Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.093
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 161(4): 714-23, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25957680

RESUMO

When transcription regulatory networks are compared among distantly related eukaryotes, a number of striking similarities are observed: a larger-than-expected number of genes, extensive overlapping connections, and an apparently high degree of functional redundancy. It is often assumed that the complexity of these networks represents optimized solutions, precisely sculpted by natural selection; their common features are often asserted to be adaptive. Here, we discuss support for an alternative hypothesis: the common structural features of transcription networks arise from evolutionary trajectories of "least resistance"--that is, the relative ease with which certain types of network structures are formed during their evolution.


Assuntos
Evolução Biológica , Redes Reguladoras de Genes , Animais , Biofilmes , Células-Tronco Embrionárias , Fungos/classificação , Fungos/genética , Fungos/metabolismo , Regulação da Expressão Gênica , Plantas/classificação , Plantas/genética , Plantas/metabolismo
2.
Cell ; 159(5): 1188-1199, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25416954

RESUMO

Glutamine is the primary metabolite of nitrogen assimilation from inorganic nitrogen sources in microorganisms and plants. The ability to monitor cellular nitrogen status is pivotal for maintaining metabolic homeostasis and sustaining growth. The present study identifies a glutamine-sensing mechanism common in the entire plant kingdom except Brassicaceae. The plastid-localized PII signaling protein controls, in a glutamine-dependent manner, the key enzyme of the ornithine synthesis pathway, N-acetyl-l-glutamate kinase (NAGK), that leads to arginine and polyamine formation. Crystal structures reveal that the plant-specific C-terminal extension of PII, which we term the Q loop, forms a low-affinity glutamine-binding site. Glutamine binding alters PII conformation, promoting interaction and activation of NAGK. The binding motif is highly conserved in plants except Brassicaceae. A functional Q loop restores glutamine sensing in a recombinant Arabidopsis thaliana PII protein, demonstrating the modular concept of the glutamine-sensing mechanism adopted by PII proteins during the evolution of plant chloroplasts.


Assuntos
Glutamina/metabolismo , Plantas/metabolismo , Sequência de Aminoácidos , Chlamydomonas reinhardtii/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Nitrogênio/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/química , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Plantas/classificação , Alinhamento de Sequência
3.
Nature ; 618(7967): 986-991, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37286601

RESUMO

Life history, the schedule of when and how fast organisms grow, die and reproduce, is a critical axis along which species differ from each other1-4. In parallel, competition is a fundamental mechanism that determines the potential for species coexistence5-8. Previous models of stochastic competition have demonstrated that large numbers of species can persist over long timescales, even when competing for a single common resource9-12, but how life history differences between species increase or decrease the possibility of coexistence and, conversely, whether competition constrains what combinations of life history strategies complement each other remain open questions. Here we show that specific combinations of life history strategy optimize the persistence times of species competing for a single resource before one species overtakes its competitors. This suggests that co-occurring species would tend to have such complementary life history strategies, which we demonstrate using empirical data for perennial plants.


Assuntos
Biodiversidade , Características de História de Vida , Plantas , Modelos Biológicos , Plantas/classificação , Comportamento Competitivo , Processos Estocásticos
4.
Nature ; 619(7970): 545-550, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438518

RESUMO

Oceanic island floras are well known for their morphological peculiarities and exhibit striking examples of trait evolution1-3. These morphological shifts are commonly attributed to insularity and are thought to be shaped by the biogeographical processes and evolutionary histories of oceanic islands2,4. However, the mechanisms through which biogeography and evolution have shaped the distribution and diversity of plant functional traits remain unclear5. Here we describe the functional trait space of the native flora of an oceanic island (Tenerife, Canary Islands, Spain) using extensive field and laboratory measurements, and relate it to global trade-offs in ecological strategies. We find that the island trait space exhibits a remarkable functional richness but that most plants are concentrated around a functional hotspot dominated by shrubs with a conservative life-history strategy. By dividing the island flora into species groups associated with distinct biogeographical distributions and diversification histories, our results also suggest that colonization via long-distance dispersal and the interplay between inter-island dispersal and archipelago-level speciation processes drive functional divergence and trait space expansion. Contrary to our expectations, speciation via cladogenesis has led to functional convergence, and therefore only contributes marginally to functional diversity by densely packing trait space around shrubs. By combining biogeography, ecology and evolution, our approach opens new avenues for trait-based insights into how dispersal, speciation and persistence shape the assembly of entire native island floras.


Assuntos
Biodiversidade , Ilhas , Oceanos e Mares , Plantas , Especiação Genética , Características de História de Vida , Fenótipo , Filogenia , Plantas/classificação , Espanha , Ecologia
5.
Nature ; 624(7990): 109-114, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37938778

RESUMO

There are two main life cycles in plants-annual and perennial1,2. These life cycles are associated with different traits that determine ecosystem function3,4. Although life cycles are textbook examples of plant adaptation to different environments, we lack comprehensive knowledge regarding their global distributional patterns. Here we assembled an extensive database of plant life cycle assignments of 235,000 plant species coupled with millions of georeferenced datapoints to map the worldwide biogeography of these plant species. We found that annual plants are half as common as initially thought5-8, accounting for only 6% of plant species. Our analyses indicate that annuals are favoured in hot and dry regions. However, a more accurate model shows that the prevalence of annual species is driven by temperature and precipitation in the driest quarter (rather than yearly means), explaining, for example, why some Mediterranean systems have more annuals than desert systems. Furthermore, this pattern remains consistent among different families, indicating convergent evolution. Finally, we demonstrate that increasing climate variability and anthropogenic disturbance increase annual favourability. Considering future climate change, we predict an increase in annual prevalence for 69% of the world's ecoregions by 2060. Overall, our analyses raise concerns for ecosystem services provided by perennial plants, as ongoing changes are leading to a higher proportion of annual plants globally.


Assuntos
Ecossistema , Mapeamento Geográfico , Filogeografia , Fenômenos Fisiológicos Vegetais , Plantas , Aclimatação , Evolução Biológica , Mudança Climática/estatística & dados numéricos , Bases de Dados Factuais , Clima Desértico , Atividades Humanas , Região do Mediterrâneo , Plantas/classificação , Chuva , Temperatura
6.
Nature ; 624(7990): 115-121, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38030724

RESUMO

The long-term diversification of the biosphere responds to changes in the physical environment. Yet, over the continents, the nearly monotonic expansion of life started later in the early part of the Phanerozoic eon1 than the expansion in the marine realm, where instead the number of genera waxed and waned over time2. A comprehensive evaluation of the changes in the geodynamic and climatic forcing fails to provide a unified theory for the long-term pattern of evolution of life on Earth. Here we couple climate and plate tectonics models to numerically reconstruct the evolution of the Earth's landscape over the entire Phanerozoic eon, which we then compare to palaeo-diversity datasets from marine animal and land plant genera. Our results indicate that biodiversity is strongly reliant on landscape dynamics, which at all times determine the carrying capacity of both the continental domain and the oceanic domain. In the oceans, diversity closely adjusted to the riverine sedimentary flux that provides nutrients for primary production. On land, plant expansion was hampered by poor edaphic conditions until widespread endorheic basins resurfaced continents with a sedimentary cover that facilitated the development of soil-dependent rooted flora, and the increasing variety of the landscape additionally promoted their development.


Assuntos
Organismos Aquáticos , Biodiversidade , Evolução Biológica , Clima , Planeta Terra , Plantas , Animais , Oceanos e Mares , Solo/química , Plantas/classificação , Organismos Aquáticos/classificação , Modelos Biológicos , Rios/química , Sedimentos Geológicos/análise , Sedimentos Geológicos/química
7.
Nature ; 615(7954): 848-853, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36813960

RESUMO

Global net land carbon uptake or net biome production (NBP) has increased during recent decades1. Whether its temporal variability and autocorrelation have changed during this period, however, remains elusive, even though an increase in both could indicate an increased potential for a destabilized carbon sink2,3. Here, we investigate the trends and controls of net terrestrial carbon uptake and its temporal variability and autocorrelation from 1981 to 2018 using two atmospheric-inversion models, the amplitude of the seasonal cycle of atmospheric CO2 concentration derived from nine monitoring stations distributed across the Pacific Ocean and dynamic global vegetation models. We find that annual NBP and its interdecadal variability increased globally whereas temporal autocorrelation decreased. We observe a separation of regions characterized by increasingly variable NBP, associated with warm regions and increasingly variable temperatures, lower and weaker positive trends in NBP and regions where NBP became stronger and less variable. Plant species richness presented a concave-down parabolic spatial relationship with NBP and its variability at the global scale whereas nitrogen deposition generally increased NBP. Increasing temperature and its increasing variability appear as the most important drivers of declining and increasingly variable NBP. Our results show increasing variability of NBP regionally that can be mostly attributed to climate change and that may point to destabilization of the coupled carbon-climate system.


Assuntos
Sequestro de Carbono , Carbono , Mudança Climática , Ecossistema , Mapeamento Geográfico , Plantas , Carbono/análise , Carbono/metabolismo , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Sequestro de Carbono/fisiologia , Estações do Ano , Atmosfera/química , Oceano Pacífico , Temperatura , Nitrogênio/metabolismo , Plantas/classificação , Plantas/metabolismo , Medição de Risco
8.
Nat Rev Genet ; 23(1): 55-68, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34526697

RESUMO

Plant intra-individual and inter-individual variation can be determined by the epigenome, a set of covalent modifications of DNA and chromatin that can alter genome structure and activity without changes to the genome sequence. The epigenome of plant cells is plastic, that is, it can change in response to internal or external cues, such as during development or due to environmental changes, to create a memory of such events. Ongoing advances in technologies to read and write epigenomic patterns with increasing resolution, scale and precision are enabling the extent of plant epigenome variation to be more extensively characterized and functionally interrogated. In this Review, we discuss epigenome dynamics and variation within plants during development and in response to environmental changes, including stress, as well as between plants. We review known or potential functions of such plasticity and emphasize the importance of investigating the causality of epigenomic changes. Finally, we discuss emerging technologies that may underpin future research into plant epigenome plasticity.


Assuntos
Metilação de DNA , Epigênese Genética/genética , Epigenoma/genética , Epigenômica , Variação Genética , Plantas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Modelos Genéticos , Mutação , Proteínas de Plantas/genética , Plantas/classificação , Sítio de Iniciação de Transcrição
9.
Cell ; 153(7): 1579-88, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23791184

RESUMO

An ultimate goal of evolutionary biology is the prediction and experimental verification of adaptive trajectories on macroevolutionary timescales. This aim has rarely been achieved for complex biological systems, as models usually lack clear correlates of organismal fitness. Here, we simulate the fitness landscape connecting two carbon fixation systems: C3 photosynthesis, used by most plant species, and the C4 system, which is more efficient at ambient CO2 levels and elevated temperatures and which repeatedly evolved from C3. Despite extensive sign epistasis, C4 photosynthesis is evolutionarily accessible through individually adaptive steps from any intermediate state. Simulations show that biochemical subtraits evolve in modules; the order and constitution of modules confirm and extend previous hypotheses based on species comparisons. Plant-species-designated C3-C4 intermediates lie on predicted evolutionary trajectories, indicating that they indeed represent transitory states. Contrary to expectations, we find no slowdown of adaptation and no diminishing fitness gains along evolutionary trajectories.


Assuntos
Evolução Biológica , Fotossíntese , Plantas/genética , Adaptação Fisiológica , Ciclo do Carbono , Epistasia Genética , Evolução Molecular , Aptidão Genética , Mutação , Fenômenos Fisiológicos Vegetais , Plantas/classificação
10.
Nature ; 611(7936): 512-518, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36261519

RESUMO

Long-term analyses of biodiversity data highlight a 'biodiversity conservation paradox': biological communities show substantial species turnover over the past century1,2, but changes in species richness are marginal1,3-5. Most studies, however, have focused only on the incidence of species, and have not considered changes in local abundance. Here we asked whether analysing changes in the cover of plant species could reveal previously unrecognized patterns of biodiversity change and provide insights into the underlying mechanisms. We compiled and analysed a dataset of 7,738 permanent and semi-permanent vegetation plots from Germany that were surveyed between 2 and 54 times from 1927 to 2020, in total comprising 1,794 species of vascular plants. We found that decrements in cover, averaged across all species and plots, occurred more often than increments; that the number of species that decreased in cover was higher than the number of species that increased; and that decrements were more equally distributed among losers than were gains among winners. Null model simulations confirmed that these trends do not emerge by chance, but are the consequence of species-specific negative effects of environmental changes. In the long run, these trends might result in substantial losses of species at both local and regional scales. Summarizing the changes by decade shows that the inequality in the mean change in species cover of losers and winners diverged as early as the 1960s. We conclude that changes in species cover in communities represent an important but understudied dimension of biodiversity change that should more routinely be considered in time-series analyses.


Assuntos
Biodiversidade , Plantas , Alemanha , Plantas/classificação , Especificidade da Espécie , Fatores de Tempo , Conjuntos de Dados como Assunto
11.
Nature ; 611(7936): 507-511, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36323782

RESUMO

Although precipitation patterns have long been known to shape plant distributions1, the effect of changing climate on the interactions of species and therefore community composition is far less understood2,3. Here, we explored how changes in precipitation alter competitive dynamics via direct effects on individual species, as well as by the changing strength of competitive interactions between species, using an annual grassland community in California. We grew plants under ambient and reduced precipitation in the field to parameterize a competition model4 with which we quantified the stabilizing niche and fitness differences that determine species coexistence in each rainfall regime. We show that reduced precipitation had little direct effect on species grown alone, but it qualitatively shifted predicted competitive outcomes for 10 of 15 species pairs. In addition, species pairs that were functionally more similar were less likely to experience altered outcomes, indicating that functionally diverse communities may be most threatened by changing interactions. Our results highlight how important it is to account for changes to species interactions when predicting species and community response to global change.


Assuntos
Biota , Mudança Climática , Pradaria , Fenômenos Fisiológicos Vegetais , Plantas , Chuva , Clima , Plantas/classificação , Especificidade da Espécie , California
12.
Nature ; 611(7935): 301-305, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36323777

RESUMO

Enrichment of nutrients and loss of herbivores are assumed to cause a loss of plant diversity in grassland ecosystems because they increase plant cover, which leads to a decrease of light in the understory1-3. Empirical tests of the role of competition for light in natural systems are based on indirect evidence, and have been a topic of debate for the last 40 years. Here we show that experimentally restoring light to understory plants in a natural grassland mitigates the loss of plant diversity that is caused by either nutrient enrichment or the absence of mammalian herbivores. The initial effect of light addition on restoring diversity under fertilization was transitory and outweighed by the greater effect of herbivory on light levels, indicating that herbivory is a major factor that controls diversity, partly through light. Our results provide direct experimental evidence, in a natural system, that competition for light is a key mechanism that contributes to the loss of biodiversity after cessation of mammalian herbivory. Our findings also show that the effects of herbivores can outpace the effects of fertilization on competition for light. Management practices that target maintaining grazing by native or domestic herbivores could therefore have applications in protecting biodiversity in grassland ecosystems, because they alleviate competition for light in the understory.


Assuntos
Biodiversidade , Herbivoria , Luz , Plantas , Animais , Pradaria , Mamíferos/fisiologia , Nutrientes/metabolismo , Plantas/classificação , Plantas/metabolismo , Plantas/efeitos da radiação , Fertilizantes
13.
Nature ; 607(7920): 721-725, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35859181

RESUMO

Mounting concern over the global decline of pollinators has fuelled calls for investigating their role in maintaining plant diversity1,2. Theory predicts that competition for pollinators can stabilize interactions between plant species by providing opportunities for niche differentiation3, while at the same time can drive competitive imbalances that favour exclusion4. Here we empirically tested these contrasting effects by manipulating competition for pollinators in a way that predicts its long-term implications for plant coexistence. We subjected annual plant individuals situated across experimentally imposed gradients in neighbour density to either ambient insect pollination or a pollen supplementation treatment alleviating competition for pollinators. The vital rates of these individuals informed plant population dynamic models predicting the key theoretical metrics of species coexistence. Competition for pollinators generally destabilized the interactions between plant species, reducing the proportion of pairs expected to coexist. Interactions with pollinators also influenced the competitive imbalances between plant species, effects that are expected to strengthen with pollinator decline, potentially disrupting plant coexistence. Indeed, results from an experiment simulating pollinator decline showed that plant species experiencing greater reductions in floral visitation also suffered greater declines in population growth rate. Our results reveal that competition for pollinators may weaken plant coexistence by destabilizing interactions and contributing to competitive imbalances, information critical for interpreting the impacts of pollinator decline.


Assuntos
Insetos , Fenômenos Fisiológicos Vegetais , Plantas , Polinização , Animais , Biodiversidade , Comportamento Competitivo , Flores/fisiologia , Insetos/classificação , Insetos/fisiologia , Plantas/classificação , Pólen , Dinâmica Populacional
14.
Nat Methods ; 21(6): 971-973, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38769467

RESUMO

Metagenomic taxonomic classifiers analyze either DNA or amino acid (AA) sequences. Metabuli ( https://metabuli.steineggerlab.com ), however, jointly analyzes both DNA and AA to leverage AA conservation for sensitive homology detection and DNA mutations for specific differentiation of closely related taxa. In the Critical Assessment of Metagenome Interpretation 2 plant-associated dataset, Metabuli covered 99% and 98% of classifications of state-of-the-art DNA- and AA-based classifiers, respectively.


Assuntos
Aminoácidos , Metagenoma , Metagenômica , Metagenômica/métodos , Aminoácidos/genética , DNA/genética , Software , Plantas/classificação , Análise de Sequência de DNA/métodos , Sequência de Aminoácidos
15.
Nature ; 597(7878): 683-687, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34588667

RESUMO

Plant traits determine how individual plants cope with heterogeneous environments. Despite large variability in individual traits, trait coordination and trade-offs1,2 result in some trait combinations being much more widespread than others, as revealed in the global spectrum of plant form and function (GSPFF3) and the root economics space (RES4) for aboveground and fine-root traits, respectively. Here we combine the traits that define both functional spaces. Our analysis confirms the major trends of the GSPFF and shows that the RES captures additional information. The four dimensions needed to explain the non-redundant information in the dataset can be summarized in an aboveground and a fine-root plane, corresponding to the GSPFF and the RES, respectively. Both planes display high levels of species aggregation, but the differentiation among growth forms, families and biomes is lower on the fine-root plane, which does not include any size-related trait, than on the aboveground plane. As a result, many species with similar fine-root syndromes display contrasting aboveground traits. This highlights the importance of including belowground organs to the GSPFF when exploring the interplay between different natural selection pressures and whole-plant trait integration.


Assuntos
Ecossistema , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/fisiologia , Plantas/classificação , Fenótipo , Desenvolvimento Vegetal , Análise de Componente Principal
16.
Nature ; 598(7881): 468-472, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34552242

RESUMO

The leaf economics spectrum1,2 and the global spectrum of plant forms and functions3 revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species2. Ecosystem functions depend on environmental conditions and the traits of species that comprise the ecological communities4. However, the axes of variation of ecosystem functions are largely unknown, which limits our understanding of how ecosystems respond as a whole to anthropogenic drivers, climate and environmental variability4,5. Here we derive a set of ecosystem functions6 from a dataset of surface gas exchange measurements across major terrestrial biomes. We find that most of the variability within ecosystem functions (71.8%) is captured by three key axes. The first axis reflects maximum ecosystem productivity and is mostly explained by vegetation structure. The second axis reflects ecosystem water-use strategies and is jointly explained by variation in vegetation height and climate. The third axis, which represents ecosystem carbon-use efficiency, features a gradient related to aridity, and is explained primarily by variation in vegetation structure. We show that two state-of-the-art land surface models reproduce the first and most important axis of ecosystem functions. However, the models tend to simulate more strongly correlated functions than those observed, which limits their ability to accurately predict the full range of responses to environmental changes in carbon, water and energy cycling in terrestrial ecosystems7,8.


Assuntos
Ciclo do Carbono , Ecossistema , Plantas/metabolismo , Ciclo Hidrológico , Dióxido de Carbono/metabolismo , Clima , Conjuntos de Dados como Assunto , Umidade , Plantas/classificação , Análise de Componente Principal
17.
Nature ; 584(7822): 579-583, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760001

RESUMO

New Guinea is the world's largest tropical island and has fascinated naturalists for centuries1,2. Home to some of the best-preserved ecosystems on the planet3 and to intact ecological gradients-from mangroves to tropical alpine grasslands-that are unmatched in the Asia-Pacific region4,5, it is a globally recognized centre of biological and cultural diversity6,7. So far, however, there has been no attempt to critically catalogue the entire vascular plant diversity of New Guinea. Here we present the first, to our knowledge, expert-verified checklist of the vascular plants of mainland New Guinea and surrounding islands. Our publicly available checklist includes 13,634 species (68% endemic), 1,742 genera and 264 families-suggesting that New Guinea is the most floristically diverse island in the world. Expert knowledge is essential for building checklists in the digital era: reliance on online taxonomic resources alone would have inflated species counts by 22%. Species discovery shows no sign of levelling off, and we discuss steps to accelerate botanical research in the 'Last Unknown'8.


Assuntos
Biodiversidade , Classificação/métodos , Ilhas , Plantas/classificação , Mapeamento Geográfico , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Internet , Nova Guiné , Especificidade da Espécie , Fatores de Tempo
18.
Proc Natl Acad Sci U S A ; 119(27): e2120662119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35767644

RESUMO

Species richness varies immensely around the world. Variation in the rate of diversification (speciation minus extinction) is often hypothesized to explain this pattern, while alternative explanations invoke time or ecological carrying capacities as drivers. Focusing on seed plants, the world's most important engineers of terrestrial ecosystems, we investigated the role of diversification rate as a link between the environment and global species richness patterns. Applying structural equation modeling to a comprehensive distribution dataset and phylogenetic tree covering all circa 332,000 seed plant species and 99.9% of the world's terrestrial surface (excluding Antarctica), we test five broad hypotheses postulating that diversification serves as a mechanistic link between species richness and climate, climatic stability, seasonality, environmental heterogeneity, or the distribution of biomes. Our results show that the global patterns of species richness and diversification rate are entirely independent. Diversification rates were not highest in warm and wet climates, running counter to the Metabolic Theory of Ecology, one of the dominant explanations for global gradients in species richness. Instead, diversification rates were highest in edaphically diverse, dry areas that have experienced climate change during the Neogene. Meanwhile, we confirmed climate and environmental heterogeneity as the main drivers of species richness, but these effects did not involve diversification rates as a mechanistic link, calling for alternative explanations. We conclude that high species richness is likely driven by the antiquity of wet tropical areas (supporting the "tropical conservatism hypothesis") or the high ecological carrying capacity of warm, wet, and/or environmentally heterogeneous environments.


Assuntos
Extinção Biológica , Especiação Genética , Plantas , Biodiversidade , Clima , Conjuntos de Dados como Assunto , Ecossistema , Filogenia , Plantas/classificação , Plantas/genética
19.
Proc Natl Acad Sci U S A ; 119(35): e2204400119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994662

RESUMO

Ecological niche differences are necessary for stable species coexistence but are often difficult to discern. Models of dietary niche differentiation in large mammalian herbivores invoke the quality, quantity, and spatiotemporal distribution of plant tissues and growth forms but are agnostic toward food plant species identity. Empirical support for these models is variable, suggesting that additional mechanisms of resource partitioning may be important in sustaining large-herbivore diversity in African savannas. We used DNA metabarcoding to conduct a taxonomically explicit analysis of large-herbivore diets across southeastern Africa, analyzing ∼4,000 fecal samples of 30 species from 10 sites in seven countries over 6 y. We detected 893 food plant taxa from 124 families, but just two families-grasses and legumes-accounted for the majority of herbivore diets. Nonetheless, herbivore species almost invariably partitioned food plant taxa; diet composition differed significantly in 97% of pairwise comparisons between sympatric species, and dissimilarity was pronounced even between the strictest grazers (grass eaters), strictest browsers (nongrass eaters), and closest relatives at each site. Niche differentiation was weakest in an ecosystem recovering from catastrophic defaunation, indicating that food plant partitioning is driven by species interactions, and was stronger at low rainfall, as expected if interspecific competition is a predominant driver. Diets differed more between browsers than grazers, which predictably shaped community organization: Grazer-dominated trophic networks had higher nestedness and lower modularity. That dietary differentiation is structured along taxonomic lines complements prior work on how herbivores partition plant parts and patches and suggests that common mechanisms govern herbivore coexistence and community assembly in savannas.


Assuntos
Dieta , Pradaria , Herbivoria , Mamíferos , Plantas , África , Animais , Comportamento Competitivo , Código de Barras de DNA Taxonômico , Dieta/estatística & dados numéricos , Dieta/veterinária , Fabaceae/classificação , Fabaceae/genética , Fezes , Mamíferos/classificação , Mamíferos/fisiologia , Plantas/classificação , Plantas/genética , Poaceae/classificação , Poaceae/genética , Chuva
20.
BMC Plant Biol ; 24(1): 481, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38816698

RESUMO

BACKGROUND: LACS (long-chain acyl-CoA synthetase) genes are widespread in organisms and have multiple functions in plants, especially in lipid metabolism. However, the origin and evolutionary dynamics of the LACS gene family remain largely unknown. RESULTS: Here, we identified 1785 LACS genes in the genomes of 166 diverse plant species and identified the clades (I, II, III, IV, V, VI) of six clades for the LACS gene family of green plants through phylogenetic analysis. Based on the evolutionary history of plant lineages, we found differences in the origins of different clades, with Clade IV originating from chlorophytes and representing the origin of LACS genes in green plants. The structural characteristics of different clades indicate that clade IV is relatively independent, while the relationships between clades (I, II, III) and clades (V, VI) are closer. Dispersed duplication (DSD) and transposed duplication (TRD) are the main forces driving the evolution of plant LACS genes. Network clustering analysis further grouped all LACS genes into six main clusters, with genes within each cluster showing significant co-linearity. Ka/Ks results suggest that LACS family genes underwent purifying selection during evolution. We analyzed the phylogenetic relationships and characteristics of six clades of the LACS gene family to explain the origin, evolutionary history, and phylogenetic relationships of different clades and proposed a hypothetical evolutionary model for the LACS family of genes in plants. CONCLUSIONS: Our research provides genome-wide insights into the evolutionary history of the LACS gene family in green plants. These insights lay an important foundation for comprehensive functional characterization in future research.


Assuntos
Coenzima A Ligases , Evolução Molecular , Família Multigênica , Filogenia , Plantas , Coenzima A Ligases/genética , Plantas/genética , Plantas/classificação , Proteínas de Plantas/genética , Genes de Plantas , Genoma de Planta , Duplicação Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA