1155-1167, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28026940

RESUMO

Serum paraoxonase 1 (PON1) is a native lactonase capable of promiscuously hydrolyzing a broad range of substrates, including organophosphates, esters, and carbonates. Structurally, PON1 is a six-bladed ß-propeller with a flexible loop (residues 70-81) covering the active site. This loop contains a functionally critical Tyr at position 71. We have performed detailed experimental and computational analyses of the role of selected Y71 variants in the active site stability and catalytic activity in order to probe the role of Y71 in PON1's lactonase and organophosphatase activities. We demonstrate that the impact of Y71 substitutions on PON1's lactonase activity is minimal, whereas the kcat for the paraoxonase activity is negatively perturbed by up to 100-fold, suggesting greater mutational robustness of the native activity. Additionally, while these substitutions modulate PON1's active site shape, volume, and loop flexibility, their largest effect is in altering the solvent accessibility of the active site by expanding the active site volume, allowing additional water molecules to enter. This effect is markedly more pronounced in the organophosphatase activity than the lactonase activity. Finally, a detailed comparison of PON1 to other organophosphatases demonstrates that either a similar "gating loop" or a highly buried solvent-excluding active site is a common feature of these enzymes. We therefore posit that modulating the active site hydrophobicity is a key element in facilitating the evolution of organophosphatase activity. This provides a concrete feature that can be utilized in the rational design of next-generation organophosphate hydrolases that are capable of selecting a specific reaction from a pool of viable substrates.


Assuntos
Arildialquilfosfatase/metabolismo , Arildialquilfosfatase/química , Arildialquilfosfatase/genética , Sítios de Ligação , Biocatálise , Humanos , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Lactonas/química , Lactonas/metabolismo , Simulação de Dinâmica Molecular , Mutação , Paraoxon/química , Paraoxon/metabolismo , Conformação Proteica
10.
BMC Cardiovasc Disord ; 17(1): 92, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28376720

RESUMO

BACKGROUND: Serum paraoxonase 1 (PON1), an enzyme associated with high - density lipoproteins (HDL) particles, inhibits the oxidation of serum lipoproteins and cell membranes. PON1 activity is lower in patients with atherosclerosis and in inflammatory diseases. The systemic inflammatory response provoked during cardiopulmonary bypass grafting may contribute to the development of postoperative complications. The aim of the present study was to estimate the dynamic changes in paraoxonase 1 (PON1) activity towards paraoxon and phenyl acetate during and after coronary artery surgery. METHODS: Twenty six patients with coronary heart disease undergoing coronary artery bypass grafting (CABG) were enrolled into the study. Venous blood samples were obtained preoperatively, after aortic clumping, after the end of operation, at 6, 18, 30 and 48 h after operation. Paraoxonase activity was measured spectrophotometrically in 50 mM glycine/NaOH buffer (pH 10.5) containing 1.0 mM paraoxon, and 1.0 mM CaCl2. Arylesterase activity was measured in 20 mM TrisCl buffer (pH 8.0) containing 1 mM phenyl acetate and 1 mM CaCl2. RESULTS: PON1 activity toward paraoxon and phenyl acetate significantly decreased after aorta cross clumping and increased directly after operation. PON1 activity towards paraoxon in preoperative period and PON1 activity towards phenyl acetate in seventh stage of experiment tended to inversely correlate with the occurrence of postoperative complications. CONCLUSION: The paraoxonase 1 plasma activity is markedly reduced during CABG surgery.


Assuntos
Acetatos/metabolismo , Arildialquilfosfatase/sangue , Ponte de Artéria Coronária , Doença da Artéria Coronariana/cirurgia , Paraoxon/metabolismo , Fenóis/metabolismo , Adulto , Idoso , Biomarcadores/sangue , Ponte de Artéria Coronária/efeitos adversos , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/enzimologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/enzimologia , Complicações Pós-Operatórias/etiologia , Fatores de Risco , Especificidade por Substrato , Fatores de Tempo , Resultado do Tratamento
11.
Bull Exp Biol Med ; 163(2): 218-221, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28726199

RESUMO

A catalytic antibody A17 and its mutants highly efficiently interact with organophosphorus pesticide paraoxon. In this work, we studied the protective properties of antibody A17-K47 in paraoxon poisoning using a mouse model. The optimal paraoxon dose simulating the acute toxic effect of organophosphorus compounds was 550 µg/kg. The pharmacokinetic parameters of A17-K47 antibody were t1/2distr =7.2±1.4 min, t1/2el =330±20 min. The antibody did not cause toxic effects when administered at a ten-fold calculated therapeutic dose (610 mg/kg). The drug did not reduce mortality from acute paraoxon poisoning; however, the absence of drug toxicity opens up prospects for its use in symptomatic treatment of chronic paraoxon poisoning.


Assuntos
Anticorpos Catalíticos/metabolismo , Antídotos/metabolismo , Compostos Organofosforados/metabolismo , Compostos Organofosforados/toxicidade , Paraoxon/metabolismo , Paraoxon/toxicidade , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C
12.
Environ Toxicol ; 31(2): 154-62, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25082665

RESUMO

Epidemiological evidences indicate close association between inorganic arsenic exposure via drinking water and cardiovascular diseases. While the exact mechanism of this arsenic-mediated increase in cardiovascular risk factors remains enigmatic, epidemiological studies indicate a role for paraoxonase 1 (PON1) in cardiovascular diseases. To investigate the association between inorganic arsenic exposure and cardiovascular diseases, rats were exposed to sodium arsenite (trivalent; 50, 100, and 150 ppm As) and sodium arsenate (pentavalent; 100, 150, and 200 ppm As) in their drinking water for 12 weeks. PON1 activity towards paraoxon (PONase) and phenylacetate (AREase) in plasma, lipoproteins, hepatic, and brain microsomal fractions were determined. Inhibition of PONase and AREase in plasma and HDL characterized the effects of the two arsenicals. While the trivalent arsenite inhibited PONase by 33% (plasma) and 46% (HDL), respectively, the pentavalent arsenate inhibited the enzyme by 41 and 34%, respectively. AREase activity was inhibited by 52 and 48% by arsenite, whereas the inhibition amounted to 72 and 67%, respectively by arsenate. The pattern of inhibition in plasma and HDL indicates that arsenite induced a dose-dependent inhibition of PONase whereas arsenate induced a dose-dependent inhibition of AREase. In the VLDL + LDL, arsenate inhibited PONase and AREase while arsenite inhibited PONase. In the hepatic and brain microsomal fractions, only the PONase enzyme was inhibited by the two arsenicals. The inhibition was more pronounced in the hepatic microsomes where a 70% inhibition was observed at the highest dose of pentavalent arsenic. Microsomal cholesterol was increased by the two arsenicals resulting in increased cholesterol/phospholipid ratios. Our findings indicate that decreased PON1 activity observed in arsenic exposure may be an incipient biochemical event in the cardiovascular effects of arsenic. Modulation of PON1 activity by arsenic may also be mediated through changes in membrane fluidity brought about by changes in the concentration of cholesterol in the microsomes.


Assuntos
Arsenicais , Arildialquilfosfatase/antagonistas & inibidores , Poluentes Químicos da Água/toxicidade , Animais , Arildialquilfosfatase/metabolismo , Química Encefálica/efeitos dos fármacos , HDL-Colesterol/sangue , LDL-Colesterol/sangue , VLDL-Colesterol/sangue , Relação Dose-Resposta a Droga , Água Potável/análise , Inseticidas/metabolismo , Masculino , Microssomos/efeitos dos fármacos , Microssomos/enzimologia , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Paraoxon/metabolismo , Fenilacetatos/metabolismo , Ratos , Ratos Wistar
13.
Toxicol Appl Pharmacol ; 288(1): 114-20, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26212258

RESUMO

Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling, a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation.


Assuntos
Inibidores da Colinesterase/toxicidade , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Inseticidas/toxicidade , Fígado/efeitos dos fármacos , Intoxicação por Organofosfatos/prevenção & controle , Paration/toxicidade , Vitamina K 3/farmacologia , Acetilcolinesterase/metabolismo , Ativação Metabólica , Animais , Inibidores da Colinesterase/metabolismo , Inibidores das Enzimas do Citocromo P-450/metabolismo , Citoproteção , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Proteínas Ligadas por GPI/metabolismo , Humanos , Inseticidas/metabolismo , Fígado/enzimologia , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , NADP/metabolismo , Intoxicação por Organofosfatos/enzimologia , Intoxicação por Organofosfatos/etiologia , Oxirredução , Paraoxon/metabolismo , Paraoxon/toxicidade , Paration/metabolismo , Ratos Long-Evans , Proteínas Recombinantes/metabolismo , Fatores de Tempo , Vitamina K 3/metabolismo
14.
J Appl Microbiol ; 118(4): 976-88, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25565038

RESUMO

AIMS: Organophosphorus pesticides are widely used in agriculture. Accordingly, decontamination of these pesticides and their residual in environment is an important aim of researchers. One of the best approaches is enzymatic detoxification of these compounds with organophosphorus hydrolase (OPH). The immobilization of OPH on environmentally friendly supports is of great importance for developing stabilized enzymes for degradation of organophosphorus compounds. METHODS AND RESULTS: In this study, Bacillus subtilis spores were applied as a new matrix for immobilizing OPH for the first time; this enzyme was covalently bound to the spores by using EDC-NHS as coupling reagents and the immobilization was confirmed by enzymatic activity, Western blot, flow cytometry and fluorescence microscopic analysis. The immobilization yield was about 55% and the immobilized OPH hydrolysed paraoxon, an organophosphate substrate, without significant loss of activity was six times. The spores with immobilized OPH on their surface were successfully characterized using FT-IR analysis and SEM imaging. Thermal and pH stability was improved by immobilization of OPH on the spore surface. CONCLUSIONS: Owing to safety, environmentally friendly and low cost of spores, these spores can be employed in biosensors for monitoring and biodegradation of organophosphate contaminants in the environment and detoxification processes in bioreactors with high reusability without decrease in the activity. SIGNIFICANCE AND IMPACT OF THE STUDY: We believe that the spore, an environmentally friendly matrix, can be used for covalent immobilization of OPH efficiently and can be applied for detoxification of organophosphorus compounds under adverse environmental conditions.


Assuntos
Arildialquilfosfatase/metabolismo , Bacillus subtilis , Compostos Organofosforados/metabolismo , Praguicidas/metabolismo , Arildialquilfosfatase/química , Arildialquilfosfatase/genética , Bacillus subtilis/química , Bacillus subtilis/metabolismo , Bacillus subtilis/ultraestrutura , Enzimas Imobilizadas/química , Enzimas Imobilizadas/genética , Enzimas Imobilizadas/metabolismo , Paraoxon/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Esporos Bacterianos/química , Esporos Bacterianos/metabolismo , Esporos Bacterianos/ultraestrutura
15.
Sensors (Basel) ; 15(6): 12513-25, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26024418

RESUMO

In whole-cell based biosensors, spectrophotometry is one of the most commonly used methods for detecting organophosphates due to its simplicity and reliability. The sensor performance is directly affected by the cell immobilization method because it determines the amount of cells, the mass transfer rate, and the stability. In this study, we demonstrated that our previously-reported microbe immobilization method, a microbe-attached single-walled carbon nanotube film, can be applied to whole-cell-based organophosphate sensors. This method has many advantages over other whole-cell organophosphate sensors, including high specific activity, quick cell immobilization, and excellent stability. A device with circular electrodes was fabricated for an enlarged cell-immobilization area. Escherichia coli expressing organophosphorus hydrolase in the periplasmic space and single-walled carbon nanotubes were attached to the device by our method. Paraoxon was hydrolyzed using this device, and detected by measuring the concentration of the enzymatic reaction product, p-nitrophenol. The specific activity of our device was calculated, and was shown to be over 2.5 times that reported previously for other whole-cell organophosphate sensors. Thus, this method for generation of whole-cell-based OP biosensors might be optimal, as it overcomes many of the caveats that prevent the widespread use of other such devices.


Assuntos
Arildialquilfosfatase/metabolismo , Técnicas Biossensoriais/instrumentação , Células Imobilizadas/enzimologia , Escherichia coli/enzimologia , Nanotubos de Carbono/química , Paraoxon/análise , Arildialquilfosfatase/química , Técnicas Biossensoriais/métodos , Células Imobilizadas/química , Escherichia coli/química , Paraoxon/metabolismo
16.
J Biol Inorg Chem ; 19(3): 389-98, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24414447

RESUMO

Binuclear metallohydrolases are a large and diverse family of enzymes that are involved in numerous metabolic functions. An increasing number of members find applications as drug targets or in processes such as bioremediation. It is thus essential to have an assay available that allows the rapid and reliable determination of relevant catalytic parameters (k cat, K m, and k cat/K m). Continuous spectroscopic assays are frequently only possible by using synthetic (i.e., nonbiological) substrates that possess a suitable chromophoric marker (e.g., nitrophenol). Isothermal titration calorimetry, in contrast, affords a rapid assay independent of the chromophoric properties of the substrate-the heat associated with the hydrolytic reaction can be directly related to catalytic properties. Here, we demonstrate the efficiency of the method on several selected examples of this family of enzymes and show that, in general, the catalytic parameters obtained by isothermal titration calorimetry are in good agreement with those obtained from spectroscopic assays.


Assuntos
Calorimetria/métodos , Hidrolases/metabolismo , Metaloproteases/metabolismo , Catálise , Condutometria/métodos , Hidrolases/química , Metaloproteases/química , Paraoxon/análise , Paraoxon/química , Paraoxon/metabolismo
17.
Appl Microbiol Biotechnol ; 98(6): 2647-56, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24057406

RESUMO

Decontamination of soils with complex pollution using natural strains of microorganisms is a matter of great importance. Here we report that oil-oxidizing bacteria Rhodococcus erythropolis AC-1514D and Rhodococcus ruber AC-1513D can degrade various organophosphorous pesticides (OP). Cell-mediated degradation of five different OP is apparently associated with the presence of N-acylhomoserine lactonase, which is pronouncedly similar (46-50 %) to the well-known enzyme organophosphate hydrolase (OPH), a hydrolysis catalyst for a wide variety of organophosphorous compounds. Additionally, we demonstrated the high lactonase activity of hexahistidine-tagged organophosphate hydrolase (His6-OPH) with respect to various N-acylhomoserine lactones, and we determined the catalytic constants of His6-OPH towards these compounds. These experimental data and theoretical analysis confirmed the hypothesis about the evolutionary proximity of OPH and lactonases. Using Rhodococcus cells, we carried out effective simultaneous biodegradation of pesticide paraoxon (88 mg/kg) and oil hydrocarbon hexadecane (6.3 g/kg) in the soil. Furthermore, the discovered high lactonase activity of His6-OPH offers new possibilities for developing an efficient strategy of combating resistant populations of Gram-negative bacterial cells.


Assuntos
Acil-Butirolactonas/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Praguicidas/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Rhodococcus/enzimologia , Alcanos/metabolismo , Biotransformação , Cinética , Paraoxon/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhodococcus/genética
18.
Biochem J ; 450(1): 231-42, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23216060

RESUMO

In the present paper we show a comprehensive in vitro, ex vivo and in vivo study on hydrolytic detoxification of nerve agent and pesticide OPs (organophosphates) catalysed by purified hBChE (human butyrylcholinesterase) in combination with novel non-pyridinium oxime reactivators. We identified TAB2OH (2-trimethylammonio-6-hydroxybenzaldehyde oxime) as an efficient reactivator of OP-hBChE conjugates formed by the nerve agents VX and cyclosarin, and the pesticide paraoxon. It was also functional in reactivation of sarin- and tabun-inhibited hBChE. A 3-5-fold enhancement of in vitro reactivation of VX-, cyclosarin- and paraoxon-inhibited hBChE was observed when compared with the commonly used N-methylpyridinium aldoxime reactivator, 2PAM (2-pyridinealdoxime methiodide). Kinetic analysis showed that the enhancement resulted from improved molecular recognition of corresponding OP-hBChE conjugates by TAB2OH. The unique features of TAB2OH stem from an exocyclic quaternary nitrogen and a hydroxy group, both ortho to an oxime group on a benzene ring. pH-dependences reveal participation of the hydroxy group (pKa=7.6) forming an additional ionizing nucleophile to potentiate the oxime (pKa=10) at physiological pH. The TAB2OH protective indices in therapy of sarin- and paraoxon-exposed mice were enhanced by 30-60% when they were treated with a combination of TAB2OH and sub-stoichiometric hBChE. The results of the present study establish that oxime-assisted catalysis is feasible for OP bioscavenging.


Assuntos
Butirilcolinesterase/metabolismo , Substâncias para a Guerra Química/metabolismo , Organofosfatos/metabolismo , Oximas/química , Paraoxon/metabolismo , Sarina/metabolismo , Animais , Catálise , Substâncias para a Guerra Química/toxicidade , Feminino , Humanos , Concentração de Íons de Hidrogênio , Inativação Metabólica , Cinética , Camundongos , Camundongos Endogâmicos , Organofosfatos/toxicidade , Oximas/metabolismo , Paraoxon/toxicidade , Sarina/toxicidade
19.
COPD ; 11(5): 539-45, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24831724

RESUMO

INTRODUCTION: Paraoxonase 1 (PON1) is an antioxidative enzyme manly associated with high density lipoproteins (HDL) in the peripheral blood. The aim of this study was to determine the PON1 paraoxonase and arylesterase activities in patients with chronic obstructive pulmonary disease (COPD). We also aimed to determine the concentration of reduced thiol groups as a marker of protein oxidation. MATERIALS AND METHODS: The study included 105 patients with stable COPD and 44 healthy controls. PON1 activities and thiols concentration were assayed in sera by spectrophotometry. RESULTS: PON1 basal (POX) and salt-stimulated paraoxonase activity (POX1) as well as arylesterase activity (ARE) were significantly reduced in COPD patients. In addition, concentration of reduced thiol groups was significantly decreased in COPD group. PON1 activities were similar in patients with different disease severity (GOLD stages). However, a significant reduction in POX, POX1 and ARE was observed already in GOLD II stage when compared to controls. POX and POX1 showed modest while ARE yielded very good power for discrimination between healthy subjects and COPD patients. Univariate and multivariate logistic regression analysis indicated that ARE is a good COPD predictor. CONCLUSION: Reduction of PON1 activity observed in COPD patients could be partly caused by oxidative environment. Lower concentrations of reduced thiol groups in COPD patients suggest that a decrease in PON1 activity could reflect oxidative changes of enzyme free cysteine residues. Furthermore, decreased PON1 arylesterase activity might indicate a down-regulation of PON1 concentration. Our results suggest that ARE could be considered as potential biomarker for COPD diagnosis.


Assuntos
Arildialquilfosfatase/metabolismo , Doença Pulmonar Obstrutiva Crônica/enzimologia , Fumar/metabolismo , Compostos de Sulfidrila/metabolismo , Idoso , Estudos de Casos e Controles , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Feminino , Volume Expiratório Forçado , Humanos , Masculino , Pessoa de Meia-Idade , Oxirredução , Estresse Oxidativo , Paraoxon/metabolismo , Fenilacetatos/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Índice de Gravidade de Doença , Espectrofotometria , Capacidade Vital
20.
Bioorg Med Chem ; 21(18): 5923-30, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23916150

RESUMO

Neurotoxic organophosphorus compounds (OPs), which are used as pesticides and chemical warfare agents lead to more than 700,000 intoxications worldwide every year. The main target of OPs is the inhibition of acetylcholinesterase (AChE), an enzyme necessary for the control of the neurotransmitter acetylcholine (ACh). The control of ACh function is performed by its hydrolysis with AChE, a process that can be completely interrupted by inhibition of the enzyme by phosphylation with OPs. Compounds used for reactivation of the phosphylated AChE are cationic oximes, which usually possess low membrane and hematoencephalic barrier permeation. Neutral oximes possess a better capacity for hematoencephalic barrier permeation. NMR spectroscopy is a very confident method for monitoring the inhibition and reactivation of enzymes, different from the Ellman test, which is the common method for evaluation of inhibition and reactivation of AChE. In this work (1)H NMR was used to test the effect of neutral oximes on inhibition of AChE and reactivation of AChE inhibited with ethyl-paraoxon. The results confirmed that NMR is a very efficient method for monitoring the action of AChE, showing that neutral oximes, which display a significant AChE inhibition activity, are potential drugs for Alzheimer disease. The NMR method showed that a neutral oxime, previously indicated by the Ellman test as better in vitro reactivator of AChE inhibited with paraoxon than pralidoxime (2-PAM), was much less efficient than 2-PAM, confirming that NMR is a better method than the Ellman test.


Assuntos
Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/metabolismo , Reativadores da Colinesterase/metabolismo , Electrophorus/metabolismo , Oximas/metabolismo , Acetilcolinesterase/química , Animais , Inibidores da Colinesterase/química , Reativadores da Colinesterase/química , Espectroscopia de Ressonância Magnética , Oximas/química , Paraoxon/análogos & derivados , Paraoxon/metabolismo , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA