RESUMO
Severe influenza A virus (IAV) infections can result in hyper-inflammation, lung injury and acute respiratory distress syndrome1-5 (ARDS), for which there are no effective pharmacological therapies. Necroptosis is an attractive entry point for therapeutic intervention in ARDS and related inflammatory conditions because it drives pathogenic lung inflammation and lethality during severe IAV infection6-8 and can potentially be targeted by receptor interacting protein kinase 3 (RIPK3) inhibitors. Here we show that a newly developed RIPK3 inhibitor, UH15-38, potently and selectively blocked IAV-triggered necroptosis in alveolar epithelial cells in vivo. UH15-38 ameliorated lung inflammation and prevented mortality following infection with laboratory-adapted and pandemic strains of IAV, without compromising antiviral adaptive immune responses or impeding viral clearance. UH15-38 displayed robust therapeutic efficacy even when administered late in the course of infection, suggesting that RIPK3 blockade may provide clinical benefit in patients with IAV-driven ARDS and other hyper-inflammatory pathologies.
Assuntos
Lesão Pulmonar , Necroptose , Infecções por Orthomyxoviridae , Inibidores de Proteínas Quinases , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Feminino , Humanos , Masculino , Camundongos , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/virologia , Células Epiteliais Alveolares/metabolismo , Vírus da Influenza A/classificação , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/imunologia , Vírus da Influenza A/patogenicidade , Lesão Pulmonar/complicações , Lesão Pulmonar/patologia , Lesão Pulmonar/prevenção & controle , Lesão Pulmonar/virologia , Camundongos Endogâmicos C57BL , Necroptose/efeitos dos fármacos , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/virologia , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/prevenção & controle , Síndrome do Desconforto Respiratório/virologiaRESUMO
Regulated necrosis, termed necroptosis, is mediated by the kinase activity of RIPK1 and RIPK3. It has distinct cellular features that are different than apoptosis. Necroptosis can be triggered by extracellular stimuli known to activate inflammation and cell death and its intracellular signaling pathway involves necrosome formation and MLKL activation. Inhibition of necroptosis has been shown to mitigate pathology in numerous mouse models, providing potential strategies to treat human diseases.
Assuntos
Morte Celular , Animais , Humanos , Inflamação/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismoRESUMO
Necroptosis, a form of regulated necrotic cell death mediated by RIPK1 (receptor-interacting protein kinase 1) kinase activity, RIPK3, and MLKL (mixed-lineage kinase domain-like pseudokinase), can be activated under apoptosis-deficient conditions. Modulating the activation of RIPK1 by ubiquitination and phosphorylation is critical to control both necroptosis and apoptosis. Mutant mice with kinase-dead RIPK1 or RIPK3 and MLKL deficiency show no detrimental phenotype in regard to development and adult homeostasis. However, necroptosis and apoptosis can be activated in response to various mutations that result in the abortion of the defective embryos and human inflammatory and neurodegenerative pathologies. RIPK1 inhibition represents a key therapeutic strategy for treatment of diseases where blocking both necroptosis and apoptosis can be beneficial.
Assuntos
Morte Celular/fisiologia , Doença , Crescimento e Desenvolvimento/fisiologia , Apoptose/genética , Crescimento e Desenvolvimento/genética , Mutação/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a virulent pathogen that induces rapid host death. Here we observed that host survival after infection with S. Typhimurium was enhanced in the absence of type I interferon signaling, with improved survival of mice deficient in the receptor for type I interferons (Ifnar1(-/-) mice) that was attributed to macrophages. Although there was no impairment in cytokine expression or inflammasome activation in Ifnar1(-/-) macrophages, they were highly resistant to S. Typhimurium-induced cell death. Specific inhibition of the kinase RIP1 or knockdown of the gene encoding the kinase RIP3 prevented the death of wild-type macrophages, which indicated that necroptosis was a mechanism of cell death. Finally, RIP3-deficient macrophages, which cannot undergo necroptosis, had similarly less death and enhanced control of S. Typhimurium in vivo. Thus, we propose that S. Typhimurium induces the production of type I interferon, which drives necroptosis of macrophages and allows them to evade the immune response.
Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Interferon Tipo I/metabolismo , Macrófagos/fisiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Salmonelose Animal/imunologia , Salmonella typhimurium/patogenicidade , Animais , Apoptose , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Evasão da Resposta Imune , Inflamassomos , Interferon Tipo I/imunologia , Ativação de Macrófagos , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Salmonelose Animal/metabolismo , Salmonelose Animal/microbiologia , Salmonella typhimurium/imunologia , Transdução de SinaisRESUMO
BACKGROUND: Depression is often linked to inflammation in the brain. Researchers have been exploring ways to reduce this inflammation to improve depression symptoms. One potential target is a protein called RIPK1, which is known to contribute to brain inflammation. However, it's unclear how RIPK1 influences depression. Our study aims to determine whether RIPK1 inhibition could alleviate neuroinflammation-associated depression and elucidate its underlying mechanisms. METHODS: To investigate our research objectives, we established a neuroinflammation mouse model by administering LPS. Behavioral and biochemical assessments were conducted on these mice. The findings were subsequently validated through in vitro experiments. RESULTS: Using LPS-induced depression models, we investigated RIPK1's role, observing depressive-like behaviors accompanied by elevated cytokines, IBA-1, GFAP levels, and increased inflammatory signaling molecules and NO/H2O2. Remarkably, Necrostatin (Nec-1 S), a RIPK1 inhibitor, mitigated these changes. We further found altered expression and phosphorylation of eIF4E, PI3K/AKT/mTOR, and synaptic proteins in hippocampal tissues, BV2, and N2a cells post-LPS treatment, which Nec-1 S also ameliorated. Importantly, eIF4E inhibition reversed some of the beneficial effects of Nec-1 S, suggesting a complex interaction between RIPK1 and eIF4E in LPS-induced neuroinflammation. Moreover, citronellol, a RIPK1 agonist, significantly altered eIF4E phosphorylation, indicating RIPK1's potential upstream regulatory role in eIF4E and its contribution to neuroinflammation-associated depression. CONCLUSION: These findings propose RIPK1 as a pivotal mediator in regulating neuroinflammation and neural plasticity, highlighting its significance as a potential therapeutic target for depression.
Assuntos
Depressão , Modelos Animais de Doenças , Lipopolissacarídeos , Doenças Neuroinflamatórias , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Masculino , Camundongos , Comportamento Animal/efeitos dos fármacos , Depressão/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Indóis/farmacologia , Indóis/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacosRESUMO
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) has a crucial role in cell death and inflammation. A promising approach to develop novel inhibitors of RIPK1 mediated necroptosis is to mix the different binding modes of the known RIPK1 inhibitors into one molecule. Herein we report the synthesis and biological evaluation of novel mixed type inhibitors. Using Eclitasertib as a starting point, and applying our previous, published knowledge regarding cyclic malonamides, we successfully identified a library of active compounds. The active enantiomer of the most balanced and promising compound was subjected to pharmacokinetics and in vivo hypothermia study in mice.
Assuntos
Inibidores de Proteínas Quinases , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Humanos , Camundongos , Relação Dose-Resposta a Droga , Ligantes , Estrutura Molecular , Necroptose/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Relação Estrutura-AtividadeRESUMO
Systemic inflammatory response syndrome (SIRS), an exaggerated defense response of the organism to a noxious stressor, involves a massive inflammatory cascade that ultimately leads to reversible or irreversible end-organ dysfunction and even death. Suppressing RIPK1, a key protein in necroptosis pathway, has been proven to be an effective therapeutic strategy for inflammation and SIRS. In this study, a series of novel biaryl benzoxazepinone RIPK1 inhibitors were designed and synthesized by introducing different aryl substituents at the C7 position of benzoxazepinone. As a result, p-cyanophenyl substituted analog 19 exhibited the most potent in vitro anti-necroptotic effect in HT-29 cells (EC50 = 1.7 nM) and superior protection against temperature loss and death in mice in the TZ-induced SIRS model compared to GSK'772. What's more, in vivo analysis of the levels of inflammatory factors in mice also revealed that compound 19 had better anti-inflammatory activity than GSK'772.
Assuntos
Inflamação , Proteína Serina-Treonina Quinases de Interação com Receptores , Síndrome de Resposta Inflamatória Sistêmica , Animais , Humanos , Camundongos , Apoptose , Células HT29 , Inflamação/metabolismo , Necrose , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/induzido quimicamente , Síndrome de Resposta Inflamatória Sistêmica/tratamento farmacológico , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Azepinas/química , Azepinas/farmacologiaRESUMO
Necroptosis is one of the modes of cell death, and its occurrence and development are associated with the development of numerous diseases. To prevent the progression of necroptosis, it is crucial to inhibit the phosphorylation of three proteins: receptor-interacting protein kinase 1 (RIP1), RIP3, and mixed lineage kinase domain-like protein (MLKL). Through virtual and experimental screening approaches, we have identified 8 small molecular inhibitors with potent antinecroptotic activity and binding affinity to RIP1. Among these compounds, SY-1 demonstrated the most remarkable antinecroptotic activity (EC50 = 105.6 ± 9.6 nM) and binding affinity (RIP1 Kd = 49 nM). It effectively blocked necroptosis and impeded the formation of necrosomes by inhibiting the phosphorylations of the RIP1/RIP3/MLKL pathway triggered by TSZ (TNFα, Smac mimetic and Z-VAD-fmk). Furthermore, SY-1 exhibited a protective effect against tumor necrosis factor (TNF)-induced hypothermia in mice and significantly improved the survival rate (100 %, 30 mg/kg) of mice with systemic inflammatory response syndrome (SIRS) in a dose-dependent manner. Pharmacokinetic parameters of SY-1 were also collected in vitro and in vivo. These results strongly suggest that SY-1 and its derivatives warrant further investigation for their potential therapeutic applications.
Assuntos
Derivados de Alilbenzenos , Dioxóis , Necroptose , Inibidores de Proteínas Quinases , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Camundongos , Necroptose/efeitos dos fármacos , Fosforilação , Fatores de Transcrição/metabolismo , Dioxóis/química , Dioxóis/farmacologia , Derivados de Alilbenzenos/química , Derivados de Alilbenzenos/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidoresRESUMO
Microglial-derived inflammation has been linked to a broad range of neurodegenerative and neuropsychiatric conditions, including amyotrophic lateral sclerosis (ALS). Using single-cell RNA sequencing, a class of Disease-Associated Microglia (DAMs) have been characterized in neurodegeneration. However, the DAM phenotype alone is insufficient to explain the functional complexity of microglia, particularly with regard to regulating inflammation that is a hallmark of many neurodegenerative diseases. Here, we identify a subclass of microglia in mouse models of ALS which we term RIPK1-Regulated Inflammatory Microglia (RRIMs). RRIMs show significant up-regulation of classical proinflammatory pathways, including increased levels of Tnf and Il1b RNA and protein. We find that RRIMs are highly regulated by TNFα signaling and that the prevalence of these microglia can be suppressed by inhibiting receptor-interacting protein kinase 1 (RIPK1) activity downstream of the TNF receptor 1. These findings help to elucidate a mechanism by which RIPK1 kinase inhibition has been shown to provide therapeutic benefit in mouse models of ALS and may provide an additional biomarker for analysis in ongoing phase 2 clinical trials of RIPK1 inhibitors in ALS.
Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Inflamação/enzimologia , Microglia/enzimologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Proteínas de Ciclo Celular/genética , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Mutantes , Microglia/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Análise de Célula Única , Superóxido Dismutase-1/genética , Transcriptoma , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Retinal neovascularization is a leading cause of severe visual loss in humans, and molecular mechanisms of microglial activation-driven angiogenesis remain unknown. Using single-cell RNA sequencing, we identified a subpopulation of microglia named sMG2, which highly expressed necroptosis-related genes Rip3 and Mlkl. Genetic and pharmacological loss of function demonstrated that hypoxia-induced microglial activation committed to necroptosis through the RIP1/RIP3-mediated pathway. Specific deletion of Rip3 gene in microglia markedly decreased retinal neovascularization. Furthermore, hypoxia induced explosive release of abundant FGF2 in microglia through RIP3-mediated necroptosis. Importantly, blocking signaling components of the microglia necropotosis-FGF2 axis largely ablated retinal angiogenesis and combination therapy with simultaneously blocking VEGF produced synergistic antiangiogenic effects. Together, our data demonstrate that targeting the microglia necroptosis axis is an antiangiogenesis therapy for retinal neovascular diseases.
Assuntos
Microglia/patologia , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Doenças Retinianas/patologia , Animais , Quimioterapia Combinada , Fator 2 de Crescimento de Fibroblastos/antagonistas & inibidores , Fator 2 de Crescimento de Fibroblastos/metabolismo , Hipóxia/patologia , Camundongos , Microglia/metabolismo , Necroptose/efeitos dos fármacos , Neovascularização Patológica , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/metabolismo , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Necroptosis is a form of regulated necrotic cell death and has been confirmed to play pivotal roles in the pathogenesis of multiple autoimmune diseases such as rheumatoid arthritis (RA) and psoriasis. The development of necroptosis inhibitors may offer a promising therapeutic strategy for the treatment of these autoimmune diseases. Herein, starting from the in-house hit compound 1, we systematically performed structural optimization to discover potent necroptosis inhibitors with good pharmacokinetic profiles. The resulting compound 33 was a potent necroptosis inhibitor for both human I2.1 cells (IC50 < 0.2 nM) and murine Hepa1-6 cells (IC50 < 5 nM). Further target identification revealed that compound 33 was an inhibitor of receptor interacting protein kinase 1 (RIPK1) with favorable selectivity. In addition, compound 33 also exhibited favorable pharmacokinetic profiles (T1/2 = 1.32 h, AUC = 1157 ng·h/mL) in Sprague-Dawley rats. Molecular docking and molecular dynamics simulations confirmed that compound 33 could bind to RIPK1 with high affinity. In silico ADMET analysis demonstrated that compound 33 possesses good drug-likeness profiles. Collectively, compound 33 is a promising candidate for antinecroptotic drug discovery.
Assuntos
Descoberta de Drogas , Simulação de Acoplamento Molecular , Necroptose , Ratos Sprague-Dawley , Proteína Serina-Treonina Quinases de Interação com Receptores , Necroptose/efeitos dos fármacos , Animais , Humanos , Relação Estrutura-Atividade , Ratos , Camundongos , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Masculino , Estrutura Molecular , Simulação de Dinâmica Molecular , Indóis/farmacologia , Indóis/química , Indóis/síntese química , Relação Dose-Resposta a Droga , Piridinas/farmacologia , Piridinas/química , Piridinas/síntese químicaRESUMO
RIPK1 plays a key role in necroptosis and is associated with various inflammatory diseases. Using structure-based virtual screening, a novel hit with 5-(1-benzyl-1H-imidazol-4-yl)-1,2,4-oxadiazole scaffold was identified as an RIPK1 inhibitor with an IC50 value of 1.3 µM. Further structure-activity relationship study was performed based on similarity research and biological evaluation. The molecular dynamics simulation of compound 2 with RIPK1 indicated that it may act as a type II kinase inhibitor. This study provides a highly efficient way to discover novel scaffold RIPK1 inhibitors for further development.
Assuntos
Simulação de Dinâmica Molecular , Oxidiazóis , Inibidores de Proteínas Quinases , Proteína Serina-Treonina Quinases de Interação com Receptores , Humanos , Relação Estrutura-Atividade , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Oxidiazóis/farmacologia , Oxidiazóis/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Simulação de Acoplamento Molecular , Imidazóis/farmacologia , Imidazóis/química , Avaliação Pré-Clínica de Medicamentos , Descoberta de Drogas/métodosRESUMO
Receptor-interacting protein kinase 1 (RIPK1)-mediated necroptosis is believed to have a significant role in contributing to inflammatory diseases. Inhibiting RIPK1 has shown promise in effectively alleviating the inflammation process. In our current study, we employed scaffold hopping to develop a series of novel benzoxazepinone derivatives. Among these derivatives, compound o1 displayed the most potent antinecroptosis activity (EC50=16.17±1.878nM) in cellular assays and exhibited the strongest binding affinity to the target site. Molecular docking analyses further elucidated the mechanism of action of o1, revealing its ability to fully occupy the protein pocket and form hydrogen bonds with the amino acid residue Asp156. Our findings highlight that o1 specifically inhibits necroptosis, rather than apoptosis, by impeding the RIPK1/Receptor-interacting protein kinase 3 (RIPK3)/mixed-lineage kinase domain-like (MLKL) pathway's phosphorylation, triggered by TNFα, Smac mimetic, and z-VAD (TSZ). Additionally, o1 demonstrated dose-dependent improvements in the survival rate of mice with Systemic Inflammatory Response Syndrome (SIRS), surpassing the protective effect observed with GSK'772.
Assuntos
Necroptose , Inibidores de Proteínas Quinases , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Camundongos , Apoptose , Simulação de Acoplamento Molecular , Fosforilação , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Necroptose/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologiaRESUMO
Necroptosis is confirmed as a precisely programmed cell death that is activated in caspase-deficient conditions. Receptor-interacting protein kinase 1 (RIPK1), RIPK3 and mixed-lineage kinase domain-like pseudokinase (MLKL) are the key regulators involved in the signaling pathway. However, accumulating evidence suggests that RIPK1 also works in apoptosis and inflammation pathways independent of necroptosis. Differently, RIPK3 signals necroptosis independent of RIPK1. Thus, identification of specific RIPK3 inhibitors is of great importance for the drug development associated with necroptosis. The benzothiazole carboxamide is a privileged scaffold as RIPK3 inhibitors developed by our group recently. In this study, we work on the phenyl group in-between of benzothiazole and carboxamide to profile the chemical space. Finally, a chlorinated derivative XY-1-127 was found to specifically inhibit necroptosis rather than apoptosis with an EC50 value of 676.8 nM and target RIPK3 with a Kd of 420 nM rather than RIPK1 (Kd = 4300 nM). It was also confirmed to block the formation of necrosome by inhibiting RIPK3 phosphorylation at 1 µM in necroptosis cells. This work discovers the chemical space insights on the phenyl group of the substituted benzothiazole RIPK3 inhibitors and provides a new lead compound for further development.
Assuntos
Apoptose , Benzotiazóis , Necroptose , Inibidores de Proteínas Quinases , Proteína Serina-Treonina Quinases de Interação com Receptores , Humanos , Apoptose/efeitos dos fármacos , Benzotiazóis/química , Benzotiazóis/farmacologia , Inflamação/metabolismo , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Necroptose/efeitos dos fármacosRESUMO
RIPK2 mediates inflammatory signaling by the bacteria-sensing receptors NOD1 and NOD2. Kinase inhibitors targeting RIPK2 are a proposed strategy to ameliorate NOD-mediated pathologies. Here, we reveal that RIPK2 kinase activity is dispensable for NOD2 inflammatory signaling and show that RIPK2 inhibitors function instead by antagonizing XIAP-binding and XIAP-mediated ubiquitination of RIPK2. We map the XIAP binding site on RIPK2 to the loop between ß2 and ß3 of the N-lobe of the kinase, which is in close proximity to the ATP-binding pocket. Through characterization of a new series of ATP pocket-binding RIPK2 inhibitors, we identify the molecular features that determine their inhibition of both the RIPK2-XIAP interaction, and of cellular and in vivoNOD2 signaling. Our study exemplifies how targeting of the ATP-binding pocket in RIPK2 can be exploited to interfere with the RIPK2-XIAP interaction for modulation of NOD signaling.
Assuntos
Proteína Adaptadora de Sinalização NOD2/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Camundongos , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismoRESUMO
BACKGROUND: Dramatic intestinal epithelial cell death leading to barrier dysfunction is one of the mechanism of neonatal necrotizing enterocolitis (NEC), in which Toll-like receptor 4 (TLR4) plays a pivotal role. This study explored the role of necroptosis, a drastic way of cell death in NEC. METHODS: The expression of necroptotic proteins was tested in NEC intestinal tissue and compared with controls. NEC was induced in neonatal wild-type mice and a necroptosis inhibitor was given to investigate whether NEC could be relieved. The general condition, macroscopic scoring, and histological evaluations were performed. The expression of tight junction proteins, inflammatory cytokines, and necroptosis-related proteins was measured, and barrier function was examined. Then, NEC was induced in TLR4-knockout pups to confirm the role of TLR4 in necroptosis. RESULTS: Necroptotic proteins were significantly upregulated in both NEC patient and animal models, together with the expression of TLR4. NEC could be relieved and inflammatory infiltration was decreased by necrostatin-1s. TLR4-knockout mice showed milder tissue degradation and less necroptosis after NEC induction. CONCLUSIONS: Necroptosis is an essential pathological process of NEC. TLR4 may be one stimulator of necroptosis in NEC. Inhibiting the intestinal cell necroptosis might be a useful strategy in the treatment of NEC. IMPACT: Necroptosis is a key pathological process in NEC, which appears to involve TLR4. Anti-necroptosis treatment is a promising strategy that could significantly relieve the symptoms of NEC.
Assuntos
Enterocolite Necrosante/patologia , Necroptose/fisiologia , Receptor 4 Toll-Like/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Apoptose/fisiologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptor 4 Toll-Like/genética , Regulação para CimaRESUMO
Metastasis is the leading cause of cancer-related death in humans. It is a complex multistep process during which individual tumour cells spread primarily through the circulatory system to colonize distant organs. Once in the circulation, tumour cells remain vulnerable, and their metastatic potential largely depends on a rapid and efficient way to escape from the blood stream by passing the endothelial barrier. Evidence has been provided that tumour cell extravasation resembles leukocyte transendothelial migration. However, it remains unclear how tumour cells interact with endothelial cells during extravasation and how these processes are regulated on a molecular level. Here we show that human and murine tumour cells induce programmed necrosis (necroptosis) of endothelial cells, which promotes tumour cell extravasation and metastasis. Treatment of mice with the receptor-interacting serine/threonine-protein kinase 1 (RIPK1)-inhibitor necrostatin-1 or endothelial-cell-specific deletion of RIPK3 reduced tumour-cell-induced endothelial necroptosis, tumour cell extravasation and metastasis. In contrast, pharmacological caspase inhibition or endothelial-cell-specific loss of caspase-8 promoted these processes. We furthermore show in vitro and in vivo that tumour-cell-induced endothelial necroptosis leading to extravasation and metastasis requires amyloid precursor protein expressed by tumour cells and its receptor, death receptor 6 (DR6), on endothelial cells as the primary mediators of these effects. Our data identify a new mechanism underlying tumour cell extravasation and metastasis, and suggest endothelial DR6-mediated necroptotic signalling pathways as targets for anti-metastatic therapies.
Assuntos
Apoptose , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Necrose , Metástase Neoplásica , Neoplasias/patologia , Receptores do Fator de Necrose Tumoral/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspase 8/genética , Inibidores de Caspase/farmacologia , Linhagem Celular , Modelos Animais de Doenças , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Masculino , Camundongos , Necrose/tratamento farmacológico , Metástase Neoplásica/tratamento farmacológico , Neoplasias/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Migração Transendotelial e Transepitelial/efeitos dos fármacosRESUMO
Receptor-interacting protein kinase 3 (RIP3 or RIPK3) has emerged as a central player in necroptosis and a potential target to control inflammatory disease. Here, three selective small-molecule compounds are shown to inhibit RIP3 kinase-dependent necroptosis, although their therapeutic value is undermined by a surprising, concentration-dependent induction of apoptosis. These compounds interact with RIP3 to activate caspase 8 (Casp8) via RHIM-driven recruitment of RIP1 (RIPK1) to assemble a Casp8-FADD-cFLIP complex completely independent of pronecrotic kinase activities and MLKL. RIP3 kinase-dead D161N mutant induces spontaneous apoptosis independent of compound, whereas D161G, D143N, and K51A mutants, like wild-type, only trigger apoptosis when compound is present. Accordingly, RIP3-K51A mutant mice (Rip3(K51A/K51A)) are viable and fertile, in stark contrast to the perinatal lethality of Rip3(D161N/D161N) mice. RIP3 therefore holds both necroptosis and apoptosis in balance through a Ripoptosome-like platform. This work highlights a common mechanism unveiling RHIM-driven apoptosis by therapeutic or genetic perturbation of RIP3.
Assuntos
Apoptose , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Animais , Caspase 8/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Técnicas de Introdução de Genes , Células HT29 , Humanos , Camundongos , Camundongos Transgênicos , Células NIH 3T3 , Necrose/enzimologia , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Ligação a RNA/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidoresRESUMO
RIPK1 kinase has emerged as a promising therapeutic target for the treatment of a wide range of human neurodegenerative, autoimmune, and inflammatory diseases. This was supported by extensive studies which demonstrated that RIPK1 is a key mediator of apoptotic and necrotic cell death as well as inflammatory pathways. Furthermore, human genetic evidence has linked the dysregulation of RIPK1 to the pathogenesis of ALS as well as other inflammatory and neurodegenerative diseases. Importantly, unique allosteric small-molecule inhibitors of RIPK1 that offer high selectivity have been developed. These molecules can penetrate the blood-brain barrier, thus offering the possibility to target neuroinflammation and cell death which drive various neurologic conditions including Alzheimer's disease, ALS, and multiple sclerosis as well as acute neurological diseases such as stroke and traumatic brain injuries. We discuss the current understanding of RIPK1 regulatory mechanisms and emerging evidence for the pathological roles of RIPK1 in human diseases, especially in the context of the central nervous systems.
Assuntos
Doenças do Sistema Nervoso Central/tratamento farmacológico , Terapia de Alvo Molecular , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Apoptose , Desenvolvimento de Medicamentos , Expressão Gênica , Humanos , Inflamação/metabolismo , Necroptose , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Most normal and tumor cells are protected from tumor necrosis factor α (TNFα)-induced apoptosis. Here, we identify the MAP3 kinase tumor progression locus-2 (TPL2) as a player contributing to the protection of a subset of tumor cell lines. The combination of TPL2 knockdown and TNFα gives rise to a synthetic lethality phenotype via receptor-interacting serine/threonine-protein kinase 1 (RIPK1)-dependent and -independent mechanisms. Whereas wild-type TPL2 rescues the phenotype, its kinase-dead mutant does not. Comparison of the molecular events initiated by small interfering RNA for TPL2 (siTPL2) ± TNFα in treatment-sensitive and -resistant lines revealed that the activation of caspase-8, downstream of miR-21-5p and cFLIP, is the dominant TPL2-dependent event. More important, comparison of the gene expression profiles of all of the tested cell lines results in the clustering of sensitive and resistant lines into distinct groups, providing proof of principle for the feasibility of generating a predictive tool for treatment sensitivity.