Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.998
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Neurosci ; 47(1): 103-121, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38594945

RESUMO

The cochlear implant (CI) is considered the most successful neuroprosthesis as it enables speech comprehension in the majority of the million otherwise deaf patients. In hearing by electrical stimulation of the auditory nerve, the broad spread of current from each electrode acts as a bottleneck that limits the transfer of sound frequency information. Hence, there remains a major unmet medical need for improving the quality of hearing with CIs. Recently, optogenetic stimulation of the cochlea has been suggested as an alternative approach for hearing restoration. Cochlear optogenetics promises to transfer more sound frequency information, hence improving hearing, as light can conveniently be confined in space to activate the auditory nerve within smaller tonotopic ranges. In this review, we discuss the latest experimental and technological developments of optogenetic hearing restoration and outline remaining challenges en route to clinical translation.


Assuntos
Implantes Cocleares , Optogenética , Optogenética/métodos , Humanos , Animais , Perda Auditiva/fisiopatologia , Audição/fisiologia , Cóclea/fisiologia
2.
Physiol Rev ; 101(4): 1609-1632, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33769102

RESUMO

Tinnitus is a pervasive public health issue that affects ∼15% of the United States population. Similar estimates have also been shown on a global scale, with similar prevalence found in Europe, Asia, and Africa. The severity of tinnitus is heterogeneous, ranging from mildly bothersome to extremely disruptive. In the United States, ∼10-20% of individuals who experience tinnitus report symptoms that severely reduce their quality of life. Due to the huge personal and societal burden, in the last 20 yr a concerted effort on basic and clinical research has significantly advanced our understanding and treatment of this disorder. Yet, neither full understanding, nor cure exists. We know that tinnitus is the persistent involuntary phantom percept of internally generated nonverbal indistinct noises and tones, which in most cases is initiated by acquired hearing loss and maintained only when this loss is coupled with distinct neuronal changes in auditory and extra-auditory brain networks. Yet, the exact mechanisms and patterns of neural activity that are necessary and sufficient for the perceptual generation and maintenance of tinnitus remain incompletely understood. Combinations of animal model and human research will be essential in filling these gaps. Nevertheless, the existing progress in investigating the neurophysiological mechanisms has improved current treatment and highlighted novel targets for drug development and clinical trials. The aim of this review is to thoroughly discuss the current state of human and animal tinnitus research, outline current challenges, and highlight new and exciting research opportunities.


Assuntos
Neurociências , Zumbido/fisiopatologia , Zumbido/terapia , Animais , Modelos Animais de Doenças , Perda Auditiva/etiologia , Perda Auditiva/fisiopatologia , Humanos , Qualidade de Vida , Zumbido/complicações
3.
Physiol Rev ; 100(4): 1467-1525, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32191560

RESUMO

Impairments of vision and hearing are highly prevalent conditions limiting the quality of life and presenting a major socioeconomic burden. For a long time, retinal and cochlear disorders have remained intractable for causal therapies, with sensory rehabilitation limited to glasses, hearing aids, and electrical cochlear or retinal implants. Recently, the application of gene therapy and optogenetics to eye and ear has generated hope for a fundamental improvement of vision and hearing restoration. To date, one gene therapy for the restoration of vision has been approved, and ongoing clinical trials will broaden its application including gene replacement, genome editing, and regenerative approaches. Moreover, optogenetics, i.e., controlling the activity of cells by light, offers a more general alternative strategy. Over little more than a decade, optogenetic approaches have been developed and applied to better understand the function of biological systems, while protein engineers have identified and designed new opsin variants with desired physiological features. Considering potential clinical applications of optogenetics, the spotlight is on the sensory systems, particularly the eye and ear. Multiple efforts have been undertaken to restore lost or hampered function in the eye and ear. Optogenetic stimulation promises to overcome fundamental shortcomings of electrical stimulation, namely, poor spatial resolution and cellular specificity, and accordingly to deliver more detailed sensory information. This review aims to provide a comprehensive reference on current gene therapeutic and optogenetic research relevant to the restoration of hearing and vision. We will introduce gene-therapeutic approaches and discuss the biotechnological and optoelectronic aspects of optogenetic hearing and vision restoration.


Assuntos
Perda Auditiva/terapia , Transtornos da Visão/terapia , Humanos , Optogenética , Próteses Visuais
4.
Annu Rev Pharmacol Toxicol ; 64: 211-230, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37562496

RESUMO

Each year over half a million people experience permanent hearing loss caused by treatment with therapeutic drugs with ototoxic side effects. There is a major unmet clinical need for therapies that protect against this hearing loss without reducing the therapeutic efficacy of these lifesaving drugs. At least 17 clinical trials evaluating 10 therapeutics are currently underway for therapies aimed at preventing aminoglycoside- and/or cisplatin-induced ototoxicity. This review describes the preclinical and clinical development of each of these approaches, provides updates on the status of ongoing trials, and highlights the importance of appropriate outcome measures in trial design and the value of reporting criteria in the dissemination of results.


Assuntos
Perda Auditiva , Humanos , Perda Auditiva/induzido quimicamente , Perda Auditiva/prevenção & controle , Ensaios Clínicos como Assunto
5.
Proc Natl Acad Sci U S A ; 121(10): e2309656121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408254

RESUMO

Inner ear hair cells are characterized by the F-actin-based stereocilia that are arranged into a staircase-like pattern on the apical surface of each hair cell. The tips of shorter-row stereocilia are connected with the shafts of their neighboring taller-row stereocilia through extracellular links named tip links, which gate mechano-electrical transduction (MET) channels in hair cells. Cadherin 23 (CDH23) forms the upper part of tip links, and its cytoplasmic tail is inserted into the so-called upper tip-link density (UTLD) that contains other proteins such as harmonin. The Cdh23 gene is composed of 69 exons, and we show here that exon 68 is subjected to hair cell-specific alternative splicing. Tip-link formation is not affected in genetically modified mutant mice lacking Cdh23 exon 68. Instead, the stability of tip links is compromised in the mutants, which also suffer from progressive and noise-induced hearing loss. Moreover, we show that the cytoplasmic tail of CDH23(+68) but not CDH23(-68) cooperates with harmonin in phase separation-mediated condensate formation. In conclusion, our work provides evidence that inclusion of Cdh23 exon 68 is critical for the stability of tip links through regulating condensate formation of UTLD components.


Assuntos
Surdez , Perda Auditiva , Camundongos , Animais , Perda Auditiva/genética , Perda Auditiva/metabolismo , Células Ciliadas Auditivas/fisiologia , Surdez/genética , Células Ciliadas Auditivas Internas/metabolismo , Caderinas/metabolismo , Éxons/genética
6.
Proc Natl Acad Sci U S A ; 121(24): e2311570121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38830095

RESUMO

Even a transient period of hearing loss during the developmental critical period can induce long-lasting deficits in temporal and spectral perception. These perceptual deficits correlate with speech perception in humans. In gerbils, these hearing loss-induced perceptual deficits are correlated with a reduction of both ionotropic GABAA and metabotropic GABAB receptor-mediated synaptic inhibition in auditory cortex, but most research on critical period plasticity has focused on GABAA receptors. Therefore, we developed viral vectors to express proteins that would upregulate gerbil postsynaptic inhibitory receptor subunits (GABAA, Gabra1; GABAB, Gabbr1b) in pyramidal neurons, and an enzyme that mediates GABA synthesis (GAD65) presynaptically in parvalbumin-expressing interneurons. A transient period of developmental hearing loss during the auditory critical period significantly impaired perceptual performance on two auditory tasks: amplitude modulation depth detection and spectral modulation depth detection. We then tested the capacity of each vector to restore perceptual performance on these auditory tasks. While both GABA receptor vectors increased the amplitude of cortical inhibitory postsynaptic potentials, only viral expression of postsynaptic GABAB receptors improved perceptual thresholds to control levels. Similarly, presynaptic GAD65 expression improved perceptual performance on spectral modulation detection. These findings suggest that recovering performance on auditory perceptual tasks depends on GABAB receptor-dependent transmission at the auditory cortex parvalbumin to pyramidal synapse and point to potential therapeutic targets for developmental sensory disorders.


Assuntos
Córtex Auditivo , Gerbillinae , Perda Auditiva , Animais , Córtex Auditivo/metabolismo , Córtex Auditivo/fisiopatologia , Perda Auditiva/genética , Perda Auditiva/fisiopatologia , Receptores de GABA-B/metabolismo , Receptores de GABA-B/genética , Glutamato Descarboxilase/metabolismo , Glutamato Descarboxilase/genética , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Parvalbuminas/metabolismo , Parvalbuminas/genética , Percepção Auditiva/fisiologia , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Vetores Genéticos/genética
7.
Hum Mol Genet ; 33(10): 905-918, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38449065

RESUMO

Mutations in AIFM1, encoding for apoptosis-inducing factor (AIF), cause AUNX1, an X-linked neurologic disorder with late-onset auditory neuropathy (AN) and peripheral neuropathy. Despite significant research on AIF, there are limited animal models with the disrupted AIFM1 representing the corresponding phenotype of human AUNX1, characterized by late-onset hearing loss and impaired auditory pathways. Here, we generated an Aifm1 p.R450Q knock-in mouse model (KI) based on the human AIFM1 p.R451Q mutation. Hemizygote KI male mice exhibited progressive hearing loss from P30 onward, with greater severity at P60 and stabilization until P210. Additionally, muscle atrophy was observed at P210. These phenotypic changes were accompanied by a gradual reduction in the number of spiral ganglion neuron cells (SGNs) at P30 and ribbons at P60, which coincided with the translocation of AIF into the nucleus starting from P21 and P30, respectively. The SGNs of KI mice at P210 displayed loss of cytomembrane integrity, abnormal nuclear morphology, and dendritic and axonal demyelination. Furthermore, the inner hair cells and myelin sheath displayed abnormal mitochondrial morphology, while fibroblasts from KI mice showed impaired mitochondrial function. In conclusion, we successfully generated a mouse model recapitulating AUNX1. Our findings indicate that disruption of Aifm1 induced the nuclear translocation of AIF, resulting in the impairment in the auditory pathway.


Assuntos
Fator de Indução de Apoptose , Modelos Animais de Doenças , Perda Auditiva , Animais , Humanos , Masculino , Camundongos , Fator de Indução de Apoptose/genética , Fator de Indução de Apoptose/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/genética , Técnicas de Introdução de Genes , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patologia , Perda Auditiva/genética , Perda Auditiva/patologia , Perda Auditiva/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/patologia , Atrofia Muscular/metabolismo , Mutação , Transporte Proteico , Gânglio Espiral da Cóclea/metabolismo , Gânglio Espiral da Cóclea/patologia
8.
Development ; 150(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38078650

RESUMO

Cochlear inner hair cells (IHCs) are primary sound receptors, and are therefore a target for developing treatments for hearing impairment. IHC regeneration in vivo has been widely attempted, although not yet in the IHC-damaged cochlea. Moreover, the extent to which new IHCs resemble wild-type IHCs remains unclear, as is the ability of new IHCs to improve hearing. Here, we have developed an in vivo mouse model wherein wild-type IHCs were pre-damaged and nonsensory supporting cells were transformed into IHCs by ectopically expressing Atoh1 transiently and Tbx2 permanently. Notably, the new IHCs expressed the functional marker vGlut3 and presented similar transcriptomic and electrophysiological properties to wild-type IHCs. Furthermore, the formation efficiency and maturity of new IHCs were higher than those previously reported, although marked hearing improvement was not achieved, at least partly due to defective mechanoelectrical transduction (MET) in new IHCs. Thus, we have successfully regenerated new IHCs resembling wild-type IHCs in many respects in the damaged cochlea. Our findings suggest that the defective MET is a critical barrier that prevents the restoration of hearing capacity and should thus facilitate future IHC regeneration studies.


Assuntos
Células Ciliadas Vestibulares , Perda Auditiva , Camundongos , Animais , Células Ciliadas Auditivas Internas , Cóclea/fisiologia , Perda Auditiva/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
9.
PLoS Biol ; 21(8): e3002257, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37619212

RESUMO

Cholesterol contributes to neuronal membrane integrity, supports membrane protein clustering and function, and facilitates proper signal transduction. Extensive evidence has shown that cholesterol imbalances in the central nervous system occur in aging and in the development of neurodegenerative diseases. In this work, we characterize cholesterol homeostasis in the inner ear of young and aged mice as a new unexplored possibility for the prevention and treatment of hearing loss. Our results show that cholesterol levels in the inner ear are reduced during aging, an effect that is associated with an increased expression of the cholesterol 24-hydroxylase (CYP46A1), the main enzyme responsible for cholesterol turnover in the brain. In addition, we show that pharmacological activation of CYP46A1 with the antiretroviral drug efavirenz reduces the cholesterol content in outer hair cells (OHCs), leading to a decrease in prestin immunolabeling and resulting in an increase in the distortion product otoacoustic emissions (DPOAEs) thresholds. Moreover, dietary supplementation with phytosterols, plant sterols with structure and function similar to cholesterol, was able to rescue the effect of efavirenz administration on the auditory function. Altogether, our findings point towards the importance of cholesterol homeostasis in the inner ear as an innovative therapeutic strategy in preventing and/or delaying hearing loss.


Assuntos
Infecções por HIV , Perda Auditiva , Fitosteróis , Animais , Camundongos , Colesterol 24-Hidroxilase , Perda Auditiva/induzido quimicamente
10.
Proc Natl Acad Sci U S A ; 120(34): e2307355120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37552762

RESUMO

Hearing loss is highly heterogeneous, but one common form involves a failure to maintain the local ionic environment of the sensory hair cells reflected in a reduced endocochlear potential. We used a genetic approach to ask whether this type of pathology can be reversed, using the Spns2tm1a mouse mutant known to show this defect. By activating Spns2 gene transcription at different ages after the onset of hearing loss, we found that an existing auditory impairment can be reversed to give close to normal thresholds for an auditory brainstem response (ABR), at least at low to mid stimulus frequencies. Delaying the activation of Spns2 led to less effective recovery of ABR thresholds, suggesting that there is a critical period for intervention. Early activation of Spns2 not only led to improvement in auditory function but also to protection of sensory hair cells from secondary degeneration. The genetic approach we have used to establish that this type of hearing loss is in principle reversible could be extended to many other diseases using available mouse resources.


Assuntos
Proteínas de Transporte de Ânions , Terapia Genética , Perda Auditiva , Animais , Camundongos , Perda Auditiva/genética , Perda Auditiva/patologia , Perda Auditiva/terapia , Proteínas de Transporte de Ânions/genética , Ativação Transcricional , Potenciais Microfônicos da Cóclea , Células Ciliadas Auditivas/patologia
11.
PLoS Genet ; 19(11): e1011058, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38011198

RESUMO

Adult-onset progressive hearing loss is a common, complex disease with a strong genetic component. Although to date over 150 genes have been identified as contributing to human hearing loss, many more remain to be discovered, as does most of the underlying genetic diversity. Many different variants have been found to underlie adult-onset hearing loss, but they tend to be rare variants with a high impact upon the gene product. It is likely that combinations of more common, lower impact variants also play a role in the prevalence of the disease. Here we present our exome study of hearing loss in a cohort of 532 older adult volunteers with extensive phenotypic data, including 99 older adults with normal hearing, an important control set. Firstly, we carried out an outlier analysis to identify genes with a high variant load in older adults with hearing loss compared to those with normal hearing. Secondly, we used audiometric threshold data to identify individual variants which appear to contribute to different threshold values. We followed up these analyses in a second cohort. Using these approaches, we identified genes and variants linked to better hearing as well as those linked to worse hearing. These analyses identified some known deafness genes, demonstrating proof of principle of our approach. However, most of the candidate genes are novel associations with hearing loss. While the results support the suggestion that genes responsible for severe deafness may also be involved in milder hearing loss, they also suggest that there are many more genes involved in hearing which remain to be identified. Our candidate gene lists may provide useful starting points for improved diagnosis and drug development.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Humanos , Idoso , Perda Auditiva Neurossensorial/genética , Sequenciamento do Exoma , Perda Auditiva/genética , Audição , Surdez/genética , Linhagem , Mutação
12.
PLoS Genet ; 19(1): e1010584, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656851

RESUMO

Loss or absence of hearing is common at both extremes of human lifespan, in the forms of congenital deafness and age-related hearing loss. While these are often studied separately, there is increasing evidence that their genetic basis is at least partially overlapping. In particular, both common and rare variants in genes associated with monogenic forms of hearing loss also contribute to the more polygenic basis of age-related hearing loss. Here, we directly test this model in the Penn Medicine BioBank-a healthcare system cohort of around 40,000 individuals with linked genetic and electronic health record data. We show that increased burden of predicted deleterious variants in Mendelian hearing loss genes is associated with increased risk and severity of adult-onset hearing loss. As a specific example, we identify one gene-TCOF1, responsible for a syndromic form of congenital hearing loss-in which deleterious variants are also associated with adult-onset hearing loss. We also identify four additional novel candidate genes (COL5A1, HMMR, RAPGEF3, and NNT) in which rare variant burden may be associated with hearing loss. Our results confirm that rare variants in Mendelian hearing loss genes contribute to polygenic risk of hearing loss, and emphasize the utility of healthcare system cohorts to study common complex traits and diseases.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Humanos , Adulto , Surdez/genética , Perda Auditiva/genética , Perda Auditiva Neurossensorial/genética , Herança Multifatorial , Audição , Mutação
13.
J Neurosci ; 44(16)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38395618

RESUMO

Pure-tone audiograms often poorly predict elderly humans' ability to communicate in everyday complex acoustic scenes. Binaural processing is crucial for discriminating sound sources in such complex acoustic scenes. The compromised perception of communication signals presented above hearing threshold has been linked to both peripheral and central age-related changes in the auditory system. Investigating young and old Mongolian gerbils of both sexes, an established model for human hearing, we demonstrate age-related supra-threshold deficits in binaural hearing using behavioral, electrophysiological, anatomical, and imaging methods. Binaural processing ability was measured as the binaural masking level difference (BMLD), an established measure in human psychophysics. We tested gerbils behaviorally with "virtual headphones," recorded single-unit responses in the auditory midbrain and evaluated gross midbrain and cortical responses using positron emission tomography (PET) imaging. Furthermore, we obtained additional measures of auditory function based on auditory brainstem responses, auditory-nerve synapse counts, and evidence for central inhibitory processing revealed by PET. BMLD deteriorates already in middle-aged animals having normal audiometric thresholds and is even worse in old animals with hearing loss. The magnitude of auditory brainstem response measures related to auditory-nerve function and binaural processing in the auditory brainstem also deteriorate. Furthermore, central GABAergic inhibition is affected by age. Because the number of synapses in the apical turn of the inner ear was not reduced in middle-aged animals, we conclude that peripheral synaptopathy contributes little to binaural processing deficits. Exploratory analyses suggest increased hearing thresholds, altered binaural processing in the brainstem and changed central GABAergic inhibition as potential contributors.


Assuntos
Surdez , Perda Auditiva , Masculino , Idoso , Pessoa de Meia-Idade , Feminino , Animais , Humanos , Gerbillinae , Audição/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Limiar Auditivo , Percepção Auditiva/fisiologia , Estimulação Acústica
14.
J Biol Chem ; 300(1): 105516, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042485

RESUMO

Class III myosins localize to inner ear hair cell stereocilia and are thought to be crucial for stereocilia length regulation. Mutations within the motor domain of MYO3A that disrupt its intrinsic motor properties have been associated with non-syndromic hearing loss, suggesting that the motor properties of MYO3A are critical for its function within stereocilia. In this study, we investigated the impact of a MYO3A hearing loss mutation, H442N, using both in vitro motor assays and cell biological studies. Our results demonstrate the mutation causes a dramatic increase in intrinsic motor properties, actin-activated ATPase and in vitro actin gliding velocity, as well as an increase in actin protrusion extension velocity. We propose that both "gain of function" and "loss of function" mutations in MYO3A can impair stereocilia length regulation, which is crucial for stereocilia formation during development and normal hearing. Furthermore, we generated chimeric MYO3A constructs that replace the MYO3A motor and neck domain with the motor and neck domain of other myosins. We found that duty ratio, fraction of ATPase cycle myosin is strongly bound to actin, is a critical motor property that dictates the ability to tip localize within filopodia. In addition, in vitro actin gliding velocities correlated extremely well with filopodial extension velocities over a wide range of gliding and extension velocities. Taken together, our data suggest a model in which tip-localized myosin motors exert force that slides the membrane tip-ward, which can combat membrane tension and enhance the actin polymerization rate that ultimately drives protrusion elongation.


Assuntos
Actinas , Perda Auditiva , Miosina Tipo III , Animais , Actinas/genética , Actinas/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Chlorocebus aethiops , Células COS , Perda Auditiva/genética , Perda Auditiva/metabolismo , Perda Auditiva/patologia , Miosina Tipo III/genética , Miosina Tipo III/metabolismo , Miosinas/genética , Miosinas/metabolismo , Estereocílios , Humanos
15.
Hum Mol Genet ; 32(7): 1137-1151, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36331344

RESUMO

Mitochondrial dynamics is essential for maintaining the physiological function of the mitochondrial network, and its disorders lead to a variety of diseases. Our previous study identified mitochondrial dynamics controlled anti-tumor immune responses and anxiety symptoms. However, how mitochondrial dynamics affects auditory function in the inner ear remains unclear. Here, we show that the deficiency of FAM73a or FAM73b, two mitochondrial outer membrane proteins that mediate mitochondrial fusion, leads to outer hair cells (HCs) damage and progressive hearing loss in FVB/N mice. Abnormal mitochondrial fusion causes elevated oxidative stress and apoptosis of HCs in the early stage. Thereafter, the activation of macrophages and CD4+ T cell is found in the mutant mice with the increased expression of the inflammatory cytokines IL-12 and IFN-γ compared with control mice. Strikingly, a dramatically decreased number of macrophages by Clophosome®-A-Clodronate Liposomes treatment alleviates the hearing loss of mutant mice. Collectively, our finding highlights that FAM73a or FAM73b deficiency affects HCs survival by disturbing the mitochondrial function, and the subsequent immune response in the cochleae worsens the damage of HCs.


Assuntos
Perda Auditiva , Dinâmica Mitocondrial , Animais , Camundongos , Dinâmica Mitocondrial/genética , Audição , Perda Auditiva/genética , Perda Auditiva/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Imunidade
16.
Hum Mol Genet ; 32(5): 720-731, 2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36048850

RESUMO

Hereditary hearing loss has a genetic and phenotypic heterogeneity. However, it is still difficult to explain this heterogeneity perfectly with known deafness genes. Here, we report a novel causative gene EPHA10 as well as its non-coding variant in 5' untranslated region identified in a family with post-lingual autosomal dominant non-syndromic hearing loss from southern China. One affected member of this family had an ideal hearing restoration after cochlear implantation. We speculated that there were probable deafness-causing abnormalities in the cochlea according to clinical imaging and auditory evaluations. A heterozygous variant c.-81_-73delinsAGC was found co-segregating with hearing loss. Epha10 was expressed in mouse cochlea at both transcription and translation levels. The variant caused upregulation of EPHA10 which may result from promoter activity enhancement after sequence change. Overexpression of Eph (the homolog of human EPHA10) exerted effects on the structure and function of chordotonal organ in fly model. In summary, our study linked pseudo-kinase EPHA10 to hearing loss in humans for the first time.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Animais , Camundongos , Humanos , Regulação para Cima , Regiões 5' não Traduzidas , Mutação , Surdez/genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva/genética , Linhagem , Receptores da Família Eph/genética
17.
Hum Mol Genet ; 32(10): 1622-1633, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-36617157

RESUMO

As the auditory and balance receptor cells in the inner ear, hair cells are responsible for converting mechanical stimuli into electrical signals, a process referred to as mechano-electrical transduction. Hair cell development and function are tightly regulated, and hair cell deficits are the main reasons for hearing loss and balance disorders. TMCC2 is an endoplasmic reticulum (ER)-residing transmembrane protein whose physiological function largely remains unknown. In the present work, we show that Tmcc2 is specifically expressed in the auditory hair cells of mouse inner ear. Tmcc2 knockout mice were then established to investigate its physiological role in hearing. Auditory brainstem responses measurements show that Tmcc2 knockout mice suffer from congenital hearing loss. Further investigations reveal progressive auditory hair cell loss in the Tmcc2 knockout mice. The general morphology and function of ER are unaffected in Tmcc2 knockout hair cells. However, increased ER stress was observed in Tmcc2 knockout mice and knockdown cells, suggesting that loss of TMCC2 leads to auditory hair cell death through elevated ER stress.


Assuntos
Surdez , Perda Auditiva , Animais , Camundongos , Surdez/metabolismo , Estresse do Retículo Endoplasmático/genética , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas Internas , Audição , Perda Auditiva/metabolismo , Camundongos Knockout
18.
Hum Mol Genet ; 32(8): 1348-1360, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36519758

RESUMO

Non-syndromic sensorineural hearing loss (NSHL) is a group of genetically heterogeneous conditions with broad phenotypic heterogeneity. There is, at present, no curative treatment for genetic hearing loss (HL). Early molecular diagnosis of progressive disorders and elucidation of the causes and pathomechanisms are essential for developing therapeutic strategies. Here, we identified a novel rare frameshift variant of LMX1A (c.915dup), which resulted in the C-terminal-altered and -truncated LMX1A (p.Val306Cysfs*32). This C-terminal frameshift mutation co-segregated with autosomal dominant (AD) NSHL in a four-generation Chinese family, suggesting that the LMX1A non-missense mutation is also contributed to ADNSHL. In this family, the affected individuals exhibited the variable auditory phenotypes ranging from profound congenital deafness at birth or to mild/moderate HL in adulthood. We also found that the embryonic cells carrying with the heterozygous variant significantly expressed several upregulated HL-associated genes at transcriptional level. In vitro splicing assay suggested that the LMX1A mRNA with c.915dup did not cause nonsense-mediated decay and was translated into a truncated LMX1A. In addition, electrophoresis mobility shift assay and luciferase assays have shown that the highly conserved C-terminal domain (amino acid 306-382) of the LMX1A was required for regulating the protein-DNA interaction and transactivation in vitro. Furthermore, apoptosis assays suggested that the C-terminal domain of the LMX1A was important for mediating apoptosis in the cochlear hair cells. Our work provided the multiline of the evidence to support that non-missense mutation of LMX1A leads to ADNSHL and the C-terminal domain of LMX1A is important for mediating transcriptional activity and associated with promoting apoptosis in the cells.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Humanos , Surdez/genética , Mutação da Fase de Leitura , Perda Auditiva/genética , Perda Auditiva Neurossensorial/genética , Proteínas com Homeodomínio LIM/genética , Linhagem , Fatores de Transcrição/genética
19.
Hum Mol Genet ; 32(5): 764-772, 2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36130215

RESUMO

Hereditary hearing loss is a highly genetically heterogeneous disorder. More than 150 genes have been identified to link to human non-syndromic hearing impairment. To identify genetic mutations and underlying molecular mechanisms in affected individuals and families with congenital hearing loss, we recruited a cohort of 389 affected individuals in 354 families for whole-exome sequencing analysis. In this study, we report a novel homozygous missense variant (c.233A > G, p.Lys78Arg) in the OXR1 gene, which was identified in a 4-year-old girl with sensorineural hearing loss. OXR1 encodes Oxidation Resistance 1 and is evolutionarily conserved from zebrafish to human. We found that the ortholog oxr1b gene is expressed in the statoacoustic ganglion (SAG, a sensory ganglion of ear) and posterior lateral line ganglion (pLL) in zebrafish. Knockdown of oxr1b in zebrafish resulted in a significant developmental defect of SAG and pLL. This phenotype can be rescued by co-injection of wild-type human OXR1 mRNAs, but not mutant OXR1 (c.233A > G) mRNAs. OXR1-associated pathway analysis revealed that mutations of TBC1D24, a TLDc-domain-containing homolog gene of OXR1, have previously been identified in patients with hearing loss. Interestingly, mutations or knockout of OXR1 interacting molecules such as ATP6V1B1 and ESR1 are also associated with hearing loss in patients or animal models, hinting an important role of OXR1 and associated partners in cochlear development and hearing function.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , ATPases Vacuolares Próton-Translocadoras , Animais , Feminino , Humanos , Pré-Escolar , Peixe-Zebra/genética , Perda Auditiva/genética , Surdez/genética , Perda Auditiva Neurossensorial/genética , Mutação , Linhagem , Proteínas Mitocondriais/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas Ativadoras de GTPase/genética
20.
Annu Rev Genomics Hum Genet ; 23: 275-299, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35667089

RESUMO

Current estimates suggest that nearly half a billion people worldwide are affected by hearing loss. Because of the major psychological, social, economic, and health ramifications, considerable efforts have been invested in identifying the genes and molecular pathways involved in hearing loss, whether genetic or environmental, to promote prevention, improve rehabilitation, and develop therapeutics. Genomic sequencing technologies have led to the discovery of genes associated with hearing loss. Studies of the transcriptome and epigenome of the inner ear have characterized key regulators and pathways involved in the development of the inner ear and have paved the way for their use in regenerative medicine. In parallel, the immense preclinical success of using viral vectors for gene delivery in animal models of hearing loss has motivated the industry to work on translating such approaches into the clinic. Here, we review the recent advances in the genomics of auditory function and dysfunction, from patient diagnostics to epigenetics and gene therapy.


Assuntos
Surdez , Orelha Interna , Perda Auditiva , Animais , Surdez/metabolismo , Surdez/terapia , Orelha Interna/metabolismo , Terapia Genética , Genômica , Perda Auditiva/genética , Perda Auditiva/terapia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA