Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(4): 1032-1046.e18, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33571428

RESUMO

Human immunodeficiency virus (HIV-1) remains a major health threat. Viral capsid uncoating and nuclear import of the viral genome are critical for productive infection. The size of the HIV-1 capsid is generally believed to exceed the diameter of the nuclear pore complex (NPC), indicating that capsid uncoating has to occur prior to nuclear import. Here, we combined correlative light and electron microscopy with subtomogram averaging to capture the structural status of reverse transcription-competent HIV-1 complexes in infected T cells. We demonstrated that the diameter of the NPC in cellulo is sufficient for the import of apparently intact, cone-shaped capsids. Subsequent to nuclear import, we detected disrupted and empty capsid fragments, indicating that uncoating of the replication complex occurs by breaking the capsid open, and not by disassembly into individual subunits. Our data directly visualize a key step in HIV-1 replication and enhance our mechanistic understanding of the viral life cycle.


Assuntos
Capsídeo/metabolismo , HIV-1/metabolismo , Poro Nuclear/metabolismo , Transporte Ativo do Núcleo Celular , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Células HEK293 , Infecções por HIV/virologia , HIV-1/ultraestrutura , Humanos , Modelos Biológicos , Poro Nuclear/ultraestrutura , Poro Nuclear/virologia , Transcrição Reversa , Vírion/metabolismo , Internalização do Vírus , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
2.
Nature ; 626(8000): 843-851, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267583

RESUMO

HIV-1 infection requires nuclear entry of the viral genome. Previous evidence suggests that this entry proceeds through nuclear pore complexes (NPCs), with the 120 × 60 nm capsid squeezing through an approximately 60-nm-wide central channel1 and crossing the permeability barrier of the NPC. This barrier can be described as an FG phase2 that is assembled from cohesively interacting phenylalanine-glycine (FG) repeats3 and is selectively permeable to cargo captured by nuclear transport receptors (NTRs). Here we show that HIV-1 capsid assemblies can target NPCs efficiently in an NTR-independent manner and bind directly to several types of FG repeats, including barrier-forming cohesive repeats. Like NTRs, the capsid readily partitions into an in vitro assembled cohesive FG phase that can serve as an NPC mimic and excludes much smaller inert probes such as mCherry. Indeed, entry of the capsid protein into such an FG phase is greatly enhanced by capsid assembly, which also allows the encapsulated clients to enter. Thus, our data indicate that the HIV-1 capsid behaves like an NTR, with its interior serving as a cargo container. Because capsid-coating with trans-acting NTRs would increase the diameter by 10 nm or more, we suggest that such a 'self-translocating' capsid undermines the size restrictions imposed by the NPC scaffold, thereby bypassing an otherwise effective barrier to viral infection.


Assuntos
Proteínas do Capsídeo , Capsídeo , Glicina , HIV-1 , Complexo de Proteínas Formadoras de Poros Nucleares , Poro Nuclear , Fenilalanina , Humanos , Transporte Ativo do Núcleo Celular , Capsídeo/química , Capsídeo/metabolismo , Glicina/metabolismo , HIV-1/química , HIV-1/genética , HIV-1/metabolismo , Poro Nuclear/química , Poro Nuclear/metabolismo , Poro Nuclear/virologia , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Permeabilidade , Fenilalanina/metabolismo , Solubilidade , Internalização do Vírus , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo
3.
Nature ; 626(8000): 836-842, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267582

RESUMO

HIV can infect non-dividing cells because the viral capsid can overcome the selective barrier of the nuclear pore complex and deliver the genome directly into the nucleus1,2. Remarkably, the intact HIV capsid is more than 1,000 times larger than the size limit prescribed by the diffusion barrier of the nuclear pore3. This barrier in the central channel of the nuclear pore is composed of intrinsically disordered nucleoporin domains enriched in phenylalanine-glycine (FG) dipeptides. Through multivalent FG interactions, cellular karyopherins and their bound cargoes solubilize in this phase to drive nucleocytoplasmic transport4. By performing an in vitro dissection of the nuclear pore complex, we show that a pocket on the surface of the HIV capsid similarly interacts with FG motifs from multiple nucleoporins and that this interaction licences capsids to penetrate FG-nucleoporin condensates. This karyopherin mimicry model addresses a key conceptual challenge for the role of the HIV capsid in nuclear entry and offers an explanation as to how an exogenous entity much larger than any known cellular cargo may be able to non-destructively breach the nuclear envelope.


Assuntos
Proteínas do Capsídeo , Glicina , HIV , Carioferinas , Mimetismo Molecular , Complexo de Proteínas Formadoras de Poros Nucleares , Poro Nuclear , Fenilalanina , Humanos , Transporte Ativo do Núcleo Celular , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Difusão , Dipeptídeos/química , Dipeptídeos/metabolismo , Glicina/metabolismo , HIV/química , HIV/metabolismo , Técnicas In Vitro , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Carioferinas/metabolismo , Poro Nuclear/química , Poro Nuclear/metabolismo , Poro Nuclear/virologia , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Permeabilidade , Fenilalanina/metabolismo , Solubilidade , Internalização do Vírus , Capsídeo/química , Capsídeo/metabolismo
4.
J Virol ; 92(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29997211

RESUMO

Human immunodeficiency virus type 1 (HIV-1) displays the unique ability to infect nondividing cells. The capsid of HIV-1 is the viral determinant for viral nuclear import. To understand the cellular factors involved in the ability of HIV-1 to infect nondividing cells, we sought to find capsid mutations that allow the virus to infect dividing but not nondividing cells. Because the interaction of capsid with the nucleoporin protein 153 (Nup153) is important for nuclear import of HIV-1, we solved new crystal structures of hexameric HIV-1 capsid in complex with a Nup153-derived peptide containing a phenylalanine-glycine repeat (FG repeat), which we used to guide structure-based mutagenesis of the capsid-binding interface. HIV-1 viruses with mutations in these capsid residues were tested for their ability to infect dividing and nondividing cells. HIV-1 viruses with capsid N57 substitutions infected dividing but not nondividing cells. Interestingly, HIV-1 viruses with N57 mutations underwent reverse transcription but not nuclear translocation. The mutant capsids also lost the ability to interact with Nup153 and CPSF6. The use of small molecules PF74 and BI-2 prevented the interaction of FG-containing nucleoporins (Nups), such as Nup153, with the HIV-1 core. Analysis of integration sites in HIV-1 viruses with N57 mutations revealed diminished integration into transcriptionally active genes in a manner resembling that of HIV-1 in CPSF6 knockout cells or that of HIV-1-N74D. The integration pattern of the N57 mutant HIV-1 can be explained by loss of capsid interaction with CPSF6, whereas capsid interaction with Nup153 is required for HIV-1 to infect nondividing cells. Additionally, the observed viral integration profiles suggested that integration site selection is a multiparameter process that depends upon nuclear factors and the state of the cellular chromatin.IMPORTANCE One of the key advantages that distinguish lentiviruses, such as HIV-1, from all other retroviruses is its ability to infect nondividing cells. Interaction of the HIV-1 capsid with Nup153 and CPSF6 is important for nuclear entry and integration; however, the contribution of each of these proteins to nuclear import and integration is not clear. Using genetics, we demonstrated that these proteins contribute to different processes: Nup153 is essential for the HIV-1 nuclear import in nondividing cells, and CPSF6 is important for HIV-1 integration. In addition, nuclear factors such as CPSF6 and the state of the chromatin are known to be important for integration site selection; nevertheless, the preferential determinant influencing integration site selection is not known. This work demonstrates that integration site selection is a multiparameter process that depends upon nuclear factors and the state of the cellular chromatin.


Assuntos
Capsídeo/metabolismo , Divisão Celular , HIV-1/metabolismo , Mutação , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Transporte Ativo do Núcleo Celular/genética , Linhagem Celular , Técnicas de Silenciamento de Genes , HIV-1/genética , Humanos , Poro Nuclear/genética , Poro Nuclear/virologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
5.
Traffic ; 17(6): 569-92, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26875443

RESUMO

Viruses are spherical or complex shaped carriers of proteins, nucleic acids and sometimes lipids and sugars. They are metastable and poised for structural changes. These features allow viruses to communicate with host cells during entry, and to release the viral genome, a process known as uncoating. Studies have shown that hundreds of host factors directly or indirectly support this process. The cell provides molecules that promote stepwise virus uncoating, and direct the virus to the site of replication. It acts akin to a snooker player who delivers accurate and timely shots (cues) to the ball (virus) to score. The viruses, on the other hand, trick (snooker) the host, hijack its homeostasis systems, and dampen innate immune responses directed against danger signals. In this review, we discuss how cellular cues, facilitators, and built-in viral mechanisms promote uncoating. Cues come from receptors, enzymes and chemicals that act directly on the virus particle to alter its structure, trafficking and infectivity. Facilitators are defined as host factors that are involved in processes which indirectly enhance entry or uncoating. Unraveling the mechanisms of virus uncoating will continue to enhance understanding of cell functions, and help counteracting infections with chemicals and vaccines.


Assuntos
Desenvelopamento do Vírus , Vírus/patogenicidade , Animais , Endossomos/virologia , Humanos , Poro Nuclear/virologia , Vírus/metabolismo
6.
Traffic ; 15(11): 1266-81, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25131140

RESUMO

Many viruses deliver their genomes into the nucleoplasm for viral transcription and replication. Here, we describe a novel cell-free system to elucidate specific interactions between viruses and nuclear pore complexes (NPCs). Nuclei reconstituted in vitro from egg extracts of Xenopus laevis, an established biochemical system to decipher nuclear functions, were incubated with GFP-tagged capsids of herpes simplex virus, an alphaherpesvirus replicating in the nucleus. Capsid binding to NPCs was analyzed using fluorescence and field emission scanning electron microscopy. Tegument-free capsids or viral capsids exposing inner tegument proteins on their surface bound to nuclei, while capsids inactivated by a high-salt treatment or covered by inner and outer tegument showed less binding. There was little binding of the four different capsid types to nuclei lacking functional NPCs. This novel approach provides a powerful system to elucidate the molecular mechanisms that enable viral structures to engage with NPCs. Furthermore, this assay could be expanded to identify molecular cues triggering viral genome uncoating and nuclear import of viral genomes.


Assuntos
Capsídeo/metabolismo , Poro Nuclear/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Capsídeo/ultraestrutura , Proteínas do Capsídeo/metabolismo , Sistema Livre de Células , Herpesvirus Humano 1/metabolismo , Poro Nuclear/virologia , Ligação Proteica , Xenopus
7.
J Theor Biol ; 395: 87-96, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-26860658

RESUMO

Although HIV viremia in infected patients proceeds in a manner that may be accounted for by deterministic mathematical models, single virus-cell encounters following initial HIV exposure result in a variety of outcomes, only one of which results in a productive infection. The development of single molecule tracking techniques in living cells allows studies of intracellular transport of HIV, but it remains less clear what its impact may be on viral integration efficiency. Here, we present a stochastic intracellular mathematical model of HIV replication that incorporates microtubule transport of viral components. Using this model, we could study single round infections and observe how viruses entering cells reach one of three potential fates - degradation of the viral RNA genome, formation of LTR circles, or successful integration and establishment of a provirus. Our model predicts global trafficking properties, such as the probability and the mean time for a HIV viral particle to reach the nuclear pore. Interestingly, our model predicts that trafficking determines neither the probability or time of provirus establishment - instead, they are a function of vRNA degradation and reverse transcription reactions. Thus, our spatio-temporal model provides novel insights into the HIV infection process and may constitute a useful tool for the identification of promising drug targets.


Assuntos
Genoma Viral/fisiologia , Infecções por HIV/metabolismo , HIV-1/fisiologia , Modelos Biológicos , RNA Viral/metabolismo , Replicação Viral/fisiologia , Transporte Biológico Ativo , Humanos , Poro Nuclear/metabolismo , Poro Nuclear/virologia , Processos Estocásticos
8.
PLoS Pathog ; 9(10): e1003744, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24204278

RESUMO

Hepatitis C virus (HCV) infection induces formation of a membranous web structure in the host cell cytoplasm where the viral genome replicates and virions assemble. The membranous web is thought to concentrate viral components and hide viral RNA from pattern recognition receptors. We have uncovered a role for nuclear pore complex proteins (Nups) and nuclear transport factors (NTFs) in the membranous web. We show that HCV infection leads to increased levels of cytoplasmic Nups that accumulate at sites enriched for HCV proteins. Moreover, we detected interactions between specific HCV proteins and both Nups and NTFs. We hypothesize that cytoplasmically positioned Nups facilitate formation of the membranous web and contribute to the compartmentalization of viral replication. Accordingly, we show that transport cargo proteins normally targeted to the nucleus are capable of entering regions of the membranous web, and that depletion of specific Nups or Kaps inhibits HCV replication and assembly.


Assuntos
Hepacivirus/fisiologia , Hepatite C/metabolismo , Membranas Intracelulares/metabolismo , Poro Nuclear/metabolismo , Replicação Viral/fisiologia , Transporte Ativo do Núcleo Celular/genética , Linhagem Celular , Hepatite C/genética , Hepatite C/patologia , Humanos , Membranas Intracelulares/virologia , Poro Nuclear/genética , Poro Nuclear/patologia , Poro Nuclear/virologia
9.
J Biol Chem ; 287(15): 12277-92, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22334672

RESUMO

The herpes simplex virus ICP27 protein is important for the expression and nuclear export of viral mRNAs. Although several binding sites have been mapped along the ICP27 sequence for various RNA and protein partners, including the transport receptor TAP of the host cell nuclear transport machinery, several aspects of ICP27 trafficking through the nuclear pore complex remain unclear. We investigated if ICP27 could interact directly with the nuclear pore complex itself, finding that ICP27 directly binds the core nucleoporin Nup62. This is confirmed through co-immunoprecipitation and in vitro binding assays with purified components. Mapping with ICP27 deletion and point mutants further shows that the interaction requires sequences in both the N and C termini of ICP27. Expression of wild type ICP27 protein inhibited both classical, importin α/ß-dependent and transportin-dependent nuclear import. In contrast, an ICP27 point mutant that does not interact with Nup62 had no such inhibitory effect. We suggest that ICP27 association with Nup62 provides additional binding sites at the nuclear pore for ICP27 shuttling, thus supporting ICP27-mediated transport. We propose that ICP27 competes with some host cell transport receptors for binding, resulting in inhibition of those host transport pathways.


Assuntos
Transporte Ativo do Núcleo Celular , Herpesvirus Humano 1/fisiologia , Interações Hospedeiro-Patógeno , Proteínas Imediatamente Precoces/metabolismo , Glicoproteínas de Membrana/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Sítios de Ligação , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Células HeLa , Herpesvirus Humano 8/genética , Humanos , Proteínas Imediatamente Precoces/genética , Imunoprecipitação , Sinais de Exportação Nuclear , Sinais de Localização Nuclear , Poro Nuclear/virologia , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Mapeamento de Peptídeos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Homologia de Sequência de Aminoácidos
10.
J Virol ; 86(17): 8998-9014, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22718835

RESUMO

To initiate infection, herpesviruses must navigate to and transport their genomes across the nuclear pore. VP1-2 is a large structural protein of the virion that is conserved in all herpesviruses and plays multiple essential roles in virus replication, including roles in early entry. VP1-2 contains an N-terminal basic motif which functions as an efficient nuclear localization signal (NLS). In this study, we constructed a mutant HSV strain, K.VP1-2ΔNLS, which contains a 7-residue deletion of the core NLS at position 475. This mutant fails to spread in normal cells but can be propagated in complementing cell lines. Electron microscopy (EM) analysis of infection in noncomplementing cells demonstrated capsid assembly, cytoplasmic envelopment, and the formation of extracellular enveloped virions. Furthermore, extracellular virions isolated from noncomplementing cells had similar profiles and abundances of structural proteins. Virions containing VP1-2ΔNLS were able to enter and be transported within cells. However, further progress of infection was prevented, with at least a 500- to 1,000-fold reduction in the efficiency of initiating gene expression compared to that in the revertant. Ultrastructural and immunofluorescence analyses revealed that the K.VP1-2ΔNLS mutant was blocked at the microtubule organizing center or immediately upstream of nuclear pore docking and prior to gene expression. These results indicate that the VP1-2 NLS is not required for the known assembly functions of the protein but is a key requirement for the early routing to the nuclear pore that is necessary for successful infection. Given its conservation, we propose that this motif may also be critical for entry of other classes of herpesviruses.


Assuntos
Capsídeo/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Sinais de Localização Nuclear , Poro Nuclear/virologia , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Capsídeo/química , Linhagem Celular , Herpesvirus Humano 1/química , Herpesvirus Humano 1/genética , Humanos , Dados de Sequência Molecular , Alinhamento de Sequência , Proteínas Virais/química , Proteínas Virais/genética , Montagem de Vírus
11.
Biochim Biophys Acta ; 1813(9): 1634-45, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21167871

RESUMO

Many viruses depend on nuclear proteins for replication. Therefore, their viral genome must enter the nucleus of the host cell. In this review we briefly summarize the principles of nucleocytoplasmic transport, and then describe the diverse strategies used by viruses to deliver their genomes into the host nucleus. Some of the emerging mechanisms include: (1) nuclear entry during mitosis, when the nuclear envelope is disassembled, (2) viral genome release in the cytoplasm followed by entry of the genome through the nuclear pore complex (NPC), (3) capsid docking at the cytoplasmic side of the NPC, followed by genome release, (4) nuclear entry of intact capsids through the NPC, followed by genome release, and (5) nuclear entry via virus-induced disruption of the nuclear envelope. Which mechanism a particular virus uses depends on the size and structure of the virus, as well as the cellular cues used by the virus to trigger capsid disassembly and genome release. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.


Assuntos
Núcleo Celular/fisiologia , Fenômenos Fisiológicos Virais , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Genoma Viral , Humanos , Microscopia Eletrônica de Transmissão , Mitose/fisiologia , Modelos Biológicos , Membrana Nuclear/fisiologia , Membrana Nuclear/ultraestrutura , Membrana Nuclear/virologia , Poro Nuclear/fisiologia , Poro Nuclear/ultraestrutura , Poro Nuclear/virologia , Internalização do Vírus , Vírus/genética , Vírus/ultraestrutura
13.
Semin Cell Dev Biol ; 20(5): 631-42, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19588547

RESUMO

DNA-tumor viruses comprise enveloped and non-enveloped agents that cause malignancies in a large variety of cell types and tissues by interfering with cell cycle control and immortalization. Those DNA-tumor viruses that replicate in the nucleus use cellular mechanisms to transport their genome and newly synthesized viral proteins into the nucleus. This requires cytoplasmic transport and nuclear import of their genome. Agents that employ this strategy include adenoviruses, hepadnaviruses, herpesviruses, and likely also papillomaviruses, and polyomaviruses, but not poxviruses which replicate in the cytoplasm. Here, we discuss how DNA-tumor viruses enter cells, take advantage of cytoplasmic transport, and import their DNA genome through the nuclear pore complex into the nucleus. Remarkably, nuclear import of incoming genomes does not necessarily follow the same pathways used by the structural proteins of the viruses during the replication and assembly phases of the viral life cycle. Understanding the mechanisms of DNA nuclear import can identify new pathways of cell regulation and anti-viral therapies.


Assuntos
Membrana Celular/virologia , Núcleo Celular/virologia , Vírus de DNA Tumorais/metabolismo , Internalização do Vírus , Transporte Ativo do Núcleo Celular , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Poro Nuclear/metabolismo , Poro Nuclear/virologia
14.
Nat Med ; 8(7): 673-80, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12091904

RESUMO

Adequate control of HIV requires impairing the infection, replication and spread of the virus, no small task given the extraordinary capacity of HIV to exploit the cell's molecular machinery in the course of infection. Understanding the dynamic interplay of host cell and virus is essential to the effort to eradicate HIV.


Assuntos
Síndrome da Imunodeficiência Adquirida/fisiopatologia , Células/virologia , Infecções por HIV/fisiopatologia , HIV/fisiologia , Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Células/ultraestrutura , HIV/patogenicidade , Infecções por HIV/tratamento farmacológico , Humanos , Poro Nuclear/virologia , Replicação Viral
15.
Viruses ; 13(2)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499411

RESUMO

Understanding the detailed nuclear import kinetics of adeno-associated virus (AAV) through the nuclear pore complex (NPC) is essential for the application of AAV capsids as a nuclear delivery instrument as well as a target for drug development. However, a comprehensive understanding of AAV transport through the sub-micrometer NPCs in live cells calls for new techniques that can conquer the limitations of conventional fluorescence microscopy and electron microscopy. With recent technical advances in single-molecule fluorescence microscopy, we are now able to image the entire nuclear import process of AAV particles and also quantify the transport dynamics of viral particles through the NPCs in live human cells. In this review, we initially evaluate the necessity of single-molecule live-cell microscopy in the study of nuclear import for AAV particles. Then, we detail the application of high-speed single-point edge-excitation sub-diffraction (SPEED) microscopy in tracking the entire process of nuclear import for AAV particles. Finally, we summarize the major findings for AAV nuclear import by using SPEED microscopy.


Assuntos
Transporte Ativo do Núcleo Celular , Núcleo Celular/virologia , Dependovirus/metabolismo , Poro Nuclear/virologia , Imagem Individual de Molécula , Capsídeo/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Humanos , Microscopia de Fluorescência , Poro Nuclear/metabolismo
16.
Viruses ; 13(6)2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-34203080

RESUMO

Viruses are pathogens that have evolved to hijack the cellular machinery to replicate themselves and spread to new cells. During the course of evolution, viruses developed different strategies to overcome the cellular defenses and create new progeny. Among them, some RNA and many DNA viruses require access to the nucleus to replicate their genome. In non-dividing cells, viruses can only access the nucleus through the nuclear pore complex (NPC). Therefore, viruses have developed strategies to usurp the nuclear transport machinery and gain access to the nucleus. The majority of these viruses use the capsid to manipulate the nuclear import machinery. However, the particular tactics employed by each virus to reach the host chromatin compartment are very different. Nevertheless, they all require some degree of capsid remodeling. Recent notions on the interplay between the viral capsid and cellular factors shine new light on the quest for the nuclear entry step and for the fate of these viruses. In this review, we describe the main components and function of nuclear transport machinery. Next, we discuss selected examples of RNA and DNA viruses (HBV, HSV, adenovirus, and HIV) that remodel their capsid as part of their strategies to access the nucleus and to replicate.


Assuntos
Capsídeo/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Interações entre Hospedeiro e Microrganismos , Vírus/metabolismo , Transporte Ativo do Núcleo Celular , Humanos , Poro Nuclear/virologia , Vírion/metabolismo , Fenômenos Fisiológicos Virais , Replicação Viral
17.
Viruses ; 13(8)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34452291

RESUMO

HIV-1 can infect non-dividing cells. The nuclear envelope therefore represents a barrier that HIV-1 must traverse in order to gain access to the host cell chromatin for integration. Hence, nuclear entry is a critical step in the early stages of HIV-1 replication. Following membrane fusion, the viral capsid (CA) lattice, which forms the outer face of the retroviral core, makes numerous interactions with cellular proteins that orchestrate the progress of HIV-1 through the replication cycle. The ability of CA to interact with nuclear pore proteins and other host factors around the nuclear pore determines whether nuclear entry occurs. Uncoating, the process by which the CA lattice opens and/or disassembles, is another critical step that must occur prior to integration. Both early and delayed uncoating have detrimental effects on viral infectivity. How uncoating relates to nuclear entry is currently hotly debated. Recent technological advances have led to intense discussions about the timing, location, and requirements for uncoating and have prompted the field to consider alternative uncoating scenarios that presently focus on uncoating at the nuclear pore and within the nuclear compartment. This review describes recent advances in the study of HIV-1 nuclear entry, outlines the interactions of the retroviral CA protein, and discusses the challenges of investigating HIV-1 uncoating.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Núcleo Celular/virologia , Infecções por HIV/virologia , HIV-1/fisiologia , Desenvelopamento do Vírus , Animais , Núcleo Celular/metabolismo , HIV-1/genética , Interações Hospedeiro-Patógeno , Humanos , Membrana Nuclear/fisiologia , Membrana Nuclear/virologia , Poro Nuclear/fisiologia , Poro Nuclear/virologia , Retroviridae/fisiologia , Transcrição Reversa
18.
Sci China Life Sci ; 64(1): 66-76, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32430850

RESUMO

It is recognized that HIV-1 capsid cores are disassembled in the cytoplasm, releasing their genomes into the nucleus through nuclear pores, but there is also evidence showing the capsid (CA) exists in the nucleus. Whether HIV-1 enters the nucleus and how it enters the nucleus through the undersized nuclear pore remains mysterious. Based on multicolor labeling and real-time imaging of the viral and cellular components, our observations via light and electron microscopy suggest that HIV-1 selectively gathered at the microtubule organization center (MTOC), leading the nearby nuclear envelope (NE) to undergo deformation, invagination and restoration to form a nuclear vesicle in which the viral particles were wrapped; then, the inner membrane of the nuclear vesicle ruptured to release HIV-1 into the nucleus. This unexpected discovery expands our understanding of the complexity of HIV-1 nuclear entry, which may provide new insights to HIV-1 virology.


Assuntos
Proteínas do Capsídeo/metabolismo , Núcleo Celular/metabolismo , Endocitose , HIV-1/metabolismo , Poro Nuclear/metabolismo , Vírion/metabolismo , Transporte Ativo do Núcleo Celular , Linhagem Celular Tumoral , Núcleo Celular/ultraestrutura , Núcleo Celular/virologia , Células HEK293 , Infecções por HIV/virologia , HIV-1/genética , HIV-1/fisiologia , Humanos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Centro Organizador dos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/virologia , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Membrana Nuclear/virologia , Poro Nuclear/ultraestrutura , Poro Nuclear/virologia , Imagem com Lapso de Tempo/métodos , Vírion/ultraestrutura
19.
J Virol ; 83(13): 6610-23, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19386703

RESUMO

After penetrating the host cell, the herpesvirus capsid is transported to the nucleus along the microtubule network and docks to the nuclear pore complex before releasing the viral DNA into the nucleus. The viral and cellular interactions involved in the docking process are poorly characterized. However, the minor capsid protein pUL25 has recently been reported to be involved in viral DNA uncoating. Here we show that herpes simplex virus type 1 (HSV-1) capsids interact with the nucleoporin CAN/Nup214 in infected cells and that RNA silencing of CAN/Nup214 delays the onset of viral DNA replication in the nucleus. We also show that pUL25 interacts with CAN/Nup214 and another nucleoporin, hCG1, and binds to the pUL36 and pUL6 proteins, two other components of the herpesvirus particle that are known to be important for the initiation of infection and viral DNA release. These results identify CAN/Nup214 as being a nuclear receptor for the herpesvirus capsid and pUL25 as being an interface between incoming capsids and the nuclear pore complex and as being a triggering element for viral DNA release into the nucleus.


Assuntos
Proteínas do Capsídeo/metabolismo , Herpesvirus Humano 1/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/virologia , Proteínas Virais/metabolismo , Animais , Chlorocebus aethiops , Cricetinae , DNA Viral/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Células Vero , Replicação Viral
20.
Nat Microbiol ; 5(9): 1088-1095, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32483230

RESUMO

Retroviral infection involves the reverse transcription of the viral RNA genome into DNA, which is subsequently integrated into the host cell genome. Human immunodeficiency virus type 1 (HIV-1) and other lentiviruses mediate the infection of non-dividing cells through the ability of the capsid protein1 to engage the cellular nuclear import pathways of the target cell and mediate their nuclear translocation through components of the nuclear pore complex2-4. Although recent studies have observed the presence of the capsid protein in the nucleus during infection5-8, reverse transcription and disassembly of the viral core have conventionally been considered to be cytoplasmic events. Here, we use an inducible nuclear pore complex blockade to monitor the kinetics of HIV-1 nuclear import and define the biochemical staging of these steps of infection. Surprisingly, we observe that nuclear import occurs with relatively rapid kinetics (<5 h) and precedes the completion of reverse transcription in target cells, demonstrating that reverse transcription is completed in the nucleus. We also observe that HIV-1 remains susceptible to the capsid-destabilizing compound PF74 following nuclear import, revealing that uncoating is completed in the nucleus. Additionally, we observe that certain capsid mutants are insensitive to a Nup62-mediated nuclear pore complex blockade in cells that potently block infection by wild-type capsid, demonstrating that HIV-1 can use distinct nuclear import pathways during infection. These studies collectively define the spatio-temporal staging of critical steps of HIV-1 infection and provide an experimental system to separate and thereby define the cytoplasmic and nuclear stages of infection by other viruses.


Assuntos
Núcleo Celular/metabolismo , Infecções por HIV/virologia , HIV-1/genética , Poro Nuclear/metabolismo , Poro Nuclear/virologia , Transcrição Reversa , Transporte Ativo do Núcleo Celular , Linfócitos T CD4-Positivos/virologia , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Citoplasma/metabolismo , Células HEK293 , HIV-1/fisiologia , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Indóis , Macrófagos/virologia , Fenilalanina/análogos & derivados , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA