Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Biochem Funct ; 41(5): 599-608, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37232085

RESUMO

Among gynecological malignancies, ovarian cancer has the highest mortality rate and has sparked widespread interest in studying the mechanisms underlying ovarian cancer development. Based on TCGA and GEO databases, we investigated the highly expressed autophagy-related genes that determine patient prognosis using limma differential expression and Kaplan-Meier survival analyses. The biological processes associated with these genes were also predicted using GO/KEGG functional enrichment analysis. CCK-8, cell scratch, and transwell assays were used to investigate the effects of PXN on the proliferation, migration, and invasion abilities of ovarian cancer cells. Transmission electron microscopy was used to observe the autophagosomes. The expression of autophagy proteins and the PI3K/Akt/mTOR and p110ß/Vps34/Beclin1 pathway proteins in ovarian cancer cells was detected using western blot; autophagy protein expression was further detected and localized using cellular immunofluorescence. A total of 724 autophagy-related genes were found to be overexpressed in ovarian -cancer tissues, with high expression of PEX3, PXN, and RB1 associated with poor prognosis in patients (p < .05). PXN activates and regulates signaling pathways related to cellular autophagy, ubiquitination, lysosomes, PI3K-Akt, and mTOR. Autophagosomes were observed in all cell groups. The increase in PXN gene expression promoted the proliferation, migration, and invasion of ovarian cancer cells, increased the expression of SQSTM1/p62 protein, decreased LC3II/LC3Ⅰ, inhibited the phosphorylation of Akt and mTOR proteins, and suppressed the expression of PI3K(p110ß) and Beclin1 proteins. The decrease in PXN expression also confirmed these changes. Thus, PXN is highly expressed during ovarian cancer and is associated with poor patient prognosis. It may promote ovarian cancer cell proliferation, migration, and invasion by inhibiting cellular autophagy via suppression of the p110ß/Vps34/Beclin1 pathway.


Assuntos
Neoplasias Ovarianas , Proteínas Proto-Oncogênicas c-akt , Humanos , Feminino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Proteína Beclina-1/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Neoplasias Ovarianas/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Proliferação de Células , Linhagem Celular Tumoral , Apoptose , Paxilina/metabolismo , Paxilina/farmacologia
2.
Zhonghua Nan Ke Xue ; 29(3): 210-217, 2023 Mar.
Artigo em Zh | MEDLINE | ID: mdl-38597701

RESUMO

OBJECTIVE: To explore the effects of lutein on the adhesion, invasiveness and metastasis of human prostate cancer PC-3M cells and its action mechanism. METHODS: We divided human prostate cancer PC-3M cells into a control, a low-dose lutein, a medium-dose lutein and a high-dose lutein group, and treated them with 0, 10, 20 and 40 µmol/L lutein, respectively. Then we examined the adhesion of the cells to matrix by cell adhesion assay and the changes in cell pseudopodia by Phalloidin staining, detected the expressions of paxillin, matrix metalloproteinase 2 (MMP-2), MMP-9, recombinant tissue inhibitors of metalloproteinase 1 (TIMP-1), E-cadherin, N-cadherin and vimentin by Western blot, determined the invasiveness and migration of the cells by scratch and Transwell assays, and observed their dynamic movement by high-intension imaging. RESULTS: Compared with the control, the lutein intervention groups showed significant reduction in the number of the cells adhered to matrix, the number of cell pseudopodia, the expressions of paxillin, MMP-2, MMP-9, N-cadherin and vimentin, the rates of migration, invasion and metastasis, and the distances of displacement and movement of the cells. However, the expressions of TIMP-1 and epithelial-mesenchymal transition-related E-cadherin were upregulated significantly. CONCLUSION: Lutein can inhibit cell adhesion, reduce the expressions of MMPs, and suppress cell invasion and migration by inhibiting the process of epithelial-mesenchymal transition.


Assuntos
Metaloproteinase 2 da Matriz , Neoplasias da Próstata , Masculino , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/farmacologia , Paxilina/metabolismo , Paxilina/farmacologia , Luteína/metabolismo , Luteína/farmacologia , Luteína/uso terapêutico , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/farmacologia , Metaloproteinase 9 da Matriz/uso terapêutico , Vimentina/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-1/farmacologia , Inibidor Tecidual de Metaloproteinase-1/uso terapêutico , Movimento Celular , Linhagem Celular Tumoral , Caderinas/metabolismo , Caderinas/farmacologia , Caderinas/uso terapêutico , Neoplasias da Próstata/patologia , Invasividade Neoplásica , Transição Epitelial-Mesenquimal
3.
Int J Mol Sci ; 22(4)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671466

RESUMO

During capacitation, sperm undergo a myriad of changes, including remodeling of plasma membrane, modification of sperm motility and kinematic parameters, membrane hyperpolarization, increase in intracellular calcium levels, and tyrosine phosphorylation of certain sperm proteins. While potassium channels have been reported to be crucial for capacitation of mouse and human sperm, their role in pigs has not been investigated. With this purpose, sperm samples from 15 boars were incubated in capacitation medium for 300 min with quinine, a general blocker of potassium channels (including voltage-gated potassium channels, calcium-activated potassium channels, and tandem pore domain potassium channels), and paxilline (PAX), a specific inhibitor of calcium-activated potassium channels. In all samples, acrosome exocytosis was induced after 240 min of incubation with progesterone. Plasma membrane and acrosome integrity, membrane lipid disorder, intracellular calcium levels, mitochondrial membrane potential, and total and progressive sperm motility were evaluated after 0, 120, and 240 min of incubation, and after 5, 30, and 60 min of progesterone addition. Although blocking potassium channels with quinine and PAX prevented sperm to elicit in vitro capacitation by impairing motility and mitochondrial function, as well as reducing intracellular calcium levels, the extent of that inhibition was larger with quinine than with PAX. Therefore, while our data support that calcium-activated potassium channels are essential for sperm capacitation in pigs, they also suggest that other potassium channels, such as the voltage-gated, tandem pore domain, and mitochondrial ATP-regulated ones, are involved in that process. Thus, further research is needed to elucidate the specific functions of these channels and the mechanisms underlying its regulation during sperm capacitation.


Assuntos
Acrossomo/metabolismo , Exocitose/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/metabolismo , Progesterona/farmacologia , Capacitação Espermática/efeitos dos fármacos , Acrossomo/efeitos dos fármacos , Animais , Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Paxilina/farmacologia , Quinina/farmacologia , Motilidade dos Espermatozoides/efeitos dos fármacos , Suínos
4.
J Neurosci ; 34(36): 11959-71, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25186743

RESUMO

Levels of nerve growth factor (NGF) are elevated in inflamed tissues. In sensory neurons, increases in NGF augment neuronal sensitivity (sensitization) to noxious stimuli. Here, we hypothesized that NGF also sensitizes sympathetic neurons to proinflammatory stimuli. We cultured superior cervical ganglion (SCG) neurons from adult male Sprague Dawley rats with or without added NGF and compared their responsiveness to bradykinin, a proinflammatory peptide. The NGF-cultured neurons exhibited significant depolarization, bursts of action potentials, and Ca(2+) elevations after bradykinin application, whereas neurons cultured without NGF showed only slight changes in membrane potential and cytoplasmic Ca(2+) levels. The NGF effect, which requires trkA receptors, takes hours to develop and days to reverse. We addressed the ionic mechanisms underlying this sensitization. NGF did not alter bradykinin-induced M-current inhibition or phosphatidylinositol 4,5-bisphosphate hydrolysis. Maxi-K channel-mediated current evoked by depolarizations was reduced by 50% by culturing neurons in NGF. Application of iberiotoxin or paxilline, blockers of Maxi-K channels, mimicked NGF treatment and sensitized neurons to bradykinin application. A calcium channel blocker also mimicked NGF treatment. We found that NGF reduces Maxi-K channel opening by decreasing the activity of nifedipine-sensitive calcium channels. In conclusion, culture in NGF reduces the activity of L-type calcium channels, and secondarily, the calcium-sensitive activity of Maxi-K channels, rendering sympathetic neurons electrically hyper-responsive to bradykinin.


Assuntos
Potenciais de Ação , Bradicinina/farmacologia , Mediadores da Inflamação/farmacologia , Fator de Crescimento Neural/farmacologia , Neurônios/metabolismo , Gânglio Cervical Superior/efeitos dos fármacos , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Células Cultivadas , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Nifedipino/farmacologia , Paxilina/farmacologia , Peptídeos/farmacologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor trkA/metabolismo , Gânglio Cervical Superior/citologia , Gânglio Cervical Superior/metabolismo , Gânglio Cervical Superior/fisiologia
5.
J Orthop Res ; 42(5): 985-992, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38044475

RESUMO

Lidocaine is the most frequently applied local infiltration anesthetic agent for treating tendinopathies. However, studies have discovered lidocaine to negatively affect tendon healing. In the current study, the molecular mechanisms and effects of lidocaine on tenocyte migration were evaluated. We treated tenocytes intrinsic to the Achilles tendons of Sprague-Dawley rats with lidocaine. The migration ability of cells was analyzed using electric cell-substrate impedance sensing (ECIS) and scratch wound assay. We then used a microscope to evaluate the cell spread. We assessed filamentous actin (F-actin) cytoskeleton formation through immunofluorescence staining. In addition, we used Western blot analysis to analyze the expression of phospho-focal adhesion kinase (FAK), FAK, phospho-paxillin, paxillin, and F-actin. We discovered that lidocaine had an inhibitory effect on the migration of tenocytes in the scratch wound assay and on the ECIS chip. Lidocaine treatment suppressed cell spreading and changed the cell morphology and F-actin distribution. Lidocaine reduced F-actin formation in the tenocyte during cell spreading; furthermore, it inhibited phospho-FAK, F-actin, and phospho-paxillin expression in the tenocytes. Our study revealed that lidocaine inhibits the spread and migration of tenocytes. The molecular mechanism potentially underlying this effect is downregulation of F-actin, phospho-FAK, and phospho-paxillin expression when cells are treated with lidocaine.


Assuntos
Tendão do Calcâneo , Actinas , Ratos , Animais , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Paxilina/metabolismo , Paxilina/farmacologia , Actinas/metabolismo , Fosforilação , Tenócitos/metabolismo , Lidocaína/farmacologia , Movimento Celular , Ratos Sprague-Dawley , Adesão Celular
6.
Circ Res ; 108(12): 1439-47, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21512160

RESUMO

RATIONALE: Myogenic tone, an important regulator of vascular resistance, is dependent on vascular smooth muscle (VSM) depolarization, can be modulated by endothelial factors, and is increased in several models of hypertension. Intermittent hypoxia (IH) elevates blood pressure and causes endothelial dysfunction. Hydrogen sulfide (H(2)S), a recently described endothelium-derived vasodilator, is produced by the enzyme cystathionine γ-lyase (CSE) and acts by hyperpolarizing VSM. OBJECTIVE: Determine whether IH decreases endothelial H(2)S production to increase myogenic tone in small mesenteric arteries. METHODS AND RESULTS: Myogenic tone was greater in mesenteric arteries from IH than sham control rat arteries, and VSM membrane potential was depolarized in IH in comparison with sham arteries. Endothelium inactivation or scavenging of H(2)S enhanced myogenic tone in sham arteries to the level of IH. Inhibiting CSE also enhanced myogenic tone and depolarized VSM in sham but not IH arteries. Similar results were seen in cerebral arteries. Exogenous H(2)S dilated and hyperpolarized sham and IH arteries, and this dilation was blocked by iberiotoxin, paxilline, and KCl preconstriction but not glibenclamide or 3-isobutyl-1-methylxanthine. Iberiotoxin enhanced myogenic tone in both groups but more in sham than IH. CSE immunofluorescence was less in the endothelium of IH than in sham mesenteric arteries. Endogenouse H(2)S dilation was reduced in IH arteries. CONCLUSIONS: IH appears to decrease endothelial CSE expression to reduce H(2)S production, depolarize VSM, and enhance myogenic tone. H(2)S dilatation and hyperpolarization of VSM in small mesenteric arteries requires BK(Ca) channels.


Assuntos
Poluentes Atmosféricos/farmacologia , Endotélio Vascular/metabolismo , Sulfeto de Hidrogênio/farmacologia , Hipóxia/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Artérias Mesentéricas/metabolismo , Vasodilatação/efeitos dos fármacos , 1-Metil-3-Isobutilxantina , Poluentes Atmosféricos/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Endotélio Vascular/patologia , Glibureto/farmacologia , Sulfeto de Hidrogênio/metabolismo , Hipoglicemiantes/farmacologia , Hipóxia/fisiopatologia , Masculino , Artérias Mesentéricas/patologia , Paxilina/farmacologia , Peptídeos/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Ratos , Ratos Sprague-Dawley
7.
Acta Neurochir Suppl ; 115: 179-84, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22890666

RESUMO

Potassium channels play an important role in the regulation of arterial tone, and decreased activity of these ion channels has been linked to pial artery vasospasm after subarachnoid hemorrhage (SAH). Our previous work has shown that acute application of a blood component, oxyhemoglobin, caused suppression of voltage-gated K(+) (K(V)) channels through heparin-binding epidermal growth factor-like growth factor (HB-EGF)-mediated activation of epidermal growth factor receptor (EGFR). Using patch clamp electrophysiology, we have now examined whether this pathway of K(V) channel suppression is activated in parenchymal arteriolar myocytes following long-term in vivo exposure to subarachnoid blood. We have found that K(V) currents, but not large conductance Ca(2+) activated or inwardly rectifying K(+) channel currents, were decreased in parenchymal arteriolar myocytes freshly isolated from day 5 SAH model rabbits. Interestingly, parenchymal arteriolar myocytes from control animals were more sensitive to exogenous HB-EGF (half-maximal inhibitory concentration [IC(50)] 0.2 ± 0.4 ng/ml) compared to pial arterial myocytes (IC(50) 2.4 ± 1.3 ng/ml). However, HB-EGF and oxyhemoglobin failed to decrease K(V) currents in parenchymal arteriolar myocytes from SAH animals, consistent with EGFR activation and K(V) current suppression by SAH. These data suggest that HB-EGF/EGFR pathway activation contributes to K(V) current suppression and enhanced parenchymal arteriolar constriction after SAH.


Assuntos
Arteríolas/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células Musculares/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Transdução de Sinais/fisiologia , Hemorragia Subaracnóidea/patologia , 4-Aminopiridina/farmacologia , Animais , Fenômenos Biofísicos/efeitos dos fármacos , Fenômenos Biofísicos/fisiologia , Biofísica , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Estimulação Elétrica , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Células Musculares/efeitos dos fármacos , Oxiemoglobinas/farmacologia , Técnicas de Patch-Clamp , Paxilina/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Coelhos , Transdução de Sinais/efeitos dos fármacos , Hemorragia Subaracnóidea/fisiopatologia
8.
Nutrients ; 14(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36235757

RESUMO

Aging and muscle disorders frequently cause a decrease in myoblast migration and differentiation, leading to losses in skeletal muscle function and regeneration. Several studies have reported that natural flavonoids can stimulate muscle development. Quercetin, one such flavonoid found in many vegetables and fruits, has been used to promote muscle development. In this study, we investigated the effect of quercetin on migration and differentiation, two processes critical to muscle regeneration. We found that quercetin induced the migration and differentiation of mouse C2C12 cells. These results indicated quercetin could induce myogenic differentiation at the early stage through activated p-IGF-1R. The molecular mechanisms of quercetin include the promotion of myogenic differentiation via activated transcription factors STAT3 and the AKT signaling pathway. In addition, we demonstrated that AKT activation is required for quercetin induction of myogenic differentiation to occur. In addition, quercetin was found to promote myoblast migration by regulating the ITGB1 signaling pathway and activating phosphorylation of FAK and paxillin. In conclusion, quercetin can potentially be used to induce migration and differentiation and thus improve muscle regeneration.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Quercetina , Animais , Diferenciação Celular , Linhagem Celular , Camundongos , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Paxilina/metabolismo , Paxilina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quercetina/metabolismo , Quercetina/farmacologia
9.
Asian Pac J Cancer Prev ; 23(7): 2379-2386, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35901345

RESUMO

OBJECTIVE: Glioblastoma is the most aggressive and lethal brain tumor in adults with highly invasive properties. In this present study, we explored the effects of Phyllanthus taxodiifolius Beille extract on molecules known to be hallmarks of aggressive glioblastoma including N-cadherin and vimentin, mesenchymal markers, as well as paxillin, a major adaptor protein that regulates the linking of focal adhesions to the actin cytoskeleton. METHODS: P. taxodiifolius were air-dried, powdered and percolated with methanol, filtered, concentrated and lyophilized to yield a crude methanol extract. C6 glioblastoma cell line was used in this study. The expression of N-cadherin and vimentin, as well as the activation of paxillin was determined using Western blot analysis. The effect of the extract on focal adhesions and actin cytoskeleton were investigated using immunofluorescence staining and confocal imaging. RESULTS: In the presence of 40 µg/ml Phyllanthus taxodiifolius Beille extract, the expression of N-cadherin and vimentin were significantly decreased (p<0.001 and p<0.05, respectively). Activation of paxillin was also diminished as indicated by a reduction of phosphorylated-paxillin (p<0.01). Consequently, actin stress fibers in glioblastoma cells were abolished as evidenced by the decrease in focal adhesion (p<0.001) and stress fibers numbers (p<0.001). CONCLUSION: Our study demonstrates for the first time that P. taxodiifolius interferes with multiple key molecules related to pathological hallmarks of glioblastoma. These molecules are involved with cell contacts, focal adhesions, and the formation and stabilization of actin stress fibers, which are required for glioblastoma metastatic behavior. These results provide further evidence supporting the potential of P. taxodiifolius and its bioactive compounds as anti-cancer agents.


Assuntos
Glioblastoma , Phyllanthus , Actinas/metabolismo , Caderinas/metabolismo , Adesão Celular , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Glioblastoma/patologia , Humanos , Metanol , Paxilina/metabolismo , Paxilina/farmacologia , Fosfoproteínas/metabolismo , Fosforilação , Phyllanthus/metabolismo , Extratos Vegetais/farmacologia , Fibras de Estresse/metabolismo , Fibras de Estresse/patologia , Vimentina
10.
Neurochem Int ; 150: 105191, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34547325

RESUMO

Spinal cord ischemia-reperfusion injury (SCIRI) can cause dramatic neuron loss and lead to paraplegia in patients. In this research, the role of mGluR5, a member of the metabotropic glutamate receptors (mGluRs) family, was investigated both in vitro and in vivo to explore a possible method to treat this complication. In vitro experiment, after activating mGluR5 via pretreating cells with (RS)-2-Chloro-5-hydroxyphenylglycine (CHPG) and 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB), excitotoxicity induced by glutamate (Glu) was attenuated in primary spinal cord neurons, evidenced by higher neuron viability, decreased lactate dehydrogenase (LDH) release and less detected TUNEL-positive cells. According to Western Blot (WB) results, Glu treatment resulted in a high level of large-conductance Ca2+- and voltage-activated K+ (BK) channels, with activation relying on the mGluR5-IP3R (inositol triphosphate) pathway. In vivo part, a rat model of SCIRI was built to further investigate the role of mGluR5. After pretreating them with CHPG and CDPPB, the rats showed markedly lower spinal water content, attenuated motor neuron injury in the spinal cord of L4 segments, and better neurological function. This effect could be partially reversed by paxilline, a blocker of BK channels. In addition, activating BK channels alone using specific openers: NS1619 or NS11021 can protect spinal cord neurons from injury induced by either SCIRI or Glu. In conclusion, in this research, we proved that mGluR5 exerts a protective role in SCIRI, and this effect partially works via IP3R-mediated activation of BK channels.


Assuntos
Adenosil-Homocisteinase/biossíntese , Canais de Potássio Ativados por Cálcio de Condutância Alta/biossíntese , Neuroproteção/fisiologia , Receptor de Glutamato Metabotrópico 5/biossíntese , Traumatismo por Reperfusão/metabolismo , Isquemia do Cordão Espinal/metabolismo , Animais , Benzamidas/farmacologia , Células Cultivadas , Agonistas de Aminoácidos Excitatórios/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Neuroproteção/efeitos dos fármacos , Paxilina/farmacologia , Pirazóis/farmacologia , Ratos , Receptor de Glutamato Metabotrópico 5/agonistas , Traumatismo por Reperfusão/prevenção & controle , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Isquemia do Cordão Espinal/prevenção & controle
11.
Biomolecules ; 11(2)2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494474

RESUMO

Recent evidence suggests that the reason Extra Virgin Olive Oil (EVOO) lowers blood pressure and reduces the risk of developing hypertension is partly due to minor components of EVOO, such as phenols. However, little is still known about the mechanism(s) through which EVOO phenols mediate anti-hypertensive effects. The aim of the present study was to investigate the mechanisms of action of EVOO phenols on mesenteric resistance arteries. A pressure myograph was used to test the effect of EVOO phenols on isolated mesenteric arteries in the presence of specific inhibitors of: 1) BKca channels (Paxillin, 10-5 M); 2) L-type calcium channels (Verapamil, 10-5 M); 3) Ryanodine receptor, RyR (Ryanodine, 10-5 M); 4) inositol 1,4,5-triphosphate receptor, IP3R, (2-Aminoethyl diphenylborinate, 2-APB, 3 × 10-3 M); 5) phospholipase C, PLC, (U73122, 10-5 M), and 6) GPCR-Gαi signaling, (Pertussis Toxin, 10-5 M). EVOO phenols induced vasodilation of mesenteric arteries in a dose-dependent manner, and this effect was reduced by pre-incubation with Paxillin, Verapamil, Ryanodine, 2-APB, U73122, and Pertussis Toxin. Our data suggest that EVOO phenol-mediated vasodilation requires activation of BKca channels potentially through a local increase of subcellular calcium microdomains, a pivotal mechanism on the base of artery vasodilation. These findings provide novel mechanistic insights for understanding the vasodilatory properties of EVOO phenols on resistance arteries.


Assuntos
Microdomínios da Membrana/química , Artérias Mesentéricas/efeitos dos fármacos , Azeite de Oliva/química , Canais de Potássio/química , Fosfolipases Tipo C/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Compostos de Boro/farmacologia , Canais de Cálcio/química , Estrenos/farmacologia , Receptores de Inositol 1,4,5-Trifosfato/química , Masculino , Paxilina/farmacologia , Toxina Pertussis/farmacologia , Fenol/química , Fenóis/farmacologia , Pirrolidinonas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Rianodina/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Vasodilatação/efeitos dos fármacos , Verapamil/farmacologia
12.
Am J Physiol Cell Physiol ; 298(1): C182-90, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19828837

RESUMO

The phenomenon of posttetanic potentiation, in which a single submaximal contraction or series of submaximal contractions strengthens a subsequent contraction, has been observed in both skeletal and cardiac muscle. In this study, we describe a similar phenomenon in swine carotid arterial smooth muscle. We find that a submaximal K(+) depolarization increases the force generation of a subsequent maximal K(+) depolarization; we term this "force augmentation." Force augmentation was not associated with a significant increase in crossbridge phosphorylation or shortening velocity during the maximal K(+) depolarization, suggesting that the augmented force was not caused by higher crossbridge phosphorylation or crossbridge cycling rates. We found that the characteristics of the tissue before the maximal K(+) depolarization predicted the degree of force augmentation. Specifically, measures of stimulated actin polymerization (higher prior Y118 paxillin phosphorylation, higher prior F-actin, and transition to a more solid rheology evidenced by lower noise temperature, hysteresivity, and phase angle) predicted the subsequent force augmentation. Increased prior contraction alone did not induce force augmentation since readdition of Ca(2+) to Ca(2+)-depleted tissues induced a partial contraction that was not associated with changes in noise temperature or with subsequent force augmentation. These data suggest that stimulated actin polymerization may produce a substrate for increased crossbridge mediated force, a process we observe as force augmentation.


Assuntos
Actinas/fisiologia , Artéria Carótida Primitiva/fisiologia , Contração Muscular/fisiologia , Estresse Mecânico , Animais , Cálcio/farmacologia , Artéria Carótida Primitiva/efeitos dos fármacos , Cinética , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Paxilina/metabolismo , Paxilina/farmacologia , Fosforilação , Potássio/fisiologia , Suínos , Tétano
13.
J Cell Biol ; 171(6): 1073-84, 2005 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-16365170

RESUMO

The capacity of integrins to mediate adhesiveness is modulated by their cytoplasmic associations. In this study, we describe a novel mechanism by which alpha4-integrin adhesiveness is regulated by the cytoskeletal adaptor paxillin. A mutation of the alpha4 tail that disrupts paxillin binding, alpha4(Y991A), reduced talin association to the alpha4beta1 heterodimer, impaired integrin anchorage to the cytoskeleton, and suppressed alpha4beta1-dependent capture and adhesion strengthening of Jurkat T cells to VCAM-1 under shear stress. The mutant retained intrinsic avidity to soluble or bead-immobilized VCAM-1, supported normal cell spreading at short-lived contacts, had normal alpha4-microvillar distribution, and responded to inside-out signals. This is the first demonstration that cytoskeletal anchorage of an integrin enhances the mechanical stability of its adhesive bonds under strain and, thereby, promotes its ability to mediate leukocyte adhesion under physiological shear stress conditions.


Assuntos
Adesão Celular , Integrina alfa4/metabolismo , Integrina alfa4beta1/metabolismo , Paxilina/metabolismo , Estresse Mecânico , Moléculas de Adesão Celular , Citoplasma/metabolismo , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Humanos , Imunoglobulinas/metabolismo , Integrina alfa4/farmacologia , Células Jurkat , Ligantes , Mucoproteínas/metabolismo , Mutação , Paxilina/farmacologia , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína/fisiologia , Proteínas Recombinantes/metabolismo , Talina , Transfecção , Molécula 1 de Adesão de Célula Vascular/metabolismo
14.
Int J Cancer ; 124(1): 16-26, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18814281

RESUMO

Activating mutations in the NRAS gene, which occur predominantly in codon 61 (Q61R, Q61K) are among the most common genetic events in malignant melanoma. NRAS protein with oncogenic codon 61 mutations may therefore be good therapeutic targets. In the present study, we used gene expression profiling as a method for global characterization of gene expression alterations that resulted from treatment of melanoma cells with siRNA specifically targeting NRAS(Q61R). Sixteen probe sets representing 15 unique genes were identified whose expression was significantly altered by siRNA against NRAS(Q61R) in 2 melanoma cell lines. The genes with altered expression are involved in several functions, including modulation of cell growth, invasion and migration. The results suggest that downregulation of cyclin E2 and cyclin D1 and also upregulation of the negative cell-cycle regulator HBP1 in NRAS(Q61R) knockdown cells contribute to the inhibition of cell proliferation. Furthermore, suppression of oncogenic NRAS results in reduced migration and invasion, which is accompanied by downregulation of EphA2 (a receptor tyrosine kinase), uPAR (urokinase receptor) and cytoskeleton proteins such as leupaxin, paxillin and vinculin. These studies support the concept that suppression of oncogenic NRAS by siRNA can induce growth arrest and inhibit invasion of human melanoma cells by modulating the levels of these gene products.


Assuntos
Regulação Neoplásica da Expressão Gênica , Genes ras , Melanoma/metabolismo , Mutação , Proteína Oncogênica p21(ras)/metabolismo , Neoplasias Cutâneas/metabolismo , Moléculas de Adesão Celular/farmacologia , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Ciclinas/metabolismo , Citoesqueleto/metabolismo , Humanos , Paxilina/farmacologia , Fenótipo , Fosfoproteínas/farmacologia , Vinculina/farmacologia
15.
Life Sci ; 84(5-6): 164-71, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-19070626

RESUMO

AIMS: The goal of this study was to evaluate the influence of gamma-irradiation on Ca(2+)-activated K(+) channel (BK(Ca)) function and expression in rat thoracic aorta. MAIN METHODS: Aortic cells or tissues were studied by the measurement of force versus [Ca(2+)](i), patch-clamp technique, and RT-PCR. KEY FINDINGS: Stimulation of smooth muscle cells with depolarizing voltage steps showed expression of outward K(+) currents. Paxilline, an inhibitor of BK(Ca) channels, decreased outward K(+) current density. Outward currents in smooth muscle cells obtained from irradiated animals 9 and 30 days following radiation exposure demonstrated a significant decrease in K(+) current density. Paxilline decreased K(+) current in cells obtained 9 days, but was without effect 30 days after irradiation suggesting the absence of BK(Ca) channels. Aortic tissue from irradiated animals showed progressively enhanced contractile responses to phenylephrine in the post-irradiation period of 9 and 30 days. The concomitant Ca(2+) transients were significantly smaller, as compared to tissues from control animals, 9 days following irradiation but were increased above control levels 30 days following irradiation. Irradiation produced a decrease in BK(Ca) alpha- and beta(1)-subunit mRNA levels in aortic smooth muscle cells suggesting that the vasorelaxant effect of these channels may be diminished. SIGNIFICANCE: These results suggest that the enhanced contractility of vascular tissue from animals exposed to radiation may result from an increase in myofilament Ca(2+) sensitivity in the early post-irradiation period and a decrease in BK(Ca) channel expression in the late post-irradiation period.


Assuntos
Aorta Torácica/efeitos da radiação , Raios gama/efeitos adversos , Ativação do Canal Iônico/efeitos da radiação , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Músculo Liso Vascular/efeitos da radiação , Animais , Aorta Torácica/citologia , Aorta Torácica/metabolismo , Células Cultivadas , Canais de Potássio Ativados por Cálcio de Condutância Alta/biossíntese , Masculino , Contração Muscular/efeitos da radiação , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Técnicas de Patch-Clamp , Paxilina/farmacologia , RNA/biossíntese , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Irradiação Corporal Total
16.
Steroids ; 151: 108463, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31344408

RESUMO

Paxillin is extensively involved in focal adhesion signaling and kinase signaling throughout the plasma membrane and cytoplasm. However, recent studies in prostate cancer suggest that paxillin also plays a critical role in regulating gene expression within the nucleus, serving as a liaison between cytoplasmic and nuclear MAPK and Androgen Receptor (AR) signaling. Here we used RNA-seq to examine the paxillin-regulated transcriptome in several human prostate cancer cell lines. First, we examined paxillin effects on androgen-mediated transcription in control or paxillin-depleted AR-positive LNCaP and C4-2 human prostate cancer cells. In androgen-dependent LNCaP cells, we found over 1000 paxillin-dependent androgen-responsive genes, some of which are involved in endocrine therapy resistance. Most paxillin-dependent AR-mediated genes in LNCaP cells were no longer paxillin-dependent in androgen-sensitive, castration-resistant C4-2 cells, suggesting that castration-resistance may markedly alter paxillin effects on genomic AR signaling. To examine the paxillin-regulated transcriptome in the absence of androgen signaling, we performed RNA-seq in AR-negative PC3 human prostate cancer cells. Paxillin enhanced several pro-proliferative pathways, including the CyclinD/Rb/E2F and DNA replication/repair pathways. Additionally, paxillin suppressed pro-apoptotic genes, including CASP1 and TNFSF10. Quantitative PCR confirmed that these pathways are similarly regulated by paxillin in LNCaP and C4-2 cells. Functional studies showed that, while paxillin stimulated cell proliferation, it had minimum effect on apoptosis. Thus, paxillin appears to be an important transcriptional regulator in prostate cancer, and analysis of its transcriptome might lead to novel approaches toward the diagnosis and treatment of this important disease.


Assuntos
Redes Reguladoras de Genes/efeitos dos fármacos , Genoma Humano/efeitos dos fármacos , Paxilina/farmacologia , Neoplasias da Próstata/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Humanos , Masculino , Neoplasias da Próstata/patologia
17.
Mol Cancer Res ; 5(6): 543-52, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17579116

RESUMO

The enzyme beta1,4-N-acetylgalactosaminyltransferase III (beta4GalNAc-T3) exhibits in vitro activity of synthesizing N,N'-diacetyllactosediamine, GalNAcbeta1,4GlcNAc. Here, we investigate the expression of beta4GalNAc-T3 in primary colon tumors and the effects of its overexpression on HCT116 colon cancer cells. Real-time reverse transcription-PCR showed that the expression of beta4GalNAc-T3 was up-regulated in 72.5% (n = 40) of primary colon tumors compared with their normal counterparts. beta4GalNAc-T3 overexpression resulted in enhanced cell-extracellular matrix adhesion, migration, anchorage-independent cell growth, and invasion of colon cancer cells. Moreover, beta4GalNAc-T3 overexpression increased tumor growth and metastasis and decreased survival of tumor-bearing nude mice. beta4GalNAc-T3 overexpression showed increased tyrosine phosphorylation of focal adhesion kinase and paxillin Y118 as well as increased extracellular signal-regulated kinase phosphorylation. These results suggest that up-regulation of beta4GalNAc-T3 may play a critical role in promoting tumor malignancy and that integrin and mitogen-activated protein kinase signaling pathways could be involved in the underlying mechanism.


Assuntos
Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , N-Acetilgalactosaminiltransferases/fisiologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Camundongos , Camundongos Nus , N-Acetilgalactosaminiltransferases/metabolismo , Invasividade Neoplásica , Metástase Neoplásica , Paxilina/farmacologia , Fenótipo
18.
Cell Signal ; 19(2): 289-300, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16945503

RESUMO

The protein tyrosine kinase RAFTK, also termed Pyk2, is a member of the focal adhesion kinase (FAK) subfamily. In this report, we show the role of RAFTK in neuroendocrine PC12 cells upon epidermal growth factor (EGF) stimulation. Following EGF treatment, we observed that RAFTK was tyrosine-phosphorylated in a time- and dose-dependent manner, while FAK was constitutively phosphorylated and primarily regulated by cell adhesion. Moreover, we found that RAFTK associated with the phosphorylated EGF receptor (EGFR) upon EGF stimulation. RAFTK phosphorylation was mediated primarily through PLCgamma-IP3-Ca(2+) signaling and partially through PI3-Kinase. Furthermore, overexpression of PRNK, a specific dominant-negative construct of RAFTK, was sufficient to block EGF-induced cell spreading and movement. Paxillin, a key modulator of the actin cytoskeleton and an RAFTK substrate, was also phosphorylated following EGF treatment. EGF induced a dynamic reorganization of RAFTK and paxillin at neuronal adhesion sites, with the specific localization of paxillin at the inner juxtaposition of RAFTK. Additionally, we observed that RAFTK associated with the scaffold protein c-Cbl and mediated its phosphorylation. Our data demonstrate that while FAK mediated cell adhesion, RAFTK was localized at the cytoplasm where it mediated inside-out signaling through intracellular Ca(2+), thus leading to cell spreading and movement upon EGF stimulation.


Assuntos
Citoplasma/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Quinase 2 de Adesão Focal/metabolismo , Animais , Sinalização do Cálcio , Adesão Celular , Movimento Celular , Quinase 1 de Adesão Focal/metabolismo , Quinase 2 de Adesão Focal/fisiologia , Modelos Biológicos , Células PC12 , Paxilina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Ratos , Ubiquitina/metabolismo
19.
Neuroreport ; 29(1): 59-64, 2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-29112675

RESUMO

Cytosolic phospholipase A2α (cPLA2α) is implicated in the progression of excitotoxic neuronal injury and cerebral ischemia. Previous work suggests that cPLA2α increases aberrant electrophysiologic events through attenuating K channel functions. Nevertheless, which K channels are affected by cPLA2α needs to be determined. Here we examined K channels-mediated electrophysiologic responses in hippocampal CA1 pyramidal neurons from wild-type and cPLA2α mice using simultaneous patch-clamp recording and confocal Ca imaging. After the exposure to the blockers of Ca-sensitive and A-type K channels, all CA1 neurons developed spike broadening and increased dendritic Ca transients. These effects were occluded in CA1 neurons from cPLA2α mice. Therefore, cPLA2α modulates the functions of Ca-sensitive and A-type K channels in neurotoxicity.


Assuntos
Albuminas 2S de Plantas/metabolismo , Hipocampo/citologia , Canais de Potássio/metabolismo , Células Piramidais/metabolismo , Albuminas 2S de Plantas/genética , 4-Aminopiridina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Apamina/farmacologia , Cálcio/metabolismo , Estimulação Elétrica , Fenômenos Eletrofisiológicos , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Técnicas de Patch-Clamp , Paxilina/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Células Piramidais/efeitos dos fármacos
20.
Int J Radiat Biol ; 83(3): 161-9, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17378524

RESUMO

PURPOSE: The goal of this study was to evaluate the influence of ionizing irradiation on large conductance Ca2+-dependent potassium (BKCa) channels in rat coronary endothelial cells. MATERIALS AND METHODS: Rats were exposed to a 6 Gy dose from a cobalt60 source. Experimental design of this study comprised recording of contractile force using isolated rat aortic rings and whole-cell patch clamp techniques to study whole-cell potassium currents in isolated rat coronary artery endothelial cells. RESULTS: It has been shown that outward potassium currents in endothelial cells 9 days after irradiation appear to be suppressed or even totally abolished. The reversal potential for these currents in irradiated cells was shifted to more positive values. Paxilline (500 nM), an inhibitor of BKCa channels, had no or only a negligible effect on irradiated cells. The experiments using isolated aortic rings demonstrated that both paxilline and irradiation significantly shifted the acetylcholine dependent concentration-relaxation response curve to the right. Irradiated tissues were insensitive to paxilline. CONCLUSION: The results suggest that non-fatal, whole-body gamma-irradiation suppresses large conductance, calcium-activated potassium channels, which control the driving force for Ca2+ entry and therefore Ca2+ dependent nitric oxide (NO) synthesis in endothelial cells. This may contribute, in part, to radiation-induced endothelium dysfunction and an increase in arterial blood pressure.


Assuntos
Vasos Coronários/efeitos da radiação , Células Endoteliais/efeitos da radiação , Canais de Potássio Cálcio-Ativados/fisiologia , Acetilcolina/farmacologia , Animais , Aorta Torácica/citologia , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/efeitos da radiação , Vasos Coronários/citologia , Vasos Coronários/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Raios gama , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/efeitos da radiação , Técnicas de Patch-Clamp , Paxilina/farmacologia , Canais de Potássio Cálcio-Ativados/antagonistas & inibidores , Ratos , Ratos Wistar , Vasodilatação/efeitos dos fármacos , Vasodilatação/efeitos da radiação , Vasodilatadores/farmacologia , Irradiação Corporal Total
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA