RESUMO
Plasmodium gene functions in mosquito and liver stages remain poorly characterized due to limitations in the throughput of phenotyping at these stages. To fill this gap, we followed more than 1,300 barcoded P. berghei mutants through the life cycle. We discover 461 genes required for efficient parasite transmission to mosquitoes through the liver stage and back into the bloodstream of mice. We analyze the screen in the context of genomic, transcriptomic, and metabolomic data by building a thermodynamic model of P. berghei liver-stage metabolism, which shows a major reprogramming of parasite metabolism to achieve rapid growth in the liver. We identify seven metabolic subsystems that become essential at the liver stages compared with asexual blood stages: type II fatty acid synthesis and elongation (FAE), tricarboxylic acid, amino sugar, heme, lipoate, and shikimate metabolism. Selected predictions from the model are individually validated in single mutants to provide future targets for drug development.
Assuntos
Genoma de Protozoário , Estágios do Ciclo de Vida/genética , Fígado/metabolismo , Fígado/parasitologia , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/genética , Alelos , Amino Açúcares/biossíntese , Animais , Culicidae/parasitologia , Eritrócitos/parasitologia , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/metabolismo , Técnicas de Inativação de Genes , Genótipo , Modelos Biológicos , Mutação/genética , Parasitos/genética , Parasitos/crescimento & desenvolvimento , Fenótipo , Plasmodium berghei/metabolismo , Ploidias , ReproduçãoRESUMO
Long noncoding RNAs (lncRNAs) have emerged as regulators of diverse biological processes. Here, we describe the initial functional analysis of a poorly characterized human lncRNA (LINC00657) that is induced after DNA damage, which we termed "noncoding RNA activated by DNA damage", or NORAD. NORAD is highly conserved and abundant, with expression levels of approximately 500-1,000 copies per cell. Remarkably, inactivation of NORAD triggers dramatic aneuploidy in previously karyotypically stable cell lines. NORAD maintains genomic stability by sequestering PUMILIO proteins, which repress the stability and translation of mRNAs to which they bind. In the absence of NORAD, PUMILIO proteins drive chromosomal instability by hyperactively repressing mitotic, DNA repair, and DNA replication factors. These findings introduce a mechanism that regulates the activity of a deeply conserved and highly dosage-sensitive family of RNA binding proteins and reveal unanticipated roles for a lncRNA and PUMILIO proteins in the maintenance of genomic stability.
Assuntos
Instabilidade Genômica , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Sequência de Bases , Instabilidade Cromossômica , Células HCT116 , Humanos , Camundongos , Ploidias , RNA Longo não Codificante/química , RNA Longo não Codificante/genéticaRESUMO
Whereas domestication of livestock, pets, and crops is well documented, it is still unclear to what extent microbes associated with the production of food have also undergone human selection and where the plethora of industrial strains originates from. Here, we present the genomes and phenomes of 157 industrial Saccharomyces cerevisiae yeasts. Our analyses reveal that today's industrial yeasts can be divided into five sublineages that are genetically and phenotypically separated from wild strains and originate from only a few ancestors through complex patterns of domestication and local divergence. Large-scale phenotyping and genome analysis further show strong industry-specific selection for stress tolerance, sugar utilization, and flavor production, while the sexual cycle and other phenotypes related to survival in nature show decay, particularly in beer yeasts. Together, these results shed light on the origins, evolutionary history, and phenotypic diversity of industrial yeasts and provide a resource for further selection of superior strains. PAPERCLIP.
Assuntos
Cerveja/microbiologia , Microbiologia Industrial , Filogenia , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/fisiologia , Variações do Número de Cópias de DNA/genética , Genes Fúngicos/genética , Variação Genética , Genoma Fúngico/genética , Viabilidade Microbiana/genética , Fenótipo , Ploidias , Saccharomyces cerevisiae/genética , Seleção GenéticaRESUMO
Though cell size varies between different cells and across species, the nuclear-to-cytoplasmic (N/C) ratio is largely maintained across species and within cell types. A cell maintains a relatively constant N/C ratio by coupling DNA content, nuclear size, and cell size. We explore how cells couple cell division and growth to DNA content. In some cases, cells use DNA as a molecular yardstick to control the availability of cell cycle regulators. In other cases, DNA sets a limit for biosynthetic capacity. Developmentally programmed variations in the N/C ratio for a given cell type suggest that a specific N/C ratio is required to respond to given physiological demands. Recent observations connecting decreased N/C ratios with cellular senescence indicate that maintaining the proper N/C ratio is essential for proper cellular functioning. Together, these findings suggest a causative, not simply correlative, role for the N/C ratio in regulating cell growth and cell cycle progression.
Assuntos
Ploidias , Divisão Celular/genética , Ciclo Celular/genética , Citoplasma/genética , Tamanho CelularRESUMO
Clonal evolution is a key feature of cancer progression and relapse. We studied intratumoral heterogeneity in 149 chronic lymphocytic leukemia (CLL) cases by integrating whole-exome sequence and copy number to measure the fraction of cancer cells harboring each somatic mutation. We identified driver mutations as predominantly clonal (e.g., MYD88, trisomy 12, and del(13q)) or subclonal (e.g., SF3B1 and TP53), corresponding to earlier and later events in CLL evolution. We sampled leukemia cells from 18 patients at two time points. Ten of twelve CLL cases treated with chemotherapy (but only one of six without treatment) underwent clonal evolution, predominantly involving subclones with driver mutations (e.g., SF3B1 and TP53) that expanded over time. Furthermore, presence of a subclonal driver mutation was an independent risk factor for rapid disease progression. Our study thus uncovers patterns of clonal evolution in CLL, providing insights into its stepwise transformation, and links the presence of subclones with adverse clinical outcomes.
Assuntos
Leucemia Linfocítica Crônica de Células B/genética , Mutação , Algoritmos , Animais , Linfócitos B/metabolismo , Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , PloidiasRESUMO
Forcing budding yeast to chromatinize their DNA with human histones manifests an abrupt fitness cost. We previously proposed chromosomal aneuploidy and missense mutations as two potential modes of adaptation to histone humanization. Here, we show that aneuploidy in histone-humanized yeasts is specific to a subset of chromosomes that are defined by their centromeric evolutionary origins but that these aneuploidies are not adaptive. Instead, we find that a set of missense mutations in outer kinetochore proteins drives adaptation to human histones. Furthermore, we characterize the molecular mechanism underlying adaptation in two mutants of the outer kinetochore DASH/Dam1 complex, which reduce aneuploidy by suppression of chromosome instability. Molecular modeling and biochemical experiments show that these two mutants likely disrupt a conserved oligomerization interface thereby weakening microtubule attachments. We propose a model through which weakened microtubule attachments promote increased kinetochore-microtubule turnover and thus suppress chromosome instability. In sum, our data show how a set of point mutations evolved in histone-humanized yeasts to counterbalance human histone-induced chromosomal instability through weakening microtubule interactions, eventually promoting a return to euploidy.
Assuntos
Cinetocoros , Proteínas de Saccharomyces cerevisiae , Humanos , Cinetocoros/metabolismo , Histonas/genética , Histonas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Microtúbulos/metabolismo , Segregação de Cromossomos/genética , Ploidias , AneuploidiaRESUMO
The genetic control of the characteristic cell sizes of different species and tissues is a long-standing enigma. Plants are convenient for studying this question in a multicellular context, as their cells do not move and are easily tracked and measured from organ initiation in the meristems to subsequent morphogenesis and differentiation. In this article, we discuss cell size control in plants compared with other organisms. As seen from yeast cells to mammalian cells, size homeostasis is maintained cell autonomously in the shoot meristem. In developing organs, vacuolization contributes to cell size heterogeneity and may resolve conflicts between growth control at the cellular and organ levels. Molecular mechanisms for cell size control have implications for how cell size responds to changes in ploidy, which are particularly important in plant development and evolution. We also discuss comparatively the functional consequences of cell size and their potential repercussions at higher scales, including genome evolution.
Assuntos
Meristema/citologia , Células Vegetais/fisiologia , Ploidias , Tamanho Celular , Replicação do DNA , Células Eucarióticas/citologia , Meristema/crescimento & desenvolvimento , Mitose , Modelos Biológicos , Desenvolvimento Vegetal/genética , Leveduras/citologia , Leveduras/genéticaRESUMO
Meiotic recombination is a key biological process in plant evolution and breeding, as it generates genetic diversity in each generation through the formation of crossovers (COs). However, due to their importance in genome stability, COs are highly regulated in frequency and distribution. We previously demonstrated that this strict regulation of COs can be modified, both in terms of CO frequency and distribution, in allotriploid Brassica hybrids (2n = 3x = 29; AAC) resulting from a cross between Brassica napus (2n = 4x = 38; AACC) and Brassica rapa (2n = 2x = 20; AA). Using the recently updated B. napus genome now including pericentromeres, we demonstrated that COs occur in these cold regions in allotriploids, as close as 375 kb from the centromere. Reverse transcription quantitative PCR (RT-qPCR) of various meiotic genes indicated that Class I COs are likely involved in the increased recombination frequency observed in allotriploids. We also demonstrated that this modified recombination landscape can be maintained via successive generations of allotriploidy (odd ploidy level). This deregulated meiotic behavior reverts to strict regulation in allotetraploid (even ploidy level) progeny in the second generation. Overall, we provide an easy way to manipulate tight recombination control in a polyploid crop.
Assuntos
Brassica napus , Centrômero , Meiose , Ploidias , Centrômero/genética , Brassica napus/genética , Meiose/genética , Recombinação Genética/genética , Troca Genética , Brassica rapa/genética , Cromossomos de Plantas/genéticaRESUMO
Developmentally programmed polyploidy (whole-genome duplication) of cardiomyocytes is common across evolution. Functions of such polyploidy are essentially unknown. Here, in both Drosophila larvae and human organ donors, we reveal distinct polyploidy levels in cardiac organ chambers. In Drosophila, differential growth and cell cycle signal sensitivity leads the heart chamber to reach a higher ploidy/cell size relative to the aorta chamber. Cardiac ploidy-reduced animals exhibit reduced heart chamber size, stroke volume and cardiac output, and acceleration of circulating hemocytes. These Drosophila phenotypes mimic human cardiomyopathies. Our results identify productive and likely conserved roles for polyploidy in cardiac chambers and suggest that precise ploidy levels sculpt many developing tissues. These findings of productive cardiomyocyte polyploidy impact efforts to block developmental polyploidy to improve heart injury recovery.
Assuntos
Drosophila , Miócitos Cardíacos , Animais , Humanos , Poliploidia , Ploidias , Ciclo CelularRESUMO
Somatic polyploidization, an adaptation by which cells increase their DNA content to support growth, is observed in many cell types, including cardiomyocytes. Although polyploidization is believed to be beneficial, progression to a polyploid state is often accompanied by loss of proliferative capacity. Recent work suggests that genetics heavily influence cardiomyocyte ploidy. However, the developmental course by which cardiomyocytes reach their final ploidy state has only been investigated in select backgrounds. Here, we assessed cardiomyocyte number, cell cycle activity, and ploidy dynamics across two divergent mouse strains: C57BL/6J and A/J. Both strains are born and reach adulthood with comparable numbers of cardiomyocytes; however, the end composition of ploidy classes and developmental progression to reach the final state differ substantially. We expand on previous findings that identified Tnni3k as a mediator of cardiomyocyte ploidy and uncover a role for Runx1 in ploidy dynamics and cardiomyocyte cell division, in both developmental and injury contexts. These data provide novel insights into the developmental path to cardiomyocyte polyploidization and challenge the paradigm that hypertrophy is the sole mechanism for growth in the postnatal heart.
Assuntos
Miócitos Cardíacos , Ploidias , Animais , Camundongos , Miócitos Cardíacos/metabolismo , Camundongos Endogâmicos C57BL , Poliploidia , Patrimônio Genético , Proteínas Serina-Treonina Quinases/metabolismoRESUMO
Given the universality of autopolyploid species in nature, it is crucial to develop genomic selection methods that consider different allele dosages for autopolyploid breeding. However, no method has been developed to deal with autopolyploid data regardless of the ploidy level. In this study, we developed a modified genomic best linear unbiased prediction (GBLUP) model (polyGBLUP) through constructing additive and dominant genomic relationship matrices based on different allele dosages. polyGBLUP could carry out genomic prediction for autopolyploid species regardless of the ploidy level. Through comprehensive simulations and analysis of real data of autotetraploid blueberry and guinea grass and autohexaploid sweet potato, the results showed that polyGBLUP achieved higher prediction accuracy than GBLUP and its superiority was more obvious when the ploidy level of autopolyploids is high. Furthermore, when the dominant effect was added to polyGBLUP (polyGDBLUP), the greater the dominance degree, the more obvious the advantages of polyGDBLUP over the diploid models in terms of prediction accuracy, bias, mean squared error and mean absolute error. For real data, the superiority of polyGBLUP over GBLUP appeared in blueberry and sweet potato populations and a part of the traits in guinea grass population due to the high correlation coefficients between diploid and polyploidy genomic relationship matrices. In addition, polyGDBLUP did not produce higher prediction accuracy than polyGBLUP for most traits of real data as dominant genetic variance was not captured for these traits. Our study will be a significant promising method for genomic prediction of autopolyploid species.
Assuntos
Genoma , Genômica , Humanos , Genômica/métodos , Fenótipo , Ploidias , Poliploidia , Modelos Genéticos , Genótipo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
In endoreplication cell cycles, known as endocycles, cells successively replicate their genomes without segregating chromosomes during mitosis and thereby become polyploid. Such cycles, for which there are many variants, are widespread in protozoa, plants and animals. Endocycling cells can achieve ploidies of >200,000 C (chromatin-value); this increase in genomic DNA content allows a higher genomic output, which can facilitate the construction of very large cells or enhance macromolecular secretion. These cells execute normal S phases, using a G1-S regulatory apparatus similar to the one used by mitotic cells, but their capability to segregate chromosomes has been suppressed, typically by downregulation of mitotic cyclin-dependent kinase activity. Endocycles probably evolved many times, and the various endocycle mechanisms found in nature highlight the versatility of the cell cycle control machinery.
Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Ciclo Celular/genética , Processos de Crescimento Celular/genética , Mitose , Ploidias , Animais , Evolução Molecular , Variação GenéticaRESUMO
The emergence of antibiotic resistance under treatment depends on the availability of resistance alleles and their establishment in the population. Novel resistance alleles are encoded either in chromosomal or extrachromosomal genetic elements; both types may be present in multiple copies within the cell. However, the effect of polyploidy on the emergence of antibiotic resistance remains understudied. Here we show that the establishment of resistance alleles in microbial populations depends on the ploidy level. Evolving bacterial populations under selection for antibiotic resistance, we demonstrate that resistance alleles in polyploid elements are lost frequently in comparison to alleles in monoploid elements due to segregational drift. Integrating the experiments with a mathematical model, we find a remarkable agreement between the theoretical and empirical results, confirming our understanding of the allele segregation process. Using the mathematical model, we further show that the effect of polyploidy on the establishment probability of beneficial alleles is strongest for low replicon copy numbers and plateaus for high replicon copy numbers. Our results suggest that the distribution of fitness effects for mutations that are eventually fixed in a population depends on the replicon ploidy level. Our study indicates that the emergence of antibiotic resistance in bacterial pathogens depends on the pathogen ploidy level.
Assuntos
Poliploidia , Replicon , Humanos , Ploidias , Cromossomos , Resistência Microbiana a Medicamentos/genética , AlelosRESUMO
Natural hybridization can have a profound evolutionary impact, with consequences ranging from the extinction of rare taxa to the origin of new species. Natural hybridization is particularly common in plants; however, our understanding of the general factors that promote or prevent hybridization is hampered by the highly variable outcomes in different lineages. Here, we quantify the influence of different predictors on hybrid formation across species from an entire flora. We combine estimates of hybridization with ecological attributes and a new species-level phylogeny for over 1,100 UK flowering plant species. Our results show that genetic factors, particularly parental genetic distance, as well as phylogenetic position and ploidy, are key determinants of hybrid formation, whereas many other factors such as range overlap and genus size explain much less variation in hybrid formation. Overall, intrinsic genetic factors shape the evolutionary and ecological consequences of natural hybridization across species in a flora.
Assuntos
Evolução Biológica , Ploidias , Filogenia , Hibridização de Ácido Nucleico , Hibridização GenéticaRESUMO
Potato (Solanum sp., family Solanaceae) is the most important noncereal food crop globally. It has over 100 wild relatives in the Solanum section Petota, which features species with both sexual and asexual reproduction and varying ploidy levels. A pangenome of Solanum section Petota composed of 296 accessions was constructed including diploids and polyploids compared via presence/absence variation (PAV). The Petota core (genes shared by at least 97% of the accessions) and shell genomes (shared by 3 to 97%) are enriched in basic molecular and cellular functions, while the cloud genome (genes present in less than 3% of the member accessions) showed enrichment in transposable elements (TEs). Comparison of PAV in domesticated vs. wild accessions was made, and a phylogenetic tree was constructed based on PAVs, grouping accessions into different clades, similar to previous phylogenies produced using DNA markers. A cladewise pangenome approach identified abiotic stress response among the core genes in clade 1+2 and clade 3, and flowering/tuberization among the core genes in clade 4. The TE content differed between the clades, with clade 1+2, which is composed of species from North and Central America with reproductive isolation from species in other clades, having much lower TE content compared to other clades. In contrast, accessions with in vitro propagation history were identified and found to have high levels of TEs. Results indicate a role for TEs in adaptation to new environments, both natural and artificial, for Solanum section Petota.
Assuntos
Solanum tuberosum , Solanum , Elementos de DNA Transponíveis , Filogenia , PloidiasRESUMO
Genome duplications and ploidy transitions have occurred in nearly every major taxon of eukaryotes, but they are far more common in plants than in animals. Due to the conservation of the nuclear:cytoplasmic volume ratio increased DNA content results in larger cells. In plants, polyploid organisms are larger than diploids as cell number remains relatively constant. Conversely, vertebrate body size does not correlate with cell size and ploidy as vertebrates compensate for increased cell size to maintain tissue architecture and body size. This has historically been explained by a simple reduction in cell number that matches the increase in cell size maintaining body size as ploidy increases, but here we show that the compensatory mechanisms that maintain body size in triploid zebrafish are tissue-specific: A) erythrocytes respond in the classical pattern with a reduced number of larger erythrocytes in circulation, B) muscle, a tissue comprised of polynucleated muscle fibers, compensates by reducing the number of larger nuclei such that myofiber and myotome size in unaffected by ploidy, and C) vascular tissue compensates by thickening blood vessel walls, possibly at the expense of luminal diameter. Understanding the physiological implications of ploidy on tissue function requires a detailed description of the specific mechanisms of morphological compensation occurring in each tissue to understand how ploidy changes affect development and physiology.
Assuntos
Poliploidia , Peixe-Zebra , Animais , Peixe-Zebra/genética , Ploidias , Tamanho Celular , Tamanho CorporalRESUMO
Actinidia ('Mihoutao' in Chinese) includes species with complex ploidy, among which diploid Actinidia chinensis and hexaploid Actinidia deliciosa are economically and nutritionally important fruit crops. Actinidia deliciosa has been proposed to be an autohexaploid (2n = 174) with diploid A. chinensis (2n = 58) as the putative parent. A CCS-based assembly anchored to a high-resolution linkage map provided a chromosome-resolved genome for hexaploid A. deliciosa yielded a 3.91-Gb assembly of 174 pseudochromosomes comprising 29 homologous groups with 6 members each, which contain 39 854 genes with an average of 4.57 alleles per gene. Here we provide evidence that much of the hexaploid genome matches diploid A. chinensis; 95.5% of homologous gene pairs exhibited >90% similarity. However, intragenome and intergenome comparisons of synteny indicate chromosomal changes. Our data, therefore, indicate that if A. deliciosa is an autoploid, chromosomal rearrangement occurred following autohexaploidy. A highly diversified pattern of gene expression and a history of rapid population expansion after polyploidisation likely facilitated the adaptation and niche differentiation of A. deliciosa in nature. The allele-defined hexaploid genome of A. deliciosa provides new genomic resources to accelerate crop improvement and to understand polyploid genome evolution.
Assuntos
Actinidia , Actinidia/genética , Mapeamento Cromossômico , Genoma de Planta/genética , Ploidias , Cromossomos , Frutas/genéticaRESUMO
Polyploidy is a prominent driver of plant diversification, accompanied with dramatic chromosomal rearrangement and epigenetic changes that affect gene expression. How chromatin interactions within and between subgenomes adapt to ploidy transition remains poorly understood. We generate open chromatin interaction maps for natural hexaploid wheat (AABBDD), extracted tetraploid wheat (AABB), diploid wheat progenitor Aegilops tauschii (DD) and resynthesized hexaploid wheat (RHW, AABBDD). Thousands of intra- and interchromosomal loops are de novo established or disappeared in AB subgenomes after separation of D subgenome, in which 37-95% of novel loops are lost again in RHW after merger of D genome. Interestingly, more than half of novel loops are formed by cascade reactions that are triggered by disruption of chromatin interaction between AB and D subgenomes. The interaction repressed genes in RHW relative to DD are expression suppressed, resulting in more balanced expression of the three homoeologs in RHW. The interaction levels of cascade anchors are decreased step-by-step. Leading single nucleotide polymorphisms of yield- and plant architecture-related quantitative trait locus are significantly enriched in cascade anchors. The expression of 116 genes interacted with these anchors are significantly correlated with the corresponding traits. Our findings reveal trans-regulation of intrachromosomal loops by interchromosomal interactions during genome merger and separation in polyploid species.
Assuntos
Cromatina , Genoma de Planta , Poliploidia , Triticum , Triticum/genética , Triticum/metabolismo , Cromatina/genética , Cromatina/metabolismo , Genoma de Planta/genética , Ploidias , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Polimorfismo de Nucleotídeo Único , Aegilops/genética , Locos de Características Quantitativas/genéticaRESUMO
Endoreduplication, during which cells increase their DNA content through successive rounds of full genome replication without cell division, is the major source of endopolyploidy in higher plants. Endoreduplication plays pivotal roles in plant growth and development and is associated with the activation of specific transcriptional programmes that are characteristic of each cell type, thereby defining their identity. In plants, endoreduplication is found in numerous organs and cell types, especially in agronomically valuable ones, such as the fleshy fruit (pericarp) of tomato presenting high ploidy levels. We used the tomato pericarp tissue as a model system to explore the transcriptomes associated with endoreduplication progression during fruit growth. We confirmed that expression globally scales with ploidy level and identified sets of differentially expressed genes presenting only developmental-specific, only ploidy-specific expression patterns or profiles resulting from an additive effect of ploidy and development. When comparing ploidy levels at a specific developmental stage, we found that non-endoreduplicated cells are defined by cell division state and cuticle synthesis while endoreduplicated cells are mainly defined by their metabolic activity changing rapidly over time. By combining this dataset with publicly available spatiotemporal pericarp expression data, we proposed a map describing the distribution of ploidy levels within the pericarp. These transcriptome-based predictions were validated by quantifying ploidy levels within the pericarp tissue. This in situ ploidy quantification revealed the dynamic progression of endoreduplication and its cell layer specificity during early fruit development. In summary, the study sheds light on the complex relationship between endoreduplication, cell differentiation and gene expression patterns in the tomato pericarp.
Assuntos
Endorreduplicação , Frutas , Regulação da Expressão Gênica de Plantas , Ploidias , Solanum lycopersicum , Transcriptoma , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Endorreduplicação/genética , Perfilação da Expressão Gênica , Divisão Celular/genéticaRESUMO
Polyploidy, a significant catalyst for speciation and evolutionary processes in both plant and animal kingdoms, has been recognized for a long time. However, the exact molecular mechanism that leads to polyploid formation, especially in vertebrates, is not fully understood. Our study aimed to elucidate this phenomenon using the zebrafish model. We successfully achieved an effective knockout of the cyclin N-terminal domain containing 1 (cntd1) using CRISPR/Cas9 technology. This resulted in impaired formation of meiotic crossovers, leading to cell-cycle arrest during meiotic metaphase and triggering apoptosis of spermatocytes in the testes. Despite these defects, the mutant (cntd1-/-) males were still able to produce a limited amount of sperm with normal ploidy and function. Interestingly, in the mutant females, it was the ploidy not the capacity of egg production that was altered. This resulted in the production of haploid, aneuploid, and unreduced gametes. This alteration enabled us to successfully obtain triploid and tetraploid zebrafish from cntd1-/- and cntd1-/-/- females, respectively. Furthermore, the tetraploid-heterozygous zebrafish produced reduced-diploid gametes and yielded all-triploid or all-tetraploid offspring when crossed with wild-type (WT) or tetraploid zebrafish, respectively. Collectively, our findings provide direct evidence supporting the crucial role of meiotic crossover defects in the process of polyploidization. This is particularly evident in the generation of unreduced eggs in fish and, potentially, other vertebrate species.