Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Carcinog ; 63(6): 1117-1132, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38421204

RESUMO

Breast cancer stem cells (BCSCs) are key players in carcinogenesis and development. Small nucleolar RNAs (snoRNAs) seem to have a crucial influence on regulating stem cell-like properties in various cancers, but the underlying mechanism in breast cancer has not been determined. In this study, we first found that the expression of SNORA51 might be strongly and positively related to BCSCs-like properties. SNORA51 expression was assessed in breast cancer tissues (n = 158 patients) by in situ hybridization. Colony formation, cell counting kit-8, and sphere formation assays were used to detect cell proliferation and self-renewal, respectively. Wound healing and transwell assays were used to detect cell migration. Coimmunoprecipitation and molecular docking were used to determine the underlying mechanism through which SNORA51 regulates BCSCs-like properties. High SNORA51 expression was associated with a worse prognosis, overall survival, and disease-free survival, in 158 breast cancer patients and was also closely related to lymph node status, ER status, the Ki-67 index, histological grade, and TNM stage. Further analysis proved that SNORA51 could enhance and maintain stem cell-like properties, including cell proliferation, self-renewal, and migration, in breast cancer. Moreover, high SNORA51 expression could reduce nucleolar RPL3 expression, induce changes in the expression of NPM1 in the nucleolus and nucleoplasm, and ultimately increase c-MYC expression. Taken together, our findings demonstrated that SNORA51 could enhance BCSCs-like properties via the RPL3/NPM1/c-MYC pathway both in vitro and in vivo. Therefore, SNORA51 might be a significant biomarker and potential therapeutic target and might even provide a new viewpoint on the regulatory mechanism of snoRNAs in breast cancer or other malignant tumors.


Assuntos
Neoplasias da Mama , Proliferação de Células , Células-Tronco Neoplásicas , Nucleofosmina , Proteínas Proto-Oncogênicas c-myc , RNA Nucleolar Pequeno , Proteína Ribossômica L3 , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Transdução de Sinais , Proteína Ribossômica L3/genética , Proteína Ribossômica L3/metabolismo
2.
Elife ; 112022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35674491

RESUMO

Protein methylation occurs predominantly on lysine and arginine residues, but histidine also serves as a methylation substrate. However, a limited number of enzymes responsible for this modification have been reported. Moreover, the biological role of histidine methylation has remained poorly understood to date. Here, we report that human METTL18 is a histidine methyltransferase for the ribosomal protein RPL3 and that the modification specifically slows ribosome traversal on Tyr codons, allowing the proper folding of synthesized proteins. By performing an in vitro methylation assay with a methyl donor analog and quantitative mass spectrometry, we found that His245 of RPL3 is methylated at the τ-N position by METTL18. Structural comparison of the modified and unmodified ribosomes showed stoichiometric modification and suggested a role in translation reactions. Indeed, genome-wide ribosome profiling and an in vitro translation assay revealed that translation elongation at Tyr codons was suppressed by RPL3 methylation. Because the slower elongation provides enough time for nascent protein folding, RPL3 methylation protects cells from the cellular aggregation of Tyr-rich proteins. Our results reveal histidine methylation as an example of a ribosome modification that ensures proteome integrity in cells.


Assuntos
Histidina , Metiltransferases , Proteostase , Proteína Ribossômica L3 , Histidina/metabolismo , Humanos , Metilação , Metiltransferases/metabolismo , Biossíntese de Proteínas , Proteína Ribossômica L3/metabolismo
3.
Appl Biochem Biotechnol ; 194(8): 3494-3506, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35377127

RESUMO

Accumulating evidence indicates Ribosomal protein 34 (RPL34) promotes tumor malignance and its expression is associated with poor prognosis in multiple cancer cells. However, the physiological role and biological mechanism of RPL34 in glioblastoma (GBM) remain unclear. Hence, this study aimed to investigate the expression and the role of RPL34 in GBM. A total of 59 glioma samples and 12 normal brains for epilepsy surgery were used to determine the underlying mechanisms and the biological behaviors of RPL34 in GBM. In this study, we identified that RPL34 expression was significantly (p < 0.05) enriched in GBM tumors compared with low-grade glioma and normal brain, and its expression was associated with poor survival. Additionally, RPL34 was functionally required for tumor proliferation in vitro. Mechanically, inhibition of RPL34 induced glioma cell apoptosis by activation of Bad/Caspase7/PARP signaling pathway. The RPL34 promotes cell survival in GBM and could be a potential therapeutic target for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Proteína Ribossômica L3 , Apoptose , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioma/metabolismo , Humanos , Proteína Ribossômica L3/biossíntese , Proteína Ribossômica L3/genética , Proteína Ribossômica L3/metabolismo , Proteínas Ribossômicas/genética
4.
Nat Commun ; 12(1): 6152, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686661

RESUMO

Early pre-60S ribosomal particles are poorly characterized, highly dynamic complexes that undergo extensive rRNA folding and compaction concomitant with assembly of ribosomal proteins and exchange of assembly factors. Pre-60S particles contain numerous RNA helicases, which are likely regulators of accurate and efficient formation of appropriate rRNA structures. Here we reveal binding of the RNA helicase Dbp7 to domain V/VI of early pre-60S particles in yeast and show that in the absence of this protein, dissociation of the Npa1 scaffolding complex, release of the snR190 folding chaperone, recruitment of the A3 cluster factors and binding of the ribosomal protein uL3 are impaired. uL3 is critical for formation of the peptidyltransferase center (PTC) and is responsible for stabilizing interactions between the 5' and 3' ends of the 25S, an essential pre-requisite for subsequent pre-60S maturation events. Highlighting the importance of pre-ribosome remodeling by Dbp7, our data suggest that in the absence of Dbp7 or its catalytic activity, early pre-ribosomal particles are targeted for degradation.


Assuntos
RNA Helicases DEAD-box/metabolismo , RNA Ribossômico/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , RNA Helicases DEAD-box/genética , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Dobramento de RNA , Precursores de RNA/química , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/metabolismo , Proteína Ribossômica L3/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA