Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 481
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 188(1): 81-96, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34662407

RESUMO

Bicontinuous membranes in cell organelles epitomize nature's ability to create complex functional nanostructures. Like their synthetic counterparts, these membranes are characterized by continuous membrane sheets draped onto topologically complex saddle-shaped surfaces with a periodic network-like structure. Their structure sizes, (around 50-500 nm), and fluid nature make transmission electron microscopy (TEM) the analysis method of choice to decipher their nanostructural features. Here we present a tool, Surface Projection Image Recognition Environment (SPIRE), to identify bicontinuous structures from TEM sections through interactive identification by comparison to mathematical "nodal surface" models. The prolamellar body (PLB) of plant etioplasts is a bicontinuous membrane structure with a key physiological role in chloroplast biogenesis. However, the determination of its spatial structural features has been held back by the lack of tools enabling the identification and quantitative analysis of symmetric membrane conformations. Using our SPIRE tool, we achieved a robust identification of the bicontinuous diamond surface as the dominant PLB geometry in angiosperm etioplasts in contrast to earlier long-standing assertions in the literature. Our data also provide insights into membrane storage capacities of PLBs with different volume proportions and hint at the limited role of a plastid ribosome localization directly inside the PLB grid for its proper functioning. This represents an important step in understanding their as yet elusive structure-function relationship.


Assuntos
Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/ultraestrutura , Plastídeos/fisiologia , Plastídeos/ultraestrutura , Avena/crescimento & desenvolvimento , Avena/ultraestrutura , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/ultraestrutura , Microscopia Eletrônica de Transmissão/métodos , Modelos Teóricos , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/ultraestrutura , Phaseolus/crescimento & desenvolvimento , Phaseolus/ultraestrutura , Software , Zea mays/crescimento & desenvolvimento , Zea mays/ultraestrutura
2.
Proc Natl Acad Sci U S A ; 117(35): 21796-21803, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817419

RESUMO

Plastids, the defining organelles of plant cells, undergo physiological and morphological changes to fulfill distinct biological functions. In particular, the differentiation of chloroplasts into chromoplasts results in an enhanced storage capacity for carotenoids with industrial and nutritional value such as beta-carotene (provitamin A). Here, we show that synthetically inducing a burst in the production of phytoene, the first committed intermediate of the carotenoid pathway, elicits an artificial chloroplast-to-chromoplast differentiation in leaves. Phytoene overproduction initially interferes with photosynthesis, acting as a metabolic threshold switch mechanism that weakens chloroplast identity. In a second stage, phytoene conversion into downstream carotenoids is required for the differentiation of chromoplasts, a process that involves a concurrent reprogramming of nuclear gene expression and plastid morphology for improved carotenoid storage. We hence demonstrate that loss of photosynthetic competence and enhanced production of carotenoids are not just consequences but requirements for chloroplasts to differentiate into chromoplasts.


Assuntos
Carotenoides/metabolismo , Cloroplastos/metabolismo , Plastídeos/metabolismo , Arabidopsis/metabolismo , Diferenciação Celular/fisiologia , Cloroplastos/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plastídeos/fisiologia , Engenharia de Proteínas/métodos , Nicotiana/metabolismo , beta Caroteno/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(10): 5364-5375, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32094181

RESUMO

Nucleomorphs are relic endosymbiont nuclei so far found only in two algal groups, cryptophytes and chlorarachniophytes, which have been studied to model the evolutionary process of integrating an endosymbiont alga into a host-governed plastid (organellogenesis). However, past studies suggest that DNA transfer from the endosymbiont to host nuclei had already ceased in both cryptophytes and chlorarachniophytes, implying that the organellogenesis at the genetic level has been completed in the two systems. Moreover, we have yet to pinpoint the closest free-living relative of the endosymbiotic alga engulfed by the ancestral chlorarachniophyte or cryptophyte, making it difficult to infer how organellogenesis altered the endosymbiont genome. To counter the above issues, we need novel nucleomorph-bearing algae, in which endosymbiont-to-host DNA transfer is on-going and for which endosymbiont/plastid origins can be inferred at a fine taxonomic scale. Here, we report two previously undescribed dinoflagellates, strains MGD and TGD, with green algal endosymbionts enclosing plastids as well as relic nuclei (nucleomorphs). We provide evidence for the presence of DNA in the two nucleomorphs and the transfer of endosymbiont genes to the host (dinoflagellate) genomes. Furthermore, DNA transfer between the host and endosymbiont nuclei was found to be in progress in both the MGD and TGD systems. Phylogenetic analyses successfully resolved the origins of the endosymbionts at the genus level. With the combined evidence, we conclude that the host-endosymbiont integration in MGD/TGD is less advanced than that in cryptophytes/chrorarachniophytes, and propose the two dinoflagellates as models for elucidating organellogenesis.


Assuntos
Cercozoários/ultraestrutura , Criptófitas/ultraestrutura , Dinoflagellida/ultraestrutura , Evolução Molecular , Genomas de Plastídeos , Plastídeos/fisiologia , Simbiose , Núcleo Celular/genética , Núcleo Celular/fisiologia , Cercozoários/classificação , Cercozoários/genética , Clorófitas/classificação , Clorófitas/fisiologia , Clorófitas/ultraestrutura , Criptófitas/classificação , Criptófitas/genética , Dinoflagellida/classificação , Dinoflagellida/genética , Modelos Biológicos , Filogenia , Plastídeos/genética
4.
Plant J ; 107(1): 237-255, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33884686

RESUMO

Stromules are dynamic membrane-bound tubular structures that emanate from plastids. Stromule formation is triggered in response to various stresses and during plant development, suggesting that stromules may have physiological and developmental roles in these processes. Despite the possible biological importance of stromules and their prevalence in green plants, their exact roles and formation mechanisms remain unclear. To explore these issues, we obtained Arabidopsis thaliana mutants with excess stromule formation in the leaf epidermis by microscopy-based screening. Here, we characterized one of these mutants, stromule biogenesis altered 1 (suba1). suba1 forms plastids with severely altered morphology in a variety of non-mesophyll tissues, such as leaf epidermis, hypocotyl epidermis, floral tissues, and pollen grains, but apparently normal leaf mesophyll chloroplasts. The suba1 mutation causes impaired chloroplast pigmentation and altered chloroplast ultrastructure in stomatal guard cells, as well as the aberrant accumulation of lipid droplets and their autophagic engulfment by the vacuole. The causal defective gene in suba1 is TRIGALACTOSYLDIACYLGLYCEROL5 (TGD5), which encodes a protein putatively involved in the endoplasmic reticulum (ER)-to-plastid lipid trafficking required for the ER pathway of thylakoid lipid assembly. These findings suggest that a non-mesophyll-specific mechanism maintains plastid morphology. The distinct mechanisms maintaining plastid morphology in mesophyll versus non-mesophyll plastids might be attributable, at least in part, to the differential contributions of the plastidial and ER pathways of lipid metabolism between mesophyll and non-mesophyll plastids.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/citologia , Proteínas de Transporte/fisiologia , Células do Mesofilo/fisiologia , Plastídeos/fisiologia , Arabidopsis/crescimento & desenvolvimento , Cloroplastos/ultraestrutura , Flores/citologia , Células do Mesofilo/ultraestrutura , Mutação , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Folhas de Planta/citologia , Folhas de Planta/genética , Raízes de Plantas/citologia , Estômatos de Plantas , Plantas Geneticamente Modificadas , Plastídeos/ultraestrutura
5.
Plant Mol Biol ; 108(4-5): 497-512, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35083581

RESUMO

KEY MESSAGE: Mutation of the BEIIb gene in an isa1 mutant background mitigates the negative effect of the ISA1 mutation on grain filling, and facilitates recovery of amyloplast formation in rice endosperm. In this study, the effect of branching enzyme IIb and isoamylase 1 deficiency on starch properties was demonstrated using high resistant starch rice lines, Chikushi-kona 85 and EM129. Both lines harbored a mutation in the BEIIb and ISA1 genes and showed no BEIIb and ISA1 activity, implying that both lines are beIIb isa1 double mutants. The amylopectin long chain and apparent amylose content of both mutant lines were higher than those of the wild-type. While both mutants contained loosely packed, round starch grains, a trait specific to beIIb mutants, they also showed collapsed starch grains at the center of the endosperm, a property specific to isa1 mutants. Furthermore, beIIb isa1 double mutant F2 lines derived from a cross between Chikushi-kona 85 and Nishihomare (wild-type cultivar) showed significantly heavier seed weight than the beIIb and isa1 single mutant lines. These results suggest that co-occurrence of beIIb and isa1 mutant alleles in a single genetic background mitigates the negative effect of the isa1 allele on grain filling, and contributes to recovery of the amyloplast formation defect in the isa1 single mutant.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/genética , Isoamilase/genética , Oryza/genética , Plastídeos/fisiologia , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Grão Comestível , Genótipo , Isoamilase/metabolismo , Mutação , Oryza/enzimologia , Oryza/metabolismo
6.
Proc Natl Acad Sci U S A ; 116(23): 11518-11527, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31101712

RESUMO

Environmental stresses dramatically impact the balance between the production of photosynthetically derived energetic electrons and Calvin-Benson-Bassham cycle (CBBC) activity; an imbalance promotes accumulation of reactive oxygen species and causes cell damage. Hence, photosynthetic organisms have developed several strategies to route electrons toward alternative outlets that allow for storage or harmless dissipation of their energy. In this work, we explore the activities of three essential outlets associated with Chlamydomonas reinhardtii photosynthetic electron transport: (i) reduction of O2 to H2O through flavodiiron proteins (FLVs) and (ii) plastid terminal oxidases (PTOX) and (iii) the synthesis of starch. Real-time measurements of O2 exchange have demonstrated that FLVs immediately engage during dark-to-light transitions, allowing electron transport when the CBBC is not fully activated. Under these conditions, we quantified maximal FLV activity and its overall capacity to direct photosynthetic electrons toward O2 reduction. However, when starch synthesis is compromised, a greater proportion of the electrons is directed toward O2 reduction through both the FLVs and PTOX, suggesting an important role for starch synthesis in priming/regulating CBBC and electron transport. Moreover, partitioning energized electrons between sustainable (starch; energetic electrons are recaptured) and nonsustainable (H2O; energetic electrons are not recaptured) outlets is part of the energy management strategy of photosynthetic organisms that allows them to cope with the fluctuating conditions encountered in nature. Finally, unmasking the repertoire and control of such energetic reactions offers new directions for rational redesign and optimization of photosynthesis to satisfy global demands for food and other resources.


Assuntos
Transporte de Elétrons/fisiologia , Fotossíntese/fisiologia , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/fisiologia , Escuridão , Luz , Oxirredutases/metabolismo , Oxigênio/metabolismo , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Plastídeos/fisiologia
7.
Proc Natl Acad Sci U S A ; 115(15): E3471-E3480, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29581286

RESUMO

Streptophytes are unique among photosynthetic eukaryotes in having conquered land. As the ancestors of land plants, streptophyte algae are hypothesized to have possessed exaptations to the environmental stressors encountered during the transition to terrestrial life. Many of these stressors, including high irradiance and drought, are linked to plastid biology. We have investigated global gene expression patterns across all six major streptophyte algal lineages, analyzing a total of around 46,000 genes assembled from a little more than 1.64 billion sequence reads from six organisms under three growth conditions. Our results show that streptophyte algae respond to cold and high light stress via expression of hallmark genes used by land plants (embryophytes) during stress-response signaling and downstream responses. Among the strongest differentially regulated genes were those associated with plastid biology. We observed that among streptophyte algae, those most closely related to land plants, especially Zygnema, invest the largest fraction of their transcriptional budget in plastid-targeted proteins and possess an array of land plant-type plastid-nucleus communication genes. Streptophyte algae more closely related to land plants also appear most similar to land plants in their capacity to respond to plastid stressors. Support for this notion comes from the detection of a canonical abscisic acid receptor of the PYRABACTIN RESISTANCE (PYR/PYL/RCAR) family in Zygnema, the first found outside the land plant lineage. We conclude that a fine-tuned response toward terrestrial plastid stressors was among the exaptations that allowed streptophytes to colonize the terrestrial habitat on a global scale.


Assuntos
Estreptófitas/metabolismo , Estresse Fisiológico/fisiologia , Evolução Biológica , Fenômenos Biológicos , Comunicação Celular/fisiologia , Núcleo Celular/metabolismo , Carofíceas/metabolismo , Clorófitas/metabolismo , Embriófitas/metabolismo , Evolução Molecular , Filogenia , Plantas/metabolismo , Plastídeos/metabolismo , Plastídeos/fisiologia , Estreptófitas/fisiologia
8.
BMC Biol ; 18(1): 126, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938439

RESUMO

BACKGROUND: Plastid electron transport systems are essential not only for photosynthesis but also for dissipating excess reducing power and sinking excess electrons generated by various redox reactions. Although numerous organisms with plastids have lost their photoautotrophic lifestyles, there is a spectrum of known functions of remnant plastids in non-photosynthetic algal/plant lineages; some of non-photosynthetic plastids still retain diverse metabolic pathways involving redox reactions while others, such as apicoplasts of apicomplexan parasites, possess highly reduced sets of functions. However, little is known about underlying mechanisms for redox homeostasis in functionally versatile non-photosynthetic plastids and thus about the reductive evolution of plastid electron transport systems. RESULTS: Here we demonstrated that the central component for plastid electron transport systems, plastoquinone/plastoquinol pool, is still retained in a novel strain of an obligate heterotrophic green alga lacking the photosynthesis-related thylakoid membrane complexes. Microscopic and genome analyses revealed that the Volvocales green alga, chlamydomonad sp. strain NrCl902, has non-photosynthetic plastids and a plastid DNA that carries no genes for the photosynthetic electron transport system. Transcriptome-based in silico prediction of the metabolic map followed by liquid chromatography analyses demonstrated carotenoid and plastoquinol synthesis, but no trace of chlorophyll pigments in the non-photosynthetic green alga. Transient RNA interference knockdown leads to suppression of plastoquinone/plastoquinol synthesis. The alga appears to possess genes for an electron sink system mediated by plastid terminal oxidase, plastoquinone/plastoquinol, and type II NADH dehydrogenase. Other non-photosynthetic algae/land plants also possess key genes for this system, suggesting a broad distribution of an electron sink system in non-photosynthetic plastids. CONCLUSION: The plastoquinone/plastoquinol pool and thus the involved electron transport systems reported herein might be retained for redox homeostasis and might represent an intermediate step towards a more reduced set of the electron transport system in many non-photosynthetic plastids. Our findings illuminate a broadly distributed but previously hidden step of reductive evolution of plastid electron transport systems after the loss of photosynthesis.


Assuntos
Clorofíceas/fisiologia , Transporte de Elétrons/fisiologia , Evolução Molecular , Plastídeos/fisiologia , Fotossíntese
9.
Planta ; 252(3): 41, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32856159

RESUMO

MAIN CONCLUSION: GhBASS5 is a member of the bile acid sodium symporter (BASS) gene family from cotton and a plastid-localized Na+ transporter that negatively regulates salt tolerance of plants. Soil salinization is a major constraint on global cotton production, and Na+ is the most dominant toxic ion in salinity stress. Hence, insights into the identities and properties of transporters that catalyze Na+ movement between different tissues and within the cell compartments are vital to understand the salt-tolerant mechanisms of plants. Here, we identified the GhBASS5 gene, a member of the bile acid sodium symporter (BASS) gene family from cotton, served as a plastidic Na+ transporter. GhBASS5 encodes a membrane protein localized in the plastid envelope. It was highly expressed in cotton roots and predominantly existed in the vascular cylinder. Heterogenous expression of GhBASS5 in Arabidopsis chloroplasts promoted Na+ uptake into chloroplasts, which contributed to an increased cytoplasmic Na+ concentration. And GhBASS5-overexpressed transgenic plants showed an increase in Na+ translocation from roots to shoots and an elevated Na+ content in both roots and shoots, but a dramatic decrease in the Na+ efflux from root tissues and the K+/Na+ ratio, especially under salt stress conditions. Furthermore, overexpressing GhBASS5 greatly damaged plastid functions and enhanced salt sensitivity in transgenic Arabidopsis when compared with wild-type plants under salt stress. Additionally, the salt-responsive transporter genes that regulate K+/Na+ homeostasis were dramatically expressed in GhBASS5-overexpressed lines, especially under salt stress conditions. Taken together, our results suggest that GhBASS5 is a plastid-localized Na+ transporter, and high expression of GhBASS5 impairs salt tolerance of plants via increasing Na+ transportation and accumulation at both cell and tissue levels.


Assuntos
Arabidopsis/genética , Arabidopsis/fisiologia , Gossypium/genética , Gossypium/fisiologia , Estresse Salino/genética , Tolerância ao Sal/genética , Sódio/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/genética , Plantas Geneticamente Modificadas/genética , Plastídeos/genética , Plastídeos/fisiologia , Estresse Salino/fisiologia , Tolerância ao Sal/fisiologia , Plantas Tolerantes a Sal/genética
10.
Plant Physiol ; 181(2): 630-644, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31416828

RESUMO

Light and gravity are two key determinants in orientating plant stems for proper growth and development. The organization and dynamics of the actin cytoskeleton are essential for cell biology and critically regulated by actin-binding proteins. However, the role of actin cytoskeleton in shoot negative gravitropism remains controversial. In this work, we report that the actin-binding protein Rice Morphology Determinant (RMD) promotes reorganization of the actin cytoskeleton in rice (Oryza sativa) shoots. The changes in actin organization are associated with the ability of the rice shoots to respond to negative gravitropism. Here, light-grown rmd mutant shoots exhibited agravitropic phenotypes. By contrast, etiolated rmd shoots displayed normal negative shoot gravitropism. Furthermore, we show that RMD maintains an actin configuration that promotes statolith mobility in gravisensing endodermal cells, and for proper auxin distribution in light-grown, but not dark-grown, shoots. RMD gene expression is diurnally controlled and directly repressed by the phytochrome-interacting factor-like protein OsPIL16. Consequently, overexpression of OsPIL16 led to gravisensing and actin patterning defects that phenocopied the rmd mutant. Our findings outline a mechanism that links light signaling and gravity perception for straight shoot growth in rice.


Assuntos
Actinas/metabolismo , Gravitropismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Citoesqueleto de Actina/fisiologia , Luz , Oryza/crescimento & desenvolvimento , Oryza/efeitos da radiação , Plastídeos/fisiologia
11.
Plant Cell Physiol ; 60(5): 1025-1040, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30690505

RESUMO

To overcome the difficulties to analyze membrane desaturases at the protein level, transgenic Arabidopsis plants expressing the plastidial AtFAD7 and AtFAD8 ω-3 desaturases fused to green fluorescent protein, under the control of their endogenous promoters, were generated and their tissue relative abundance was studied. Gene expression, glucuronidase promoter activity, immunoblot and confocal microscopy analyses indicated that AtFAD7 is the major ω-3 desaturase in leaves when compared to AtFAD8. This higher abundance of AtFAD7 was consistent with its higher promoter activity and could be related with its specificity for the abundant leaf galactolipids. AtFAD7 was also present in roots but at much lower level than leaves. AtFAD8 expression and protein abundance in leaves was consistent with its lower promoter activity, suggesting that transcriptional control modulates the abundance of both desaturases in leaves. AtFAD7 protein levels increased in response to wounding but not to jasmonate (JA), and decreased upon abscisic acid (ABA) treatment. Conversely, AtFAD8 protein levels increased upon cold or JA exposure and decreased at high temperatures, but did not respond to ABA or wounding. These results indicated specific and non-redundant roles for the plastidial ω-3 desaturases in defense, temperature stress or phytohormone mediated responses and a tight coordination of their activities between biotic and abiotic stress signaling pathways. Our data suggested that transcriptional regulation was crucial for this coordination. Finally, bimolecular fluorescence complementation analysis showed that both AtFAD7 and AtFAD8 interact with the AtFAD6 ω-6 desaturase in vivo, suggesting that quaternary complexes are involved in trienoic fatty acid production within the plastid membranes.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Ciclopentanos/farmacologia , Ácidos Graxos Dessaturases/metabolismo , Oxilipinas/farmacologia , Plastídeos/efeitos dos fármacos , Plastídeos/metabolismo , Arabidopsis/fisiologia , Temperatura Baixa , Plastídeos/fisiologia
12.
Development ; 143(18): 3382-93, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27510974

RESUMO

The balance between proliferation and differentiation in the plant shoot apical meristem is controlled by regulatory loops involving the phytohormone cytokinin and stem cell identity genes. Concurrently, cellular differentiation in the developing shoot is coordinated with the environmental and developmental status of plastids within those cells. Here, we employ an Arabidopsis thaliana mutant exhibiting constitutive plastid osmotic stress to investigate the molecular and genetic pathways connecting plastid osmotic stress with cell differentiation at the shoot apex. msl2 msl3 mutants exhibit dramatically enlarged and deformed plastids in the shoot apical meristem, and develop a mass of callus tissue at the shoot apex. Callus production in this mutant requires the cytokinin receptor AHK2 and is characterized by increased cytokinin levels, downregulation of cytokinin signaling inhibitors ARR7 and ARR15, and induction of the stem cell identity gene WUSCHEL Furthermore, plastid stress-induced apical callus production requires elevated plastidic reactive oxygen species, ABA biosynthesis, the retrograde signaling protein GUN1, and ABI4. These results are consistent with a model wherein the cytokinin/WUS pathway and retrograde signaling control cell differentiation at the shoot apex.


Assuntos
Diferenciação Celular/fisiologia , Meristema/citologia , Meristema/metabolismo , Pressão Osmótica/fisiologia , Brotos de Planta/citologia , Brotos de Planta/metabolismo , Plastídeos/fisiologia , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Plastídeos/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
New Phytol ; 224(2): 618-624, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31135958

RESUMO

Plastids evolved from a cyanobacterium that was engulfed by a heterotrophic eukaryotic host and became a stable organelle. Some of the resulting eukaryotic algae entered into a number of secondary endosymbioses with diverse eukaryotic hosts. These events had major consequences on the evolution and diversification of life on Earth. Although almost all plastid diversity derives from a single endosymbiotic event, the analysis of nuclear genomes of plastid-bearing lineages has revealed a mosaic origin of plastid-related genes. In addition to cyanobacterial genes, plastids recruited for their functioning eukaryotic proteins encoded by the host nucleus and also bacterial proteins of noncyanobacterial origin. Therefore, plastid proteins and plastid-localised metabolic pathways evolved by tinkering and using gene toolkits from different sources. This mixed heritage seems especially complex in secondary algae containing green plastids, the acquisition of which appears to have been facilitated by many previous acquisitions of red algal genes (the 'red carpet hypothesis').


Assuntos
Evolução Biológica , Plastídeos/genética , Plastídeos/fisiologia , Simbiose/fisiologia , Regulação da Expressão Gênica/fisiologia , Transferência Genética Horizontal , Fotossíntese/genética , Fotossíntese/fisiologia
14.
J Eukaryot Microbiol ; 66(4): 574-581, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30444565

RESUMO

Spores of the dinoflagellate Chytriodinium are known to infest copepod eggs causing their lethality. Despite the potential to control the population of such an ecologically important host, knowledge about Chytriodinium parasites is limited: we know little about phylogeny, parasitism, abundance, or geographical distribution. We carried out genome sequence surveys on four manually isolated sporocytes from the same sporangium, which seemed to be attached to a copepod nauplius, to analyze the phylogenetic position of Chytriodinium based on SSU and concatenated SSU/LSU rRNA gene sequences, and also characterize two genes related to the plastidial heme pathway, hemL and hemY. The results suggest the presence of a cryptic plastid in Chytriodinium and a photosynthetic ancestral state of the parasitic Chytriodinium/Dissodinium clade. Finally, by mapping Tara Oceans V9 SSU amplicon data to the recovered SSU rRNA gene sequences from the sporocytes, we show that globally, Chytriodinium parasites are most abundant within the pico/nano- and mesoplankton of the surface ocean and almost absent within microplankton, a distribution indicating that they generally exist either as free-living spores or host-associated sporangia.


Assuntos
Copépodes/parasitologia , Dinoflagellida/fisiologia , Genoma de Protozoário , Interações Hospedeiro-Parasita , Animais , Dinoflagellida/classificação , Dinoflagellida/genética , Genes de Protozoários , Genes de RNAr , Filogenia , Plastídeos/fisiologia
15.
BMC Plant Biol ; 18(1): 183, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30189843

RESUMO

BACKGROUND: Pollen development is a strictly controlled post-meiotic process during which microspores differentiate into microgametophytes and profound structural and functional changes occur in organelles. Annexin 5 is a calcium- and lipid-binding protein that is highly expressed in pollen grains and regulates pollen development and physiology. To gain further insights into the role of ANN5 in Arabidopsis development, we performed detailed phenotypic characterization of Arabidopsis plants with modified ANN5 levels. In addition, interaction partners and subcellular localization of ANN5 were analyzed to investigate potential functions of ANN5 at cellular level. RESULTS: Here, we report that RNAi-mediated suppression of ANN5 results in formation of smaller pollen grains, enhanced pollen lethality, and delayed pollen tube growth. ANN5 RNAi knockdown plants also displayed aberrant development during the transition from the vegetative to generative phase and during embryogenesis, reflected by delayed bolting time and reduced embryo size, respectively. At the subcellular level, ANN5 was delivered to the nucleus, nucleolus, and cytoplasm, and was frequently localized in plastid nucleoids, suggesting a likely role in interorganellar communication. Furthermore, ANN5-YFP co-immunoprecipitated with RABE1b, a putative GTPase, and interaction in planta was confirmed in plastidial nucleoids using FLIM-FRET analysis. CONCLUSIONS: Our findings let us to propose that ANN5 influences basal cell homeostasis via modulation of plastid activity during pollen maturation. We hypothesize that the role of ANN5 is to orchestrate the plastidial and nuclear genome activities via protein-protein interactions however not only in maturing pollen but also during the transition from the vegetative to the generative growth and seed development.


Assuntos
Anexina A5/fisiologia , Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Núcleo Celular/metabolismo , Proteínas de Cloroplastos/farmacologia , Plastídeos/fisiologia , Pólen/crescimento & desenvolvimento , Proteínas rab1 de Ligação ao GTP/farmacologia , Anexina A5/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/farmacologia , Clorofila/metabolismo , Proteínas de Cloroplastos/genética , Técnicas de Silenciamento de Genes , Genes de Plantas , Homeostase , Pólen/anatomia & histologia , Pólen/genética , Tubo Polínico/crescimento & desenvolvimento , Plântula/metabolismo , Nicotiana/genética , Nicotiana/fisiologia , Transcriptoma , Proteínas rab1 de Ligação ao GTP/genética
16.
Plant Cell ; 27(10): 2800-13, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26410302

RESUMO

Angiosperm trees reorient their woody stems by asymmetrically producing a specialized xylem tissue, tension wood, which exerts a strong contractile force resulting in negative gravitropism of the stem. Here, we show, in Populus trees, that initial gravity perception and response occurs in specialized cells through sedimentation of starch-filled amyloplasts and relocalization of the auxin transport protein, PIN3. Gibberellic acid treatment stimulates the rate of tension wood formation and gravibending and enhances tissue-specific expression of an auxin-responsive reporter. Gravibending, maturation of contractile fibers, and gibberellic acid (GA) stimulation of tension wood formation are all sensitive to transcript levels of the Class I KNOX homeodomain transcription factor-encoding gene ARBORKNOX2 (ARK2). We generated genome-wide transcriptomes for trees in which gene expression was perturbed by gravistimulation, GA treatment, and modulation of ARK2 expression. These data were employed in computational analyses to model the transcriptional networks underlying wood formation, including identification and dissection of gene coexpression modules associated with wood phenotypes, GA response, and ARK2 binding to genes within modules. We propose a model for gravitropism in the woody stem in which the peripheral location of PIN3-expressing cells relative to the cambium results in auxin transport toward the cambium in the top of the stem, triggering tension wood formation, while transport away from the cambium in the bottom of the stem triggers opposite wood formation.


Assuntos
Gravitropismo/genética , Reguladores de Crescimento de Plantas/metabolismo , Populus/genética , Câmbio/citologia , Câmbio/genética , Câmbio/fisiologia , Perfilação da Expressão Gênica , Giberelinas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Ácidos Indolacéticos/metabolismo , Especificidade de Órgãos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/citologia , Caules de Planta/genética , Caules de Planta/fisiologia , Plantas Geneticamente Modificadas , Plastídeos/genética , Plastídeos/fisiologia , Populus/citologia , Populus/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Árvores , Madeira/citologia , Madeira/genética , Madeira/fisiologia , Xilema/genética , Xilema/fisiologia
17.
J Plant Res ; 131(5): 727-734, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29948488

RESUMO

Chloroplasts (plastids) and mitochondria evolved from endosymbiotic bacteria. These organelles perform vital functions in photosynthetic eukaryotes, such as harvesting and converting energy for use in biological processes. Consistent with their evolutionary origins, plastids and mitochondria proliferate by the binary fission of pre-existing organelles. Here, I review the structures and functions of the supramolecular machineries driving plastid and mitochondrial division, which were discovered and first studied in the primitive red alga Cyanidioschyzon merolae. In the past decade, intact division machineries have been isolated from plastids and mitochondria and examined to investigate their underlying structure and molecular mechanisms. A series of studies has elucidated how these division machineries assemble and transform during the fission of these organelles, and which of the component proteins generate the motive force for their contraction. Plastid- and mitochondrial-division machineries have important similarities in their structures and mechanisms despite sharing no component proteins, implying that these division machineries evolved in parallel. The establishment of these division machineries might have enabled the host eukaryotic ancestor to permanently retain these endosymbiotic organelles by regulating their binary fission and the equal distribution of resources to daughter cells. These findings provide key insights into the establishment of endosymbiotic organelles and have opened new avenues of research into their evolution and mechanisms of proliferation.


Assuntos
Organelas/ultraestrutura , Rodófitas/ultraestrutura , Simbiose , Divisão Celular , Cloroplastos/fisiologia , Cloroplastos/ultraestrutura , Mitocôndrias/fisiologia , Mitocôndrias/ultraestrutura , Organelas/fisiologia , Plastídeos/fisiologia , Plastídeos/ultraestrutura , Rodófitas/fisiologia
18.
J Plant Res ; 131(4): 655-670, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29500749

RESUMO

Iridoplasts (modified plastids in adaxial epidermal cells) reported from Begonia were originally hypothesized to cause iridescence, which was broadly accepted for decades. However, several species of Begonia with iridoplasts are not iridescent causing confusion. Here chloroplast ultrastructure was observed in 40 taxa of Begoniaceae to explore the phenomenon of iridescence. However, 22 Begonias and Hillebrandia were found to have iridoplasts, but only nine display visually iridescent blue to blue-green leaves. Unexpectedly, a new type of plastid, a 'minichloroplast,' was found in the abaxial epidermal cells of all taxa, but was present in adaxial epidermal cells only if iridoplasts were absent. Comparative ultrastructural study of iridoplasts and a shading experiment of selected taxa show that a taxon with iridoplasts does not inevitably have visual iridescence, but iridescence is greatly affected by the spacing between thylakoid lamellae (stoma spacing). Thus, we propose instead the name 'lamelloplast' for plastids filled entirely with regular lamellae to avoid prejudging their function. To evaluate photosynthetic performance, chlorophyll fluorescence (F v /F m ) was measured separately from the chloroplasts in the adaxial epidermis and lower leaf tissues by using leaf dermal peels. Lamelloplasts and minichloroplasts have much lower photosynthetic efficiency than mesophyll chloroplasts. Nevertheless, photosynthetic proteins (psbA protein of PSII, RuBisCo and ATPase) were detected in both plastids as well as mesophyll chloroplasts in an immunogold labeling. Spectrometry revealed additional blue to blue-green peaks in visually iridescent leaves. Micro-spectrometry detected a blue peak from single blue spots in adaxial epidermal cells confirming that the color is derived from lamelloplasts. Presence of lamelloplasts or minichloroplasts is species specific and exclusive. High prevalence of lamelloplasts in Begoniaceae, including the basal clade Hillebrandia, highlights a unique evolutionary development. These new findings clarify the association between iridescence and lamelloplasts, and with implications for new directions in the study of plastid morphogenesis.


Assuntos
Begoniaceae/fisiologia , Cloroplastos/fisiologia , Fotossíntese/fisiologia , Plastídeos/fisiologia , Begoniaceae/ultraestrutura , Cloroplastos/ultraestrutura , Fluorescência , Imuno-Histoquímica , Iridescência , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Folhas de Planta/fisiologia , Folhas de Planta/ultraestrutura , Plastídeos/ultraestrutura
19.
Proc Natl Acad Sci U S A ; 112(33): 10147-53, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25902528

RESUMO

The endosymbiotic origin of plastids from cyanobacteria was a landmark event in the history of eukaryotic life. Subsequent to the evolution of primary plastids, photosynthesis spread from red and green algae to unrelated eukaryotes by secondary and tertiary endosymbiosis. Although the movement of cyanobacterial genes from endosymbiont to host is well studied, less is known about the migration of eukaryotic genes from one nucleus to the other in the context of serial endosymbiosis. Here I explore the magnitude and potential impact of nucleus-to-nucleus endosymbiotic gene transfer in the evolution of complex algae, and the extent to which such transfers compromise our ability to infer the deep structure of the eukaryotic tree of life. In addition to endosymbiotic gene transfer, horizontal gene transfer events occurring before, during, and after endosymbioses further confound our efforts to reconstruct the ancient mergers that forged multiple lines of photosynthetic microbial eukaryotes.


Assuntos
Núcleo Celular/genética , Genômica , Plastídeos/fisiologia , Simbiose/fisiologia , Clorófitas/fisiologia , Cianobactérias/genética , Transferência Genética Horizontal , Genoma , Mosaicismo , Fotossíntese , Filogenia
20.
Proc Natl Acad Sci U S A ; 112(33): 10200-7, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25717057

RESUMO

Apicomplexans are a major lineage of parasites, including causative agents of malaria and toxoplasmosis. How such highly adapted parasites evolved from free-living ancestors is poorly understood, particularly because they contain nonphotosynthetic plastids with which they have a complex metabolic dependency. Here, we examine the origin of apicomplexan parasitism by resolving the evolutionary distribution of several key characteristics in their closest free-living relatives, photosynthetic chromerids and predatory colpodellids. Using environmental sequence data, we describe the diversity of these apicomplexan-related lineages and select five species that represent this diversity for transcriptome sequencing. Phylogenomic analysis recovered a monophyletic lineage of chromerids and colpodellids as the sister group to apicomplexans, and a complex distribution of retention versus loss for photosynthesis, plastid genomes, and plastid organelles. Reconstructing the evolution of all plastid and cytosolic metabolic pathways related to apicomplexan plastid function revealed an ancient dependency on plastid isoprenoid biosynthesis, predating the divergence of apicomplexan and dinoflagellates. Similarly, plastid genome retention is strongly linked to the retention of two genes in the plastid genome, sufB and clpC, altogether suggesting a relatively simple model for plastid retention and loss. Lastly, we examine the broader distribution of a suite of molecular characteristics previously linked to the origins of apicomplexan parasitism and find that virtually all are present in their free-living relatives. The emergence of parasitism may not be driven by acquisition of novel components, but rather by loss and modification of the existing, conserved traits.


Assuntos
Apicomplexa/fisiologia , Apicoplastos/fisiologia , Parasitos/fisiologia , Plastídeos/fisiologia , Animais , Apicomplexa/genética , Apicoplastos/genética , Sequência de Bases , Teorema de Bayes , Linhagem da Célula , Biologia Computacional , Citosol/metabolismo , DNA Ribossômico/genética , Genes Bacterianos , Genoma , Funções Verossimilhança , Redes e Vias Metabólicas , Dados de Sequência Molecular , Parasitos/genética , Fotossíntese , Filogenia , Plastídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA