Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 444
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
2.
Mol Cell ; 84(20): 3916-3931.e7, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39383878

RESUMO

Poly (ADP-ribose) polymerase (PARP) 1 and 2 enzymatic inhibitors (PARPi) are promising cancer treatments. But recently, their use has been hindered by unexplained severe anemia and treatment-related leukemia. In addition to enzymatic inhibition, PARPi also trap PARP1 and 2 at DNA lesions. Here we report that, unlike Parp2-/- mice, which develop normally, mice expressing catalytically inactive Parp2 (E534A and Parp2EA/EA) succumb to Tp53- and Chk2-dependent erythropoietic failure in utero, mirroring Lig1-/- mice. While DNA damage mainly activates PARP1, we demonstrate that DNA replication activates PARP2 robustly. PARP2 is selectively recruited and activated by 5'-phosphorylated nicks (5'p-nicks), including those between Okazaki fragments, resolved by ligase 1 (Lig1) and Lig3. Inactive PARP2, but not its active form or absence, impedes Lig1- and Lig3-mediated ligation, causing dose-dependent replication fork collapse, which is detrimental to erythroblasts with ultra-fast forks. This PARylation-dependent structural function of PARP2 at 5'p-nicks explains the detrimental effects of PARP2 inactivation on erythropoiesis, shedding light on PARPi-induced anemia and the selection for TP53/CHK2 loss.


Assuntos
Anemia , Quinase do Ponto de Checagem 2 , Replicação do DNA , Eritroblastos , Poli(ADP-Ribose) Polimerases , Proteína Supressora de Tumor p53 , Animais , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Eritroblastos/metabolismo , Eritroblastos/efeitos dos fármacos , Camundongos , Replicação do DNA/efeitos dos fármacos , Anemia/genética , Anemia/induzido quimicamente , Anemia/patologia , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Quinase do Ponto de Checagem 2/metabolismo , Quinase do Ponto de Checagem 2/genética , Camundongos Knockout , Dano ao DNA , Eritropoese/efeitos dos fármacos , Eritropoese/genética , Humanos , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo , Camundongos Endogâmicos C57BL , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
3.
Proc Natl Acad Sci U S A ; 121(25): e2322689121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38865276

RESUMO

Poly(ADP-ribose) polymerase 1 (PARP1) has emerged as a central target for cancer therapies due to the ability of PARP inhibitors to specifically kill tumors deficient for DNA repair by homologous recombination. Upon DNA damage, PARP1 quickly binds to DNA breaks and triggers ADP-ribosylation signaling. ADP-ribosylation is important for the recruitment of various factors to sites of damage, as well as for the timely dissociation of PARP1 from DNA breaks. Indeed, PARP1 becomes trapped at DNA breaks in the presence of PARP inhibitors, a mechanism underlying the cytotoxitiy of these inhibitors. Therefore, any cellular process influencing trapping is thought to impact PARP inhibitor efficiency, potentially leading to acquired resistance in patients treated with these drugs. There are numerous ADP-ribosylation targets after DNA damage, including PARP1 itself as well as histones. While recent findings reported that the automodification of PARP1 promotes its release from the DNA lesions, the potential impact of other ADP-ribosylated proteins on this process remains unknown. Here, we demonstrate that histone ADP-ribosylation is also crucial for the timely dissipation of PARP1 from the lesions, thus contributing to cellular resistance to PARP inhibitors. Considering the crosstalk between ADP-ribosylation and other histone marks, our findings open interesting perspectives for the development of more efficient PARP inhibitor-driven cancer therapies.


Assuntos
ADP-Ribosilação , Histonas , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Histonas/metabolismo , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/genética
4.
J Virol ; 98(5): e0048324, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38639486

RESUMO

Alphaherpesvirus pseudorabies virus (PRV) causes severe economic losses to the global pig industry and has garnered increasing attention due to its broad host range including humans. PRV has developed a variety of strategies to antagonize host antiviral innate immunity. However, the underlying mechanisms have not been fully elucidated. In our previous work, we demonstrated that non-muscle myosin heavy chain IIA (NMHC-IIA), a multifunctional cytoskeleton protein, attenuates innate immune responses triggered by RNA viruses. In the current study, we reported a previously unrecognized role of NMHC-IIA in counteracting PRV-induced cyclic GMP-AMP synthase (cGAS)-dependent type I interferon (IFN-I) production. Mechanistically, PRV infection led to an elevation of NMHC-IIA, strengthening the interaction between poly (ADP-ribose) polymerase 1 (PARP1) and cGAS. This interaction impeded cGAS recognition of PRV DNA and hindered downstream signaling activation. Conversely, inhibition of NMHC-IIA by Blebbistatin triggered innate immune responses and enhanced resistance to PRV proliferation both in vitro and in vivo. Taken together, our findings unveil that PRV utilizes NMHC-IIA to antagonize host antiviral immune responses via impairing DNA sensing by cGAS. This in-depth understanding of PRV immunosuppression not only provides insights for potential PRV treatment strategies but also highlights NMHC-IIA as a versatile immunosuppressive regulator usurped by both DNA and RNA viruses. Consequently, NMHC-IIA holds promise as a target for the development of broad-spectrum antiviral drugs.IMPORTANCECyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) axis plays a vital role in counteracting alphaherpesvirus infections. Alphaherpesviruses exploit various strategies for antagonizing cGAS-STING-mediated antiviral immune responses. However, limited examples of pseudorabies virus (PRV)-caused immunosuppression have been documented. Our findings reveal a novel role of non-muscle myosin heavy chain IIA (NMHC-IIA) in suppressing PRV-triggered innate immune responses to facilitate viral propagation both in vitro and in vivo. In detail, NMHC-IIA recruits poly (ADP-ribose) polymerase 1 (PARP1) to augment its interaction with cGAS, which impairs cGAS recognition of PRV DNA. Building on our previous demonstration of NMHC-IIA's immunosuppressive role during RNA virus infections, these findings indicate that NMHC-IIA acts as a broad-spectrum suppressor of host antiviral innate immunity in response to both DNA and RNA viruses. Therefore, NMHC-IIA will be a promising target for the development of comprehensive antiviral strategies.


Assuntos
Herpesvirus Suídeo 1 , Imunidade Inata , Miosina não Muscular Tipo IIA , Pseudorraiva , Animais , Humanos , Camundongos , Linhagem Celular , DNA Viral/imunologia , Células HEK293 , Herpesvirus Suídeo 1/imunologia , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/imunologia , Miosina não Muscular Tipo IIA/metabolismo , Nucleotidiltransferases/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Pseudorraiva/imunologia , Pseudorraiva/virologia , Transdução de Sinais , Suínos
5.
Nature ; 568(7753): 561-565, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30944467

RESUMO

Current programmable nuclease-based methods (for example, CRISPR-Cas9) for the precise correction of a disease-causing genetic mutation harness the homology-directed repair pathway. However, this repair process requires the co-delivery of an exogenous DNA donor to recode the sequence and can be inefficient in many cell types. Here we show that disease-causing frameshift mutations that result from microduplications can be efficiently reverted to the wild-type sequence simply by generating a DNA double-stranded break near the centre of the duplication. We demonstrate this in patient-derived cell lines for two diseases: limb-girdle muscular dystrophy type 2G (LGMD2G)1 and Hermansky-Pudlak syndrome type 1 (HPS1)2. Clonal analysis of inducible pluripotent stem (iPS) cells from the LGMD2G cell line, which contains a mutation in TCAP, treated with the Streptococcus pyogenes Cas9 (SpCas9) nuclease revealed that about 80% contained at least one wild-type TCAP allele; this correction also restored TCAP expression in LGMD2G iPS cell-derived myotubes. SpCas9 also efficiently corrected the genotype of an HPS1 patient-derived B-lymphoblastoid cell line. Inhibition of polyADP-ribose polymerase 1 (PARP-1) suppressed the nuclease-mediated collapse of the microduplication to the wild-type sequence, confirming that precise correction is mediated by the microhomology-mediated end joining (MMEJ) pathway. Analysis of editing by SpCas9 and Lachnospiraceae bacterium ND2006 Cas12a (LbCas12a) at non-pathogenic 4-36-base-pair microduplications within the genome indicates that the correction strategy is broadly applicable to a wide range of microduplication lengths and can be initiated by a variety of nucleases. The simplicity, reliability and efficacy of this MMEJ-based therapeutic strategy should permit the development of nuclease-based gene correction therapies for a variety of diseases that are associated with microduplications.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Conectina/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , Síndrome de Hermanski-Pudlak/genética , Síndrome de Hermanski-Pudlak/terapia , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/terapia , Alelos , Proteína 9 Associada à CRISPR/metabolismo , Células Cultivadas , Mutação da Fase de Leitura/genética , Humanos , Mioblastos/citologia , Mioblastos/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Sequências Repetitivas de Ácido Nucleico/genética
6.
Nature ; 572(7768): 254-259, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31316209

RESUMO

Patients with acute myeloid leukaemia (AML) often achieve remission after therapy, but subsequently die of relapse1 that is driven by chemotherapy-resistant leukaemic stem cells (LSCs)2,3. LSCs are defined by their capacity to initiate leukaemia in immunocompromised mice4. However, this precludes analyses of their interaction with lymphocytes as components of anti-tumour immunity5, which LSCs must escape to induce cancer. Here we demonstrate that stemness and immune evasion are closely intertwined in AML. Using xenografts of human AML as well as syngeneic mouse models of leukaemia, we show that ligands of the danger detector NKG2D-a critical mediator of anti-tumour immunity by cytotoxic lymphocytes, such as NK cells6-9-are generally expressed on bulk AML cells but not on LSCs. AML cells with LSC properties can be isolated by their lack of expression of NKG2D ligands (NKG2DLs) in both CD34-expressing and non-CD34-expressing cases of AML. AML cells that express NKG2DLs are cleared by NK cells, whereas NKG2DL-negative leukaemic cells isolated from the same individual escape cell killing by NK cells. These NKG2DL-negative AML cells show an immature morphology, display molecular and functional stemness characteristics, and can initiate serially re-transplantable leukaemia and survive chemotherapy in patient-derived xenotransplant models. Mechanistically, poly-ADP-ribose polymerase 1 (PARP1) represses expression of NKG2DLs. Genetic or pharmacologic inhibition of PARP1 induces NKG2DLs on the LSC surface but not on healthy or pre-leukaemic cells. Treatment with PARP1 inhibitors, followed by transfer of polyclonal NK cells, suppresses leukaemogenesis in patient-derived xenotransplant models. In summary, our data link the LSC concept to immune escape and provide a strong rationale for targeting therapy-resistant LSCs by PARP1 inhibition, which renders them amenable to control by NK cells in vivo.


Assuntos
Evasão da Resposta Imune , Leucemia Mieloide Aguda/patologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/patologia , Evasão Tumoral , Animais , Antígenos CD34/metabolismo , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Células Matadoras Naturais/imunologia , Leucemia Mieloide Aguda/imunologia , Ligantes , Masculino , Camundongos , Células-Tronco Neoplásicas/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Mol Cell ; 65(2): 260-271, 2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28107648

RESUMO

Poly(ADP-ribosyl)ation (PARylation) is a post-translational modification of proteins mediated by PARP family members, such as PARP-1. Although PARylation has been studied extensively, few examples of definitive biological roles for site-specific PARylation have been reported. Here we show that C/EBPß, a key pro-adipogenic transcription factor, is PARylated by PARP-1 on three amino acids in a conserved regulatory domain. PARylation at these sites inhibits C/EBPß's DNA binding and transcriptional activities and attenuates adipogenesis in various genetic and cell-based models. Interestingly, PARP-1 catalytic activity drops precipitously during the first 48 hr of differentiation, corresponding to a release of C/EBPß from PARylation-mediated inhibition. This promotes the binding of C/EBPß at enhancers controlling the expression of adipogenic target genes and continued differentiation. Depletion or chemical inhibition of PARP-1, or mutation of the PARylation sites on C/EBPß, enhances these early adipogenic events. Collectively, our results provide a clear example of how site-specific PARylation drives biological outcomes.


Assuntos
Adipócitos/enzimologia , Adipogenia , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Células-Tronco Embrionárias/enzimologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Processamento de Proteína Pós-Traducional , Transcrição Gênica , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Animais , Sítios de Ligação , Proteína beta Intensificadora de Ligação a CCAAT/genética , DNA/genética , DNA/metabolismo , Células-Tronco Embrionárias/efeitos dos fármacos , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Células NIH 3T3 , Fenótipo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/deficiência , Poli(ADP-Ribose) Polimerase-1/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Ligação Proteica , Domínios Proteicos , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional , Transfecção
8.
Biochem J ; 481(17): 1097-1123, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39178157

RESUMO

ADP-ribosylation is a prominent and versatile post-translational modification, which regulates a diverse set of cellular processes. Poly-ADP-ribose (PAR) is synthesised by the poly-ADP-ribosyltransferases PARP1, PARP2, tankyrase (TNKS), and tankyrase 2 (TNKS2), all of which are linked to human disease. PARP1/2 inhibitors have entered the clinic to target cancers with deficiencies in DNA damage repair. Conversely, tankyrase inhibitors have continued to face obstacles on their way to clinical use, largely owing to our limited knowledge of their molecular impacts on tankyrase and effector pathways, and linked concerns around their tolerability. Whilst detailed structure-function studies have revealed a comprehensive picture of PARP1/2 regulation, our mechanistic understanding of the tankyrases lags behind, and thereby our appreciation of the molecular consequences of tankyrase inhibition. Despite large differences in their architecture and cellular contexts, recent structure-function work has revealed striking parallels in the regulatory principles that govern these enzymes. This includes low basal activity, activation by intra- or inter-molecular assembly, negative feedback regulation by auto-PARylation, and allosteric communication. Here we compare these poly-ADP-ribosyltransferases and point towards emerging parallels and open questions, whose pursuit will inform future drug development efforts.


Assuntos
Poli(ADP-Ribose) Polimerase-1 , Tanquirases , Tanquirases/metabolismo , Tanquirases/antagonistas & inibidores , Tanquirases/genética , Tanquirases/química , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/genética , Animais , Processamento de Proteína Pós-Traducional , Reparo do DNA , ADP-Ribosilação , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli ADP Ribosilação/genética
9.
Genes Dev ; 31(3): 318-332, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28242626

RESUMO

Poly-(ADP-ribose) polymerase (PARP) inhibitors (PARPis) selectively kill BRCA1/2-deficient cells, but their efficacy in BRCA-deficient patients is limited by drug resistance. Here, we used derived cell lines and cells from patients to investigate how to overcome PARPi resistance. We found that the functions of BRCA1 in homologous recombination (HR) and replication fork protection are sequentially bypassed during the acquisition of PARPi resistance. Despite the lack of BRCA1, PARPi-resistant cells regain RAD51 loading to DNA double-stranded breaks (DSBs) and stalled replication forks, enabling two distinct mechanisms of PARPi resistance. Compared with BRCA1-proficient cells, PARPi-resistant BRCA1-deficient cells are increasingly dependent on ATR for survival. ATR inhibitors (ATRis) disrupt BRCA1-independent RAD51 loading to DSBs and stalled forks in PARPi-resistant BRCA1-deficient cells, overcoming both resistance mechanisms. In tumor cells derived from patients, ATRis also overcome the bypass of BRCA1/2 in fork protection. Thus, ATR inhibition is a unique strategy to overcome the PARPi resistance of BRCA-deficient cancers.


Assuntos
Recombinação Homóloga/genética , Neoplasias Ovarianas/genética , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteína BRCA1/deficiência , Proteína BRCA1/genética , Reparo do DNA , DNA de Neoplasias , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Recombinação Homóloga/efeitos dos fármacos , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Células Tumorais Cultivadas
10.
Gut ; 73(10): 1712-1724, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-38857989

RESUMO

OBJECTIVE: Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver cancer with limited therapeutic options. KRAS mutations are among the most abundant genetic alterations in iCCA associated with poor clinical outcome and treatment response. Recent findings indicate that Poly(ADP-ribose)polymerase1 (PARP-1) is implicated in KRAS-driven cancers, but its exact role in cholangiocarcinogenesis remains undefined. DESIGN: PARP-1 inhibition was performed in patient-derived and established iCCA cells using RNAi, CRISPR/Cas9 and pharmacological inhibition in KRAS-mutant, non-mutant cells. In addition, Parp-1 knockout mice were combined with iCCA induction by hydrodynamic tail vein injection to evaluate an impact on phenotypic and molecular features of Kras-driven and Kras-wildtype iCCA. Clinical implications were confirmed in authentic human iCCA. RESULTS: PARP-1 was significantly enhanced in KRAS-mutant human iCCA. PARP-1-based interventions preferentially impaired cell viability and tumourigenicity in human KRAS-mutant cell lines. Consistently, loss of Parp-1 provoked distinct phenotype in Kras/Tp53-induced versus Akt/Nicd-induced iCCA and abolished Kras-dependent cholangiocarcinogenesis. Transcriptome analyses confirmed preferential impairment of DNA damage response pathways and replicative stress response mediated by CHK1. Consistently, inhibition of CHK1 effectively reversed PARP-1 mediated effects. Finally, Parp-1 depletion induced molecular switch of KRAS-mutant iCCA recapitulating good prognostic human iCCA patients. CONCLUSION: Our findings identify the novel prognostic and therapeutic role of PARP-1 in iCCA patients with activation of oncogenic KRAS signalling.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Fenótipo , Poli(ADP-Ribose) Polimerase-1 , Proteínas Proto-Oncogênicas p21(ras) , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Humanos , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Animais , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Camundongos Knockout , Linhagem Celular Tumoral , Mutação
11.
J Cell Mol Med ; 28(18): e70114, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39317961

RESUMO

Nephrotoxicity is a major side effect of platinum-based antineoplastic drugs, and there is currently no available therapeutic intervention. Our study suggests that targeting histone deacetylase 8 could be a potential treatment for cisplatin-induced acute kidney injury (AKI). In a murine model of AKI induced by cisplatin, the administration of PCI-34051, a selective inhibitor of HDAC8, resulted in significant improvement in renal function and reduction in renal tubular damage and apoptosis. Pharmacological inhibition of HDAC8 also decreased caspase-3 and PARP1 cleavage, attenuated Bax expression and preserved Bcl-2 levels in the injured kidney. In cultured murine renal epithelial cells (mRTECs) exposed to cisplatin, treatment with PCI-34051 or transfection with HDAC8 siRNA reduced apoptotic cell numbers and diminished expression of cleaved caspase-3 and PARP1; conversely, overexpression of HDAC8 intensified these changes. Additionally, PCI-34051 reduced p53 expression levels along with those for p21, p-CDK2 and γ-H2AX while preserving MRE11 expression in the injured kidney. Similarly, pharmacological and genetic inhibition of HDAC8 reduced γ-H2AX and enhanced MRE11 expression; conversely, HDAC8 overexpression exacerbated these changes in mRTECs exposed to cisplatin. These results support that HDAC8 inhibition attenuates cisplatin-induced AKI through a mechanism associated with reducing DNA damage and promoting its repair.


Assuntos
Injúria Renal Aguda , Apoptose , Cisplatino , Dano ao DNA , Inibidores de Histona Desacetilases , Histona Desacetilases , Reparo de DNA por Recombinação , Proteína Supressora de Tumor p53 , Animais , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Dano ao DNA/efeitos dos fármacos , Camundongos , Reparo de DNA por Recombinação/efeitos dos fármacos , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Apoptose/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Masculino , Camundongos Endogâmicos C57BL , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Histonas/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Caspase 3/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proteína Homóloga a MRE11/metabolismo , Proteína Homóloga a MRE11/genética , Modelos Animais de Doenças , Ácidos Hidroxâmicos/farmacologia , Indóis
12.
Br J Cancer ; 131(2): 231-242, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806724

RESUMO

BACKGROUND: Splicing factors are frequently mutated in patients with myelodysplastic syndromes and acute myeloid leukaemia. Recent studies have revealed convergent molecular defects caused by splicing factor mutations, among which R-loop dysregulation and resultant genome instability are suggested as contributing factors to disease progression. On the other hand, understanding how mutant cells survive upon aberrant R-loop formation and genome instability is essential for developing novel therapeutics. METHODS: The immunoprecipitation was performed to identify R-loops in association with PARP1/poly-ADP-ribosylation. The western blot, immunofluorescence, and flow cytometry assays were used to test the cell viability, cell cycle arrest, apoptosis, and ATM activation in mutant cells following the treatment of the PARP inhibitor. The Srsf2(P95H) knock-in murine hematopoietic cells and MLL-AF9 transformed leukaemia model were generated to investigate the potential of the PARP inhibitor as a therapy for haematological malignancies. RESULTS: The disease-causing mutations in SRSF2 activate PARP and elevate the overall poly-ADP-ribosylation levels of proteins in response to R-loop dysregulation. In accordance, mutant cells are more vulnerable to the PARP inhibitors in comparison to the wild-type counterpart. Notably, the synthetic lethality was further validated in the Srsf2(P95H) knock-in murine hematopoietic cell and MLL-AF9 leukaemia model. CONCLUSIONS: Our findings suggest that mutant cells antagonise the genome threat caused by R-loop disruption by PARP activation, thus making PARP targeting a promising therapeutic strategy for myeloid cancers with mutations in SRSF2.


Assuntos
Síndromes Mielodisplásicas , Inibidores de Poli(ADP-Ribose) Polimerases , Fatores de Processamento de Serina-Arginina , Mutações Sintéticas Letais , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/patologia , Animais , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Camundongos , Humanos , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Técnicas de Introdução de Genes , Mutação , Splicing de RNA
13.
Arch Biochem Biophys ; 756: 110010, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38642632

RESUMO

PARP1 plays a pivotal role in DNA repair within the base excision pathway, making it a promising therapeutic target for cancers involving BRCA mutations. Current study is focused on the discovery of PARP inhibitors with enhanced selectivity for PARP1. Concurrent inhibition of PARP1 with PARP2 and PARP3 affects cellular functions, potentially causing DNA damage accumulation and disrupting immune responses. In step 1, a virtual library of 593 million compounds has been screened using a shape-based screening approach to narrow down the promising scaffolds. In step 2, hierarchical docking approach embedded in Schrödinger suite was employed to select compounds with good dock score, drug-likeness and MMGBSA score. Analysis supplemented with decomposition energy, molecular dynamics (MD) simulations and hydrogen bond frequency analysis, pinpointed that active site residues; H862, G863, R878, M890, Y896 and F897 are crucial for specific binding of ZINC001258189808 and ZINC000092332196 with PARP1 as compared to PARP2 and PARP3. The binding of ZINC000656130962, ZINC000762230673, ZINC001332491123, and ZINC000579446675 also revealed interaction involving two additional active site residues of PARP1, namely N767 and E988. Weaker or no interaction was observed for these residues with PARP2 and PARP3. This approach advances our understanding of PARP-1 specific inhibitors and their mechanisms of action, facilitating the development of targeted therapeutics.


Assuntos
Antineoplásicos , Desenho de Fármacos , Simulação de Dinâmica Molecular , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Simulação de Acoplamento Molecular , Domínio Catalítico , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/química , Ligação de Hidrogênio
14.
Chem Res Toxicol ; 37(7): 1187-1198, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38837948

RESUMO

Hydroquinone(HQ) is a widely used industrial raw material and is a topical lightening product found in over-the-counter products. However, inappropriate exposure to HQ can pose certain health hazards. This study aims to explore the mechanisms of DNA damage and cell apoptosis caused by HQ, with a focus on whether HQ activates the nuclear factor-κB (NF-κB) pathway to participate in this process and to investigate the correlation between the NF-κB pathway activation and poly(ADP-ribose) polymerase 1(PARP1). Through various experimental techniques, such as DNA damage detection, cell apoptosis assessment, cell survival rate analysis, immunofluorescence, and nuclear-cytoplasmic separation, the cytotoxic effects of HQ were verified, and the activation of the NF-κB pathway was observed. Simultaneously, the relationship between the NF-κB pathway and PARP1 was verified by shRNA interference experiments. The results showed that HQ could significantly activate the NF-κB pathway, leading to a decreased cell survival rate, increased DNA damage, and cell apoptosis. Inhibiting the NF-κB pathway could significantly reduce HQ-induced DNA damage and cell apoptosis and restore cell proliferation and survival rate. shRNA interference experiments further indicated that the activation of the NF-κB pathway was regulated by PARP1. This study confirmed the important role of the NF-κB pathway in HQ-induced DNA damage and cell apoptosis and revealed that the activation of the NF-κB pathway was mediated by PARP1. This research provides important clues for a deeper understanding of the toxic mechanism of HQ.


Assuntos
Apoptose , Sobrevivência Celular , Dano ao DNA , Hidroquinonas , NF-kappa B , Poli(ADP-Ribose) Polimerase-1 , Apoptose/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Hidroquinonas/farmacologia , Humanos , NF-kappa B/metabolismo , Dano ao DNA/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular , Transdução de Sinais/efeitos dos fármacos , Relação Dose-Resposta a Droga
15.
Anticancer Drugs ; 35(9): 789-805, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38940933

RESUMO

Liver cancer is a prevalent malignant tumor globally. The newly approved first-line drug, donafenib, is a novel oral small molecule multi-tyrosine kinase inhibitor that has significant antitumor effects on liver cancer. This study aims to investigate the antitumor effects of donafenib on liver cancer and to explore its potential mechanisms. Donafenib significantly inhibited the viability of Huh-7 and HCCLM3 cells, inhibited malignant cell proliferation, and promoted cell apoptosis, as demonstrated by CCK-8, EdU, and Calcein/PI (propidium iodide) staining experiments. The results of DNA damage detection experiments and western blot analysis indicate that donafenib caused considerable DNA damage in liver cancer cells. The analysis of poly (ADP-ribose) polymerase 1 (PARP1) in liver cancer patients using online bioinformatics data websites such as TIMER2.0, GEPIA, UALCAN, cBioPortal, Kaplan-Meier Plotter, and HPA revealed a high expression of PARP1, which is associated with poor prognosis. Molecular docking and western blot analysis demonstrated that donafenib can directly target and downregulate the protein expression of PARP1, a DNA damage repair protein, thereby promoting DNA damage in liver cancer cells. Western blot and immunofluorescence detection showed that the group treated with donafenib combined with PARP1 inhibitor had significantly higher expression of γ-H2AX and 8-OHdG compared to the groups treated with donafenib or PARP1 inhibitors alone, the combined treatment suppresses the expression of the antiapoptotic protein Bcl2 and enhances the protein expression level of the proapoptotic protein Bcl-2-associated X protein (BAX). These data suggest that the combination of donafenib and a PARP1 inhibitor results in more significant DNA damage in cells and promotes cell apoptosis. Thus, the combination of donafenib and PARP1 inhibitors has the potential to be a treatment option for liver cancer.


Assuntos
Apoptose , Proliferação de Células , Dano ao DNA , Neoplasias Hepáticas , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Dano ao DNA/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral
16.
J Chem Inf Model ; 64(19): 7725-7742, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39292752

RESUMO

Poly(ADP-ribose) polymerase 1 (PARP1) inhibitors have revolutionized the treatment of many cancers with DNA-repairing deficiencies via synthetic lethality. Advocated by the polypharmacology concept, recent evidence discovered that a significantly synergistic effect in increasing the death of cancer cells was observed by simultaneously perturbating the enzymatic activities of bromodomain-containing protein 4 (BRD4) and PARP1. Here, we developed a novel cheminformatics approach combined with a structure-based method aiming to facilitate the design of dual PARP1-BRD4 inhibitors. Instead of linking pharmacophores, the developed approach first identified merged pharmacophores (a pool of amide-containing ring systems), from which phenanthridin-6(5H)-one was further prioritized. Based on this starting point, several small molecules were rationally designed, among which HF4 exhibited low micromolar inhibitory activity against BRD4 and PARP1, particularly exhibiting strong inhibition of BRD4 BD1 with an IC50 value of 204 nM. Furthermore, it demonstrated potent antiproliferative effects against breast cancer gene-deficient and proficient breast cancer cell lines by arresting cell cycle progression and impeding DNA damage repair. Collectively, our systematic efforts to design lead-like molecules have the potential to open doors for the exploration of dual PARP1-BRD4 inhibitors as a promising avenue for breast cancer treatment. Furthermore, the developed approach can be extended to systematically design inhibitors targeting PARP1 and other related targets.


Assuntos
Neoplasias da Mama , Proteínas de Ciclo Celular , Desenho de Fármacos , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Fatores de Transcrição , Humanos , Neoplasias da Mama/tratamento farmacológico , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/química , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Simulação de Acoplamento Molecular , Feminino , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Proteínas que Contêm Bromodomínio
17.
Bioorg Med Chem ; 113: 117936, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39369565

RESUMO

PARP inhibitors (PARPis) demonstrate significant potential efficacy in the clinical treatment of BRCA-mutated triple-negative breast cancer (TNBC). However, a majority of patients with TNBC do not possess BRCA mutations, and therefore cannot benefit from PARPis. Previous studies on multi-targeted molecules derived from PARPis or disruptors of RAF-RAF pathway have offered an alternative approach to develop novel anti-TNBC agents. Hence, to broaden the application of PARP inhibitors for TNBC patients with wild-type BRCA, a series of dual-targeted molecules were constructed via integrating the key pharmacophores of Olaparib (Ola) and Rigosertib into a single entity. Subsequent studies exhibited that the resulting compounds 13a-14c obtained potential anti-proliferative activity against BRCA-defected or wild-type TNBC cells. Among them, an optimal compound 13b showed good inhibitory activity toward PARP-1, displayed approximately 34-fold higher inhibitory activity than that of Ola in MDA-MB-231 cells, and exerted multi-functional mechanisms to induce apoptosis. Moreover, 13b displayed superior antitumor efficacy (TGI, 61.3 %) than the single administration of Ola (TGI, 38.5 %), 11b (TGI, 51.8 %) or even their combined administration (TGI, 56.7 %), but did not show significant systematic toxicity. These findings suggest that 13b may serve as a potential candidate for BRCA wild-type TNBC.


Assuntos
Antineoplásicos , Proliferação de Células , Ftalazinas , Piperazinas , Inibidores de Poli(ADP-Ribose) Polimerases , Sulfonas , Neoplasias de Mama Triplo Negativas , Humanos , Ftalazinas/farmacologia , Ftalazinas/química , Ftalazinas/síntese química , Piperazinas/farmacologia , Piperazinas/química , Piperazinas/síntese química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Sulfonas/química , Sulfonas/farmacologia , Sulfonas/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Descoberta de Drogas , Feminino , Linhagem Celular Tumoral , Estrutura Molecular , Apoptose/efeitos dos fármacos , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Relação Dose-Resposta a Droga , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Glicina/análogos & derivados
18.
Bioorg Chem ; 148: 107455, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772289

RESUMO

Poly(ADP-ribose) polymerase-1 (PARP-1) is a crucial member of DNA repair enzymes responsible for repairing DNA single-strand breaks. Developing PARP inhibitors based on synthetic lethality strategies is an effective approach for treating breast cancer and other diseases. In this study, a series of novel piperidine-based benzamide derivatives were designed and synthesized using structure-based drug design principles. The anticancer activities of these compounds were evaluated against five human cancer cell lines (MDA-MB-436, CAPAN-1, SW-620, HepG2, SKOV3, and PC3) and the preliminary structure-activity relationships were delineated. Among the compounds, 6a and 15d demonstrated potent antiproliferative effects against MDA-MB-436 cells with IC50 values of 8.56 ± 1.07 µM and 6.99 ± 2.62 µM, respectively. Furthermore, both compounds exhibited excellent inhibitory activity against PARP-1, with IC50 values of 8.33 nM and 12.02 nM, respectively. Mechanistic investigations revealed that 6a and 15d effectively inhibited colony formation and cell migration of HCT116 cells. Moreover, they induced apoptosis by upregulating the expression of Bax and cleaved Caspase-3, while downregulating the expression of Caspase-3 and Bcl-2 in HCT116 cells. Based on its impressive pharmacodynamic data in vitro, we conducted a study to evaluate the efficacy of 15d in a xenograft tumor model in mice when used in combination with cytotoxic agents. Collectively, these findings suggest that 15d could be promising drug candidates worthy of further investigation.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Piperidinas , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Piperidinas/farmacologia , Piperidinas/química , Piperidinas/síntese química , Relação Estrutura-Atividade , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Animais , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Estrutura Molecular , Camundongos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos Nus , Camundongos Endogâmicos BALB C
19.
Bioorg Chem ; 148: 107480, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772291

RESUMO

A novel series of erythrina derivatives as PARP-1/FTase inhibitors were synthesized, and evaluated for their biological activities. Compound T9 had excellent inhibitory effects on cell viability (A549: IC50 = 1.74 µM; A549/5-Fu: IC50 = 1.03 µM) and in vitro enzyme activities (PARP-1: IC50 = 0.40 µM; FTase: IC50 = 0.067 µM). Molecular docking and point mutation assays demonstrated the interaction of compound T9 with key amino acid residues. The compound T9 exhibited potent anti-proliferation and anti-migration capabilities against A549 and A549/5-Fu cells. PCR array and western blot results showed that compound T9 could effectively inhibit EMT-related proteins in A549 and A549/5-Fu cells, thereby inhibiting the development of lung cancer. Importantly, compound T9 could significantly inhibit tumor growth in the A549 xenograft tumor model (TGI = 65.3 %). In conclusion, this study was the first presentation of the concept of dual-target inhibitors of the PARP-1/FTase enzymes. It also provides the basis for further research and development of novel PARP-1/FTase inhibitors.


Assuntos
Antineoplásicos , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Transição Epitelial-Mesenquimal , Erythrina , Neoplasias Pulmonares , Poli(ADP-Ribose) Polimerase-1 , Humanos , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Erythrina/química , Animais , Estrutura Molecular , Camundongos , Simulação de Acoplamento Molecular , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Neoplasias Experimentais/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Movimento Celular/efeitos dos fármacos
20.
Bioorg Chem ; 151: 107556, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39068717

RESUMO

In recent years, poly(ADP-ribose)polymerase-1 (PARP-1) and histone deacetylase (HDAC) have emerged as significant targets in tumor therapy, garnering widespread attention. In this study, we designed and synthesized two novel phthalazinone PARP-1 inhibitors and dual PARP-1/HDAC-1 inhibitors, named DLC-1-46 containing dithiocarboxylate fragments and DLC-47-63 containing hydroxamic acid fragments, and evaluated their inhibitory activities on enzymes and cells. Among the PARP-1 inhibitors, most compounds exhibited high inhibitory activity against the PARP-1 enzyme, with DLC-1-6 being particularly notable, showing IC50 values <0.2 nM. Notably, DLC-1 demonstrated significant anti-proliferative activity, with IC50 values for inhibiting the proliferation of MDA-MB-436, MDA-MB-231, and MCF-7 cells reaching 0.08, 26.39, and 1.01 µM, respectively. Further investigation revealed that DLC-1 arrested MDA-MB-231 cells in the G1 phase and induced apoptosis in a dose-dependent manner. Among the designed dual PARP-1/HDAC-1 inhibitors, several compounds exhibited potent dual-target inhibitory activity, with DLC-49 displaying IC50 values of 0.53 nM and 17 nM for PARP-1 and HDAC-1, respectively. DLC-50 demonstrated the most potent anti-proliferative activity, with IC50 values for inhibiting the proliferation of MDA-MB-436, MDA-MB-231, and MCF-7 cells at 0.30, 2.70, and 2.41 µM, respectively. Cell cycle arrest and apoptosis assays indicated that DLC-50 arrested the cell cycle in the G2 phase and induced apoptosis in HCT-116 cells. Our findings present a novel avenue for further exploration of PARP-1 inhibitors and dual PARP-1/HDAC-1 inhibitors.


Assuntos
Antineoplásicos , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Histona Desacetilase 1 , Inibidores de Histona Desacetilases , Ftalazinas , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Relação Estrutura-Atividade , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Ftalazinas/farmacologia , Ftalazinas/síntese química , Ftalazinas/química , Estrutura Molecular , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA