RESUMO
OBJECTIVES: To investigate the population structure and antimicrobial resistance (AMR) of avian Pasteurella multocida in China. METHODS: Utilizing WGS analysis, we explored the phylogeny using a dataset of 546 genomes, comprising avian P. multocida isolates from China (n = 121), the USA (n = 165), Australia(n = 153), Bangladesh (n = 3) and isolates of other hosts from China (n = 104). We examined the integrative and conjugative element (ICE) structures and the distribution of their components carrying resistance genes, and reconstructed the evolutionary history of A:L1:ST129 (n = 110). RESULTS: The population structure of avian P. multocida in China was dominated by the A:L1:ST129 clone with limited genetic diversity. A:L1:ST129 isolates possessed a broader spectrum of resistance genes at comparatively higher frequencies than those from other hosts and countries. The novel putative ICEs harboured complex resistant clusters that were prevalent in A:L1:ST129. Bayesian analysis predicted that the A:L1:ST129 clone emerged around 1923, and evolved slowly. CONCLUSIONS: A:L1:ST129 appears to possess a host predilection towards avian species in China, posing a potential health threat to other animals. The complex AMR determinants coupled with high frequencies may strengthen the population dominance of A:L1:ST129. The extensive antimicrobial utilization in poultry farming and the mixed rearing practices could have accelerated AMR accumulation in A:L1:ST129. ICEs, together with their resistant clusters, significantly contribute to resistance gene transfer and facilitate the adaptation of A:L1:ST129 to ecological niches. Despite the genetic stability and slow evolution rate, A:L1:ST129 deserves continued monitoring due to its propensity to retain resistance genes, warranting global attention to preclude substantial economic losses.
Assuntos
Infecções por Pasteurella , Pasteurella multocida , Animais , Pasteurella multocida/genética , Infecções por Pasteurella/veterinária , Antibacterianos/farmacologia , Teorema de Bayes , Farmacorresistência Bacteriana , GenômicaRESUMO
BACKGROUND: The emergence of macrolide and tetracycline resistance within Pasteurella multocida isolated from feedlot cattle and the dominance of ST394 in Australia was reported recently. OBJECTIVES: To establish the genetic context of the resistance genes in P. multocida 17BRD-035, the ST394 reference genome, and conduct a molecular risk assessment of their ability to disperse laterally. METHODS: A bioinformatic analysis of the P. multocida 17BRD-035 genome was conducted to determine if integrative conjugative elements (ICEs) carrying resistance genes, which hamper antibiotic treatment options locally, are in circulation in Australian feedlots. RESULTS: A novel element, ICE-PmuST394, was characterized in P. multocida 17BRD-035. It was also identified in three other isolates (two ST394s and a ST125) in Australia and is likely present in a genome representing P. multocida ST79 from the USA. ICE-PmuST394 houses a resistance module carrying two variants of the blaROB gene, blaROB-1 and blaROB-13, and the macrolide esterase gene, estT. The resistance gene combination on ICE-PmuST394 confers resistance to ampicillin and tilmicosin, but not to tulathromycin and tildipirosin. Our analysis suggests that ICE-PmuST394 is circulating both by clonal expansion and horizontal transfer but is currently restricted to a single feedlot in Australia. CONCLUSIONS: ICE-PmuST394 carries a limited number of unusual antimicrobial resistance genes but has hotspots that facilitate genomic recombination. The element is therefore amenable to hosting more resistance genes, and therefore its presence (or dispersal) should be regularly monitored. The element has a unique molecular marker, which could be exploited for genomic surveillance purposes locally and globally.
Assuntos
Pasteurella multocida , Animais , Bovinos , Pasteurella multocida/genética , Austrália , Antibacterianos/farmacologia , Macrolídeos/farmacologiaRESUMO
PMT is a protein toxin produced by Pasteurella multocida serotypes A and D. As causative agent of atrophic rhinitis in swine, it leads to rapid degradation of the nasal turbinate bone. The toxin acts as a deamidase to modify a crucial glutamine in heterotrimeric G proteins, which results in constitutive activation of the G proteins and permanent stimulation of numerous downstream signaling pathways. Using a lentiviral based genome wide CRISPR knockout screen in combination with a lethal toxin chimera, consisting of full length inactive PMT and the catalytic domain of diphtheria toxin, we identified the LRP1 gene encoding the Low-Density Lipoprotein Receptor-related protein 1 as a critical host factor for PMT function. Loss of LRP1 reduced PMT binding and abolished the cellular response and deamidation of heterotrimeric G proteins, confirming LRP1 to be crucial for PMT uptake. Expression of LRP1 or cluster 4 of LRP1 restored intoxication of the knockout cells. In summary our data demonstrate LRP1 as crucial host entry factor for PMT intoxication by acting as its primary cell surface receptor.
Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Pasteurella multocida , Animais , Suínos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteínas de Transporte/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Pasteurella multocida/genética , Pasteurella multocida/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismoRESUMO
Pasteurella multocida is a zoonotic pathogen causing serious diseases in humans and animals. Here, we report P. multocida from wildlife on China's Qinghai-Tibet plateau with a novel capsular serotype, forming a single branch on the core-genome phylogenetic tree: four strains isolated from dead Himalayan marmot (Marmota himalayana) and one genome assembled from metagenomic sequencing of a dead Woolly hare (Lepus oiostolus). Four of the strains were identified as subspecies multocida and one was septica. The mouse model showed that the challenge strain killed mice within 24 h at an infectious dose of less than 300 bacteria. The short disease course is comparable to septicemic plague: the host has died before more severe pathological changes could take place. Though pathological changes were relatively mild, cytokine storm was obvious with a significant rise of IL-12p70, IL-6, TNF-αand IL-10 (P < 0.05). Our findings suggested P. multocida is a lethal pathogen for wildlife on Qinghai-Tibet plateau, in addition to Yersinia pestis. Individuals residing within the M. himalayana plague focus are at risk for P. multocida infection, and public health warnings are necessitated.
Assuntos
Pasteurella multocida , Peste , Animais , Humanos , Camundongos , Tibet , Marmota/microbiologia , Pasteurella multocida/genética , Filogenia , Sorogrupo , China , Peste/microbiologia , Animais SelvagensRESUMO
Pasteurella multocida is a zoonotic conditional pathogen that infects multiple livestock species, causing substantial economic losses in the animal husbandry industry. An efficient markerless method for gene manipulation may facilitate the investigations of P. multocida gene function and pathogenesis of P. multocida. Herein, a temperature-sensitive shuttle vector was constructed using lacZ as a selection marker, and markerless glgB, opa, and hyaE mutants of P. multocida were subsequently constructed through blue-white colony screening. The screening efficiency of markerless deletion strains was improved by the lacZ system, and the method could be used for multiple gene deletions. However, the fur mutant was unavailable via this method. Therefore, we constructed a pheSm screening system based on mutated phenylalanine tRNA synthetase as a counterselection marker to achieve fur deletion mutant. The transformed strain was sensitive to 20 mM p-chloro-phenylalanine, demonstrating the feasibility of pheSm as a counter-selective marker. The pheSm system was used for markerless deletions of glgB, opa, and hyaE as well as fur that could not be screened by the lacZ system. A comparison of screening efficiencies of the system showed that the pheSm counterselection system was more efficient than the lacZ system and broadly applicable for mutant screening. The methods developed herein may provide valuable tools for genetic manipulation of P. multocida.IMPORTANCEPasteurella multocida is a highly contagious zoonotic pathogen. An understanding of its underlying pathogenic mechanisms is of considerable importance and requires efficient species-specific genetic tools. Herein, we propose a screening system for P. multocida mutants using lacZ or pheSm screening markers. We evaluated the efficiencies of both systems, which were used to achieve markerless deletion of multiple genes. The results of this study support the use of lacZ or pheSm as counterselection markers to improve counterselection efficiency in P. multocida. This study provides an effective genetic tool for investigations of the virulence gene functions and pathogenic mechanisms of P. multocida.
Assuntos
Pasteurella multocida , Animais , Pasteurella multocida/genética , Óperon Lac , Vetores Genéticos , FenilalaninaRESUMO
Fowl cholera is an infectious disease that affects both poultry and wild birds, characterized by hemorrhagic and septicemic symptoms, caused by Pasteurella multocida (P. multocida), and leading to substantial economic losses in the poultry sector. The development of genetic engineering vaccines against avian P. multocida encountered early-stage challenges due to the limited availability of effective gene editing tools. Presently, NgAgoDM-enhanced homologous recombination stands as a potent technique for achieving efficient gene knockout in avian P. multocida. Hence, this study employed NgAgoDM-enhanced homologous recombination to target and knockout hyaE (239-359aa), hyaD, hexABC, and hexD, denoted as ΔhyaE (239-359aa), ΔhyaD, ΔhexABC, and ΔhexD, respectively. Additionally, we generated a hyaD recovery strain with two point mutations, designated as mhyaD. Thus, this study systematically examined the impact of capsular synthetic gene clusters on the pathogenicity of P. multocida. Moreover, the study demonstrated the critical role of hyaD activity in the virulence of avian P. multocida. This study offers novel insights for enhancing attenuated vaccines further.
Assuntos
Infecções por Pasteurella , Pasteurella multocida , Doenças das Aves Domésticas , Pasteurella multocida/genética , Pasteurella multocida/patogenicidade , Animais , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/microbiologia , Virulência/genética , Doenças das Aves Domésticas/microbiologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/genética , Recombinação Homóloga , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/genética , Técnicas de Inativação de Genes , Galinhas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Aves/microbiologia , Família Multigênica , Fatores de Virulência/genética , Aves Domésticas/microbiologiaRESUMO
Pasteurella multocida causes acute/chronic pasteurellosis in porcine, resulting in considerable economic losses globally. The draft genomes of two Indian strains NIVEDIPm17 (serogroup D) and NIVEDIPm36 (serogroup A) were sequenced. A total of 2182-2284 coding sequences (CDSs) were predicted along with 5-6 rRNA and 45-46 tRNA genes in the genomes. Multilocus sequence analysis and LPS genotyping showed the presence of ST50: genotype 07 and ST74: genotype 06 in NIVEDIPm17 and NIVEDIPm36, respectively. Pangenome analysis of 61 strains showed the presence of 1653 core genes, 167 soft core genes, 750 shell genes, and 1820 cloud genes. Analysis of virulence-associated genes in 61 genomes indicated the presence of nanB, exbB, exbD, ptfA, ompA, ompH, fur, plpB, fimA, sodA, sodC, tonB, and omp87 in all strains. The 61 genomes contained genes encoding tetracycline (54%), streptomycin (48%), sulphonamide (28%), tigecycline (25%), chloramphenicol (21%), amikacin (7%), cephalosporin (5%), and trimethoprim (5%) resistance. Multilocus sequence type revealed that ST50 was the most common (34%), followed by ST74 (26%), ST13 (24%), ST287 (5%), ST09 (5%), ST122 (3%), and ST07 (2%). Single-nucleotide polymorphism and core genome-based phylogenetic analysis clustered the strains into three major clusters. In conclusion, we described the various virulence factors, mobile genetic elements, and antimicrobial resistance genes in the pangenome of P. multocida of porcine origin, besides the rare presence of LPS genotype 7 in serogroup D.
Assuntos
Infecções por Pasteurella , Pasteurella multocida , Animais , Suínos , Pasteurella multocida/genética , Filogenia , Lipopolissacarídeos , Infecções por Pasteurella/veterinária , Fatores de Virulência/genéticaRESUMO
AIMS: This study aimed to assess the pharmacokinetic/pharmacodynamic (PK/PD) targets of danofloxacin to minimize the risk of selecting resistant Pasteurella multocida mutants and to identify the mechanisms underlying their resistance in an in vitro dynamic model, attaining the optimum dosing regimen of danofloxacin to improve its clinical efficacy based on the mutant selection window (MSW) hypothesis. METHODS AND RESULTS: Danofloxacin at seven dosing regimens and 5 days of treatment were simulated to quantify the bactericidal kinetics and enrichment of resistant mutants upon continuous antibiotic exposure. The magnitudes of PK/PD targets associated with different efficacies were determined in the model. The 24 h area under the concentration-time curve (AUC) to minimum inhibitory concentration (MIC) ratios (AUC24h/MIC) of danofloxacin associated with bacteriostatic, bactericidal and eradication effects against P. multocida were 34, 52, and 64 h. This translates to average danofloxacin concentrations (Cav) over 24 h being 1.42, 2.17, and 2.67 times the MIC, respectively. An AUC/MIC-dependent antibacterial efficacy and AUC/mutant prevention concentration (MPC)-dependent enrichment of P. multocida mutants in which maximum losses in danofloxacin susceptibility occurred at a simulated AUC24h/MIC ratio of 72 h (i.e. Cav of three times the MIC). The overexpression of efflux pumps (acrAB-tolC) and their regulatory genes (marA, soxS, and ramA) was associated with reduced susceptibility in danofloxacin-exposed P. multocida. The AUC24h/MPC ratio of 19 h (i.e. Cav of 0.8 times the MPC) was determined to be the minimum mutant prevention target value for the selection of resistant P. multocida mutants. CONCLUSIONS: The emergence of P. multocida resistance to danofloxacin exhibited a concentration-dependent pattern and was consistent with the MSW hypothesis. The current clinical dosing regimen of danofloxacin (2.5 mg kg-1) may have a risk of treatment failure due to inducible fluoroquinolone resistance.
Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Fluoroquinolonas , Testes de Sensibilidade Microbiana , Pasteurella multocida , Pasteurella multocida/efeitos dos fármacos , Pasteurella multocida/genética , Fluoroquinolonas/farmacologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , MutaçãoRESUMO
Pasteurella multocida type A (PmA) mainly causes respiratory diseases such as pneumonia in bovines, leading to great economic losses to the breeding industry. At present, there is still no effective commercial vaccine against PmA infection. In this study, a mutant strain (PmCQ2Δ4555-4580) with brand-new phenotypes was obtained after serially passaging at 42 °C. Whole genome resequencing and PCR analysis showed that PmCQ2Δ4555-4580 missed six genes, including PmCQ2_004555, PmCQ2_004560, PmCQ2_004565, PmCQ2_004570, PmCQ2_004575, and PmCQ2_004580. Importantly, the virulence of PmCQ2Δ4555-4580 was reduced by approximately 2.8 × 109 times in mice. Notably, live PmCQ2Δ4555-4580 could provide 100%, 100% and 40% protection against PmA, PmB and PmF, respectively; and inactivated PmCQ2Δ4555-4580 could provide 100% and 87.5% protection against PmA and PmB. Interestingly, immune protection-related proteins were significantly upregulated in PmCQ2Δ4555-4580 based on RNA-seq and bioinformatics analysis. Meaningfully, by in vitro expression, purification and in vivo immunization, 12 proteins had different degrees of immune protective effects. Among them, PmCQ2_008205, PmCQ2_010435, PmCQ2_008190, and PmCQ2_004170 had the best protective effect, the protection rates against PmA were 50%, 40%, 30%, and 30%, respectively, and the protective rates against PmB were 62.5%, 42.9%, 37.5%, and 28.6%, respectively. Collectively, PmCQ2Δ4555-4580 is a potential vaccine candidate for the prevention of Pasteurellosis involving in high expression of immune protective related proteins.
Assuntos
Doenças dos Bovinos , Infecções por Pasteurella , Pasteurella multocida , Doenças dos Roedores , Animais , Camundongos , Bovinos , Pasteurella multocida/genética , Vacinas Atenuadas , Infecções por Pasteurella/prevenção & controle , Infecções por Pasteurella/veterinária , Imunização/veterinária , Vacinação/veterinária , Vacinas BacterianasRESUMO
Pasteurella multocida, a zoonotic pathogen that produces a 146-kDa modular toxin (PMT), causes progressive atrophic rhinitis with severe turbinate bone degradation in pigs. However, its mechanism of cytotoxicity remains unclear. In this study, we expressed PMT, purified it in a prokaryotic expression system, and found that it killed PK15 cells. The host factor CXCL8 was significantly upregulated among the differentially expressed genes in a transcriptome sequencing analysis and qPCR verification. We constructed a CXCL8-knockout cell line with a CRISPR/Cas9 system and found that CXCL8 knockout significantly increased resistance to PMT-induced cell apoptosis. CXCL8 knockout impaired the cleavage efficiency of apoptosis-related proteins, including Caspase3, Caspase8, and PARP1, as demonstrated with Western blot. In conclusion, these findings establish that CXCL8 facilitates PMT-induced PK15 cell death, which involves apoptotic pathways; this observation documents that CXCL8 plays a key role in PMT-induced PK15 cell death.
Assuntos
Toxinas Bacterianas , Interleucina-8 , Infecções por Pasteurella , Pasteurella multocida , Animais , Apoptose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidade , Toxinas Bacterianas/metabolismo , Caspase 8/metabolismo , Caspase 8/genética , Linhagem Celular , Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Interleucina-8/metabolismo , Interleucina-8/genética , Pasteurella multocida/genética , Suínos , Infecções por Pasteurella/metabolismo , Infecções por Pasteurella/veterináriaRESUMO
Pasteurella multocida is the causative agent of a wide range of diseases (pasteurellosis) and a zoonotic pathogen in humans. Recombinant subunit vaccines are hot spots in recent pasteurellosis vaccine development. A chimeric vaccine is also constructed for rabbit hemorrhagic disease virus (RHDV) protective antigen VP60 chimeric with fragments of Pasteurella multocida protective antigen PlpE. The protective efficacy of the chimeric vaccine against P. multocida is not as high as that of PlpE, and the reason is not well known. In this study, we analyzed the linear B-cell epitopes of PlpE and then assessed the protective efficacy of these epitopes and their combinations. It was found that the immunodominant region of PlpE was mainly located in the region between the 21st to the 185th amino acids from the N terminus. Overlapping peptide scanning results demonstrated that this region contained six nonoverlapping epitopes, and epitope E was the predominant epitope. Chimeric protein antigens were constructed of single nonoverlapping PlpE epitopes or their combinations chimeric with the RHDV VP60 P domain. Immunization with recombinant antigen chimeric with a single PlpE epitope exhibited poor immunoprotection, whereas immunization with recombinant antigen chimeric with PlpE epitope combinations (epitopes A and E; epitopes C and E; epitopes A, C, and E; and epitopes B, D, and F) exhibited significant immunoprotection. In a word, P. multocida protective antigen PlpE contained six nonoverlapping linear B-cell epitopes, and combinations but not a single epitope induced host protective immunity. Our work will give help for future chimeric vaccine design.
Assuntos
Infecções por Pasteurella , Pasteurella multocida , Humanos , Pasteurella multocida/genética , Epitopos de Linfócito B/genética , Infecções por Pasteurella/prevenção & controle , Proteínas Recombinantes , Vacinas SintéticasRESUMO
Pasteurella multocida primarily causes hemorrhagic septicemia and pneumonia in poultry and livestock. Identification of the relevant virulence factors is therefore essential for understanding its pathogenicity. Pmorf0222, encoding the PM0222 protein, is located on a specific prophage island of the pathogenic strain C48-1 of P. multocida. Its role in the pathogenesis of P. multocida infection is still unknown. The proinflammatory cytokine plays an important role in P. multocida infection; therefore, murine peritoneal exudate macrophages were treated with the purified recombinant PM0222, which induced the secretion of tumor necrosis factor alpha (TNF-α) and interleukin-1ß (IL-1ß) via the Toll-like receptor 1/2 (TLR1/2)-nuclear factor kappa B (NF-κB)/mitogen-activated protein kinase (MAPK) signaling and inflammasome activation. Additionally, the mutant strain and complemented strain were evaluated in the mouse model with P. multocida infection, and PM0222 was identified as a virulence factor, which was secreted by outer membrane vesicles of P. multocida. Further results revealed that Pmorf0222 affected the synthesis of the capsule, adhesion, serum sensitivity, and biofilm formation. Thus, we identified Pmorf0222 as a novel virulence factor in the C48-1 strain of P. multocida, explaining the high pathogenicity of this pathogenic strain.
Assuntos
Infecções por Pasteurella , Pasteurella multocida , Camundongos , Animais , Pasteurella multocida/genética , NF-kappa B/metabolismo , Receptor 1 Toll-Like , Fatores de Virulência/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismoRESUMO
BACKGROUND: Haemorrhagic septicaemia (HS) is a highly fatal and predominant disease in livestock, particularly cattle and buffalo in the tropical regions of the world. Pasteurella multocida (P. multocida), serotypes B:2 and E:2, are reported to be the main causes of HS wherein serotype B:2 is more common in Asian countries including Pakistan and costs heavy financial losses every year. As yet, very little molecular and genomic information related to the HS-associated serotypes of P. multocida isolated from Pakistan is available. Therefore, this study aimed to explore the characteristics of novel bovine isolates of P. multocida serotype B:2 at the genomic level and perform comparative genomic analysis of various P. multocida strains from Pakistan to better understand the genetic basis of pathogenesis and virulence. RESULTS: To understand the genomic variability and pathogenomics, we characterized three HS-associated P. multocida serotype B:2 strains isolated from the Faisalabad (PM1), Peshawar (PM2) and Okara (PM3) districts of Punjab, Pakistan. Together with the other nine publicly available Pakistani-origin P. multocida strains and a reference strain Pm70, a comparative genomic analysis was performed. The sequenced strains were characterized as serotype B and belong to ST-122. The strains contain no plasmids; however, each strain contains at least two complete prophages. The pan-genome analysis revealed a higher number of core genes indicating a close resemblance to the studied genomes and very few genes (1%) of the core genome serve as a part of virulence, disease, and defense mechanisms. We further identified that studied P. multocida B:2 strains harbor common antibiotic resistance genes, specifically PBP3 and EF-Tu. Remarkably, the distribution of virulence factors revealed that OmpH and plpE were not present in any P. multocida B:2 strains while the presence of these antigens was reported uniformly in all serotypes of P. multocida. CONCLUSION: This study's findings indicate the absence of OmpH and PlpE in the analyzed P. multocida B:2 strains, which are known surface antigens and provide protective immunity against P. multocida infection. The availability of additional genomic data on P. multocida B:2 strains from Pakistan will facilitate the development of localized therapeutic agents and rapid diagnostic tools specifically targeting HS-associated P. multocida B:2 strains.
Assuntos
Septicemia Hemorrágica , Pasteurella multocida , Animais , Bovinos , Paquistão , Pasteurella multocida/genética , Sorogrupo , Septicemia Hemorrágica/veterinária , Genômica , BúfalosRESUMO
The efficiency of de novo synthesis of hyaluronic acid (HA) using Pasteurella multocida hyaluronate synthase (PmHAS) is limited by its low catalytic activity during the initial reaction steps when monosaccharides are the acceptor substrates. In this study, we identified and characterized a ß-1,4-N-acetylglucosaminyl-transferase (EcGnT) derived from the O-antigen gene synthesis cluster of Escherichia coli O8:K48:H9. Recombinant ß1,4 EcGnT effectively catalyzed the production of HA disaccharides when the glucuronic acid monosaccharide derivative 4-nitrophenyl-ß-D-glucuronide (GlcA-pNP) was used as the acceptor. Compared with PmHAS, ß1,4 EcGnT exhibited superior N-acetylglucosamine transfer activity (~ 12-fold) with GlcA-pNP as the acceptor, making it a better option for the initial step of de novo HA oligosaccharide synthesis. We then developed a biocatalytic approach for size-controlled HA oligosaccharide synthesis using the disaccharide produced by ß1,4 EcGnT as a starting material, followed by stepwise PmHAS-catalyzed synthesis of longer oligosaccharides. Using this approach, we produced a series of HA chains of up to 10 sugar monomers. Overall, our study identifies a novel bacterial ß1,4 N-acetylglucosaminyltransferase and establishes a more efficient process for HA oligosaccharide synthesis that enables size-controlled production of HA oligosaccharides. KEY POINTS: ⢠A novel ß-1,4-N-acetylglucosaminyl-transferase (EcGnT) from E. coli O8:K48:H9. ⢠EcGnT is superior to PmHAS for enabling de novo HA oligosaccharide synthesis. ⢠Size-controlled HA oligosaccharide synthesis relay using EcGnT and PmHAS.
Assuntos
Ácido Hialurônico , Pasteurella multocida , N-Acetilglucosaminiltransferases/genética , Escherichia coli/genética , Oligossacarídeos/química , Hialuronan Sintases , Transferases , Pasteurella multocida/genéticaRESUMO
Pasteurella multocida is a pathogen that can infect humans and animals. A ghost is an empty bacterial body devoid of cytoplasm and nucleic acids that can be efficiently presented by antigen-presenting cells. To study a novel ghost vector vaccine with cross-immune protection, we used bacteriophage PhiX174 RF1 and Pasteurella multocida standard strain CVCC393 as templates to amplify the split genes E and OmpH to construct a bidirectional expression vector E'-OmpH-pET28a-ci857-E. This is proposed to prepare a ghost Escherichia coli (engineered bacteria) capable of attaching and producing Pasteurella multocida OmpH on the inner membrane of Escherichia coli (BL21). The aim is to assess the antibody levels and the effectiveness of immune protection by conducting a mouse immunoprotective test. The bidirectional expression vector E'-OmpH-pET28a-ci857-E was successfully constructed. After induction by IPTG, identification by SDS-PAGE, western blot, ghost culture and transmission electron microscope detection, it was proven that the Escherichia coli ghost anchored to Pasteurella multocida OmpH was successfully prepared. The immunoprotective test in mice showed that the antibody levels of Pasteurella multocida inactivated vaccine, OmpH, ghost (aluminum glue adjuvant) and ghost (Freund's adjuvant) on day 9 after immunization were significantly different from those of the PBS control group (P < 0.01). The immune protection rates were 100%, 80%, 75%, and 65%, respectively, and the PBS negative control was 0%, which proved that they all had specific immune protection effects. Therefore, this study lays the foundation for the further study of ghosts as carriers of novel vaccine-presenting proteins.
Assuntos
Infecções por Pasteurella , Pasteurella multocida , Vacinas , Humanos , Animais , Camundongos , Pasteurella multocida/genética , Pasteurella multocida/metabolismo , Infecções por Pasteurella/prevenção & controle , Infecções por Pasteurella/veterinária , Escherichia coli/genética , Proteínas da Membrana Bacteriana Externa/genética , Vacinas BacterianasRESUMO
Pasteurella multocida is widely distributed in all pig-rearing countries, affecting the economic viability and profitability of pig production. The present research highlights the molecular characterization and pathology of untypeable capsular serotypes of P. multocida in slaughtered pigs from prominent pig-rearing states of India. The prevalence of Pasteurellosis was 27.17% by Pasteurella multocida specific Pasteurella multocida specific PCR (PM-PCR). assay, while isolation rate was 7.62%. The microscopic lesions of bronchopneumonia, tonsillitis, and the presence of bacterial antigens in immunohistochemistry confirmed P. multocida with pathologies. In capsular typing, the majority of the isolates were untypeable with prevalence of 52.15% and 43.58% in molecular and microbiological methods, respectively. All the isolates showed the uniform distribution of virulence genes such as exbB, nanB, sodC, plpB, and oma87 (100%), while the variations were observed in ptfA, hasR, ptfA, pfhA, hsf-1, and plpE genes. The untypeable isolates showed higher prevalence of hsf-1 gene as compared to others. The untypeable serotypes showed a higher degree of resistance to ampicillin, amoxicillin, and penicillin antibiotics. The mouse pathogenicity testing of untypeable capsular isolates confirmed its pathogenic potential. The higher frequency of pathogenic untypeable isolates with antibiotic resistance profile might pose a serious threat to the pigs, and therefore, preventive measures should be adopted for effective control.
Assuntos
Anti-Infecciosos , Infecções por Pasteurella , Pasteurella multocida , Animais , Suínos , Camundongos , Pasteurella multocida/genética , Virulência/genética , Sorogrupo , Fatores de Virulência/genética , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/epidemiologia , Infecções por Pasteurella/microbiologia , ÍndiaRESUMO
Pasteurella multocida can cause goat hemorrhagic sepsis and endemic pneumonia. Respiratory epithelial cells are the first line of defense in the lungs during P. multocida infection. These cells act as a mechanical barrier and activate immune response to protect against invading pathogenic microorganisms. Upon infection, P. multocida adheres to the cells and causes changes in cell morphology and transcriptome. ATAC-seq was conducted to determine the changes in the chromatin open region of P. multocida-infected goat bronchial epithelial cells based on transcriptional regulation. A total of 13,079 and 28,722 peaks were identified in the control (CK) and treatment (T) groups (P. multocida infection group), respectively. The peaks significantly increased after P. multocida infection. The specific peaks for the CK and T groups were annotated to 545 and 6632 genes, respectively. KEGG pathway enrichment analysis revealed that the specific peak-related genes in the T group were enriched in immune reaction-related pathways, such as Fc gamma R-mediated phagocytosis, MAPK signaling pathway, bacterial invasion of epithelial cells, endocytosis, and autophagy pathways. Other cellular component pathways were also enriched, including the regulation of actin cytoskeleton, adherent junction, tight junction, and focal adhesion. The differential peaks between the two groups were subsequently analyzed. Compared to those in the CK group, 863 and 11 peaks were upregulated and downregulated, respectively, after the P. multocida infection. Fifty-six known transcription factor motifs were revealed in upregulated peaks in the P. multocida-infected group. By integrating ATAC-seq and RNA-seq, some candidate genes (SETBP1, RASGEF1B, CREB5, IRF5, TNF, CD70) that might be involved in the goat bronchial epithelial cell immune reaction to P. multocida infection were identified. Overall, P. multocida infection changed the structure of the cell and caused chromatin open regions to be upregulated. In addition, P. multocida infection actively mobilized the host immune response with the inflammatory phenotype. The findings provide valuable information for understanding the regulatory mechanisms of P. multocida-infected goat bronchial epithelial cells.
Assuntos
Pasteurella multocida , Animais , Pasteurella multocida/genética , Cromatina/genética , Cabras/genética , Regulação da Expressão Gênica , Células EpiteliaisRESUMO
The present study aimed to isolate Pasteurella multocida (P. multocida) from pulmonary cases in several avian species and then investigate the histopathological features, antimicrobial resistance determinants, virulence characteristics, and risk factors analysis of the isolates in each species in correlation with epidemiological mapping of pasteurellosis in Sharkia Governorate, Egypt. The obtained data revealed a total occurrence of 9.4% (30/317) of P. multocida among the examined birds (chickens, ducks, quails, and turkeys). The incidence rate was influenced by avian species, climate, breed, age, clinical signs, and sample type. Antimicrobial susceptibility testing revealed that all isolates were sensitive to florfenicol and enrofloxacin, while 86.6 and 73.3% of the isolates displayed resistance to amoxicillin-clavulanic acid and erythromycin, respectively. All of the P. multocida isolates showed a multiple-drug resistant pattern with an average index of 0.43. Molecular characterization revealed that the oma87, sodA, and ptfA virulence genes were detected in the all examined P. multocida isolates. The ermX (erythromycin), blaROB-1 (ß-lactam), and mcr-1(colistin) resistance genes were present in 60, 46.6, and 40% of the isolates, respectively. Ducks and quails were the most virulent and harbored species of antimicrobial-resistant genes. These results were in parallel with postmortem and histopathological examinations which detected more severe interstitial pneumonia lesions in the trachea and lung, congestion, and cellular infiltration especially in ducks. Epidemiological mapping revealed that the Fakous district was the most susceptible to pasteurellosis infection. Thus, farmers are recommended to monitor their flocks for signs of respiratory disease, seek veterinary care promptly if any birds are sick, and avoid the random usage of antibiotics. In conclusion, this study presents a comprehensive picture of the risk factors in correlation to the pathognomonic characteristics of P. multocida infection in poultry sectors to help in developing more effective strategies for prevention and control.
Assuntos
Infecções por Pasteurella , Pasteurella multocida , Animais , Pasteurella multocida/genética , Egito/epidemiologia , Galinhas , Infecções por Pasteurella/epidemiologia , Infecções por Pasteurella/veterinária , Antibacterianos/farmacologia , Eritromicina/farmacologiaRESUMO
The Gram-negative pathogen Pasteurella multocida is the causative agent of many important animal diseases. While a number of P. multocida virulence factors have been identified, very little is known about how gene expression and protein production is regulated in this organism. One mechanism by which bacteria regulate transcript abundance and protein production is riboregulation, which involves the interaction of a small RNA (sRNA) with a target mRNA to alter transcript stability and/or translational efficiency. This interaction often requires stabilization by an RNA-binding protein such as ProQ or Hfq. In Escherichia coli and a small number of other species, ProQ has been shown to play a critical role in stabilizing sRNA-mRNA interactions and preferentially binds to the 3' stem-loop regions of the mRNA transcripts, characteristic of intrinsic transcriptional terminators. The aim of this study was to determine the role of ProQ in regulating P. multocida transcript abundance and identify the RNA targets to which it binds. We assessed differentially expressed transcripts in a proQ mutant and identified sites of direct ProQ-RNA interaction using in vivo UV-cross-linking and analysis of cDNA (CRAC). These analyses demonstrated that ProQ binds to, and stabilizes, ProQ-dependent sRNAs and transfer RNAs in P. multocida via adenosine-enriched, highly structured sequences. The binding of ProQ to two RNA molecules was characterized, and these analyses showed that ProQ bound within the coding sequence of the transcript PmVP161_1121, encoding an uncharacterized protein, and within the 3' region of the putative sRNA Prrc13. IMPORTANCE Regulation in P. multocida involving the RNA-binding protein Hfq is required for hyaluronic acid capsule production and virulence. This study further expands our understanding of riboregulation by examining the role of a second RNA-binding protein, ProQ, in transcript regulation and abundance in P. multocida.
Assuntos
Proteínas de Escherichia coli , Pasteurella multocida , Pequeno RNA não Traduzido , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Pasteurella multocida/genética , Pasteurella multocida/metabolismo , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , Pequeno RNA não Traduzido/genética , Proteínas de Ligação a RNA/metabolismoRESUMO
BACKGROUND: Pasteurella multocida is an opportunistic pathogen causing porcine respiratory diseases by co-infections with other bacterial and viral pathogens. Various bacterial genera isolated from porcine respiratory tracts were shown to inhibit the growth of the porcine isolates of P. multocida. However, molecular mechanisms during the interaction between P. multocida and these commensal bacteria had not been examined. METHODS: This study aimed to investigate the interaction between two porcine isolates of P. multocida (PM2 for type D and PM7 for type A) with Aeromonas caviae selected from the previously published work by co-culturing P. multocida in the conditioned media prepared from A. caviae growth and examining transcriptomic changes using RNA sequencing and bioinformatics analysis. RESULTS: In total, 629 differentially expressed genes were observed in the isolate with capsular type D, while 110 genes were significantly shown in type A. High expression of genes required for energy metabolisms, nutrient uptakes, and quorum sensing were keys to the growth and adaptation to the conditioned media, together with the decreased expression of those in the unurgent pathways, including translation and antibacterial resistance. CONCLUSION: This transcriptomic analysis also displayed the distinct capability of the two isolates of P. multocida and the preference of the capsular type A isolate in response to the tough environment of the A. caviae conditioned media. Therefore, controlling the environmental sensing and nutrient acquisition mechanisms of P. multocida would possibly prevent the overpopulation of these bacteria and reduce the chance of becoming opportunistic pathogens.