Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Cell Sci ; 137(3)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38206091

RESUMO

The mammalian cell cycle alternates between two phases - S-G2-M with high levels of A- and B-type cyclins (CycA and CycB, respectively) bound to cyclin-dependent kinases (CDKs), and G1 with persistent degradation of CycA and CycB by an activated anaphase promoting complex/cyclosome (APC/C) bound to Cdh1 (also known as FZR1 in mammals; denoted APC/C:Cdh1). Because CDKs phosphorylate and inactivate Cdh1, these two phases are mutually exclusive. This 'toggle switch' is flipped from G1 to S by cyclin-E bound to a CDK (CycE:CDK), which is not degraded by APC/C:Cdh1, and from M to G1 by Cdc20-bound APC/C (APC/C:Cdc20), which is not inactivated by CycA:CDK or CycB:CDK. After flipping the switch, cyclin E is degraded and APC/C:Cdc20 is inactivated. Combining mathematical modelling with single-cell timelapse imaging, we show that dysregulation of CycB:CDK disrupts strict alternation of the G1-S and M-G1 switches. Inhibition of CycB:CDK results in Cdc20-independent Cdh1 'endocycles', and sustained activity of CycB:CDK drives Cdh1-independent Cdc20 endocycles. Our model provides a mechanistic explanation for how whole-genome doubling can arise, a common event in tumorigenesis that can drive tumour evolution.


Assuntos
Proteínas de Ciclo Celular , Ciclinas , Animais , Ciclo Celular , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Mitose , Proteínas Cdc20/metabolismo , Mamíferos/metabolismo
2.
EMBO Rep ; 25(6): 2743-2772, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38806674

RESUMO

Interference with microtubule dynamics in mitosis activates the spindle assembly checkpoint (SAC) to prevent chromosome segregation errors. The SAC induces mitotic arrest by inhibiting the anaphase-promoting complex (APC) via the mitotic checkpoint complex (MCC). The MCC component MAD2 neutralizes the critical APC cofactor, CDC20, preventing exit from mitosis. Extended mitotic arrest can promote mitochondrial apoptosis and caspase activation. However, the impact of mitotic cell death on tissue homeostasis in vivo is ill-defined. By conditional MAD2 overexpression, we observe that chronic SAC activation triggers bone marrow aplasia and intestinal atrophy in mice. While myelosuppression can be compensated for, gastrointestinal atrophy is detrimental. Remarkably, deletion of pro-apoptotic Bim/Bcl2l11 prevents gastrointestinal syndrome, while neither loss of Noxa/Pmaip or co-deletion of Bid and Puma/Bbc3 has such a protective effect, identifying BIM as rate-limiting apoptosis effector in mitotic cell death of the gastrointestinal epithelium. In contrast, only overexpression of anti-apoptotic BCL2, but none of the BH3-only protein deficiencies mentioned above, can mitigate myelosuppression. Our findings highlight tissue and cell-type-specific survival dependencies in response to SAC perturbation in vivo.


Assuntos
Proteínas Reguladoras de Apoptose , Apoptose , Proteína 11 Semelhante a Bcl-2 , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas Mad2 , Proteínas Proto-Oncogênicas c-bcl-2 , Animais , Proteína 11 Semelhante a Bcl-2/metabolismo , Proteína 11 Semelhante a Bcl-2/genética , Camundongos , Proteínas Mad2/metabolismo , Proteínas Mad2/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Atrofia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Mitose , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Proteínas Cdc20/metabolismo , Proteínas Cdc20/genética , Medula Óssea/patologia , Medula Óssea/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas Supressoras de Tumor
3.
J Biol Chem ; 300(7): 107448, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38844135

RESUMO

O-linked ß-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is the sole enzyme that catalyzes all O-GlcNAcylation reactions intracellularly. Previous investigations have found that OGT levels oscillate during the cell division process. Specifically, OGT abundance is downregulated during mitosis, but the underlying mechanism is lacking. Here we demonstrate that OGT is ubiquitinated by the ubiquitin E3 ligase, anaphase promoting complex/cyclosome (APC/C)-cell division cycle 20 (Cdc20). We show that APC/CCdc20 interacts with OGT through a conserved destruction box (D-box): Arg-351/Leu-354, the abrogation of which stabilizes OGT. As APC/CCdc20-substrate binding is often preceded by a priming ubiquitination event, we also used mass spectrometry and mapped OGT Lys-352 to be a ubiquitination site, which is a prerequisite for OGT association with APC/C subunits. Interestingly, in The Cancer Genome Atlas, R351C is a uterine carcinoma mutant, suggesting that mutations of the D-box are linked with tumorigenesis. Paradoxically, we found that both R351C and the D-box mutants (R351A/L354A) inhibit uterine carcinoma in mouse xenograft models, probably due to impaired cell division and proliferation. In sum, we propose a model where OGT Lys-352 ubiquitination primes its binding with APC/C, and then APC/CCdc20 partners with OGT through the D-box for its mitotic destruction. Our work not only highlights the key mechanism that regulates OGT during the cell cycle, but also reveals the mutual coordination between glycosylation and the cell division machinery.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase , Mitose , N-Acetilglucosaminiltransferases , Ubiquitinação , Humanos , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/genética , Animais , Proteínas Cdc20/metabolismo , Proteínas Cdc20/genética , Camundongos , Proteólise , Células HeLa , Células HEK293 , Feminino
4.
BMC Biol ; 22(1): 71, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38523261

RESUMO

BACKGROUND: Mitogen-activated protein kinases (MAPKs) preserve cell homeostasis by transducing physicochemical fluctuations of the environment into multiple adaptive responses. These responses involve transcriptional rewiring and the regulation of cell cycle transitions, among others. However, how stress conditions impinge mitotic progression is largely unknown. The mitotic checkpoint is a surveillance mechanism that inhibits mitotic exit in situations of defective chromosome capture, thus preventing the generation of aneuploidies. In this study, we investigate the role of MAPK Pmk1 in the regulation of mitotic exit upon stress. RESULTS: We show that Schizosaccharomyces pombe cells lacking Pmk1, the MAP kinase effector of the cell integrity pathway (CIP), are hypersensitive to microtubule damage and defective in maintaining a metaphase arrest. Epistasis analysis suggests that Pmk1 is involved in maintaining spindle assembly checkpoint (SAC) signaling, and its deletion is additive to the lack of core SAC components such as Mad2 and Mad3. Strikingly, pmk1Δ cells show up to twofold increased levels of the anaphase-promoting complex (APC/C) activator Cdc20Slp1 during unperturbed growth. We demonstrate that Pmk1 physically interacts with Cdc20Slp1 N-terminus through a canonical MAPK docking site. Most important, the Cdc20Slp1 pool is rapidly degraded in stressed cells undergoing mitosis through a mechanism that requires MAPK activity, Mad3, and the proteasome, thus resulting in a delayed mitotic exit. CONCLUSIONS: Our data reveal a novel function of MAPK in preventing mitotic exit and activation of cytokinesis in response to stress. The regulation of Cdc20Slp1 turnover by MAPK Pmk1 provides a key mechanism by which the timing of mitotic exit can be adjusted relative to environmental conditions.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitose , Fuso Acromático/metabolismo
5.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125953

RESUMO

Targeting CDC20 can enhance the radiosensitivity of tumor cells, but the function and mechanism of CDC20 on DNA damage repair response remains vague. To examine that issue, tumor cell lines, including KYSE200, KYSE450, and HCT116, were utilized to detect the expression, function, and underlying mechanism of CDC20 in radio-chemoresistance. Western blot and immunofluorescence staining were employed to confirm CDC20 expression and location, and radiation could upregulate the expression of CDC20 in the cell nucleus. The homologous recombination (HR) and non-homologous end joining (NHEJ) reporter gene systems were utilized to explore the impact of CDC20 on DNA damage repair, indicating that CDC20 could promote HR repair and radio/chemo-resistance. In the early stages of DNA damage, CDC20 stabilizes the RPA1 protein through protein-protein interactions, activating the ATR-mediated signaling cascade, thereby aiding in genomic repair. In the later stages, CDC20 assists in the subsequent steps of damage repair by the ubiquitin-mediated degradation of RPA1. CCK-8 and colony formation assay were used to detect the function of CDC20 in cell vitality and proliferation, and targeting CDC20 can exacerbate the increase in DNA damage levels caused by cisplatin or etoposide. A tumor xenograft model was conducted in BALB/c-nu/nu mice to confirm the function of CDC20 in vivo, confirming the in vitro results. In conclusion, this study provides further validation of the potential clinical significance of CDC20 as a strategy to overcome radio-chemoresistance via uncovering a novel role of CDC20 in regulating RPA1 during DNA damage repair.


Assuntos
Proteínas Cdc20 , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos , Tolerância a Radiação , Proteína de Replicação A , Humanos , Animais , Proteína de Replicação A/metabolismo , Proteína de Replicação A/genética , Camundongos , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Cdc20/metabolismo , Proteínas Cdc20/genética , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Camundongos Nus , Reparo do DNA/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Células HCT116 , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
6.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928036

RESUMO

Paclitaxel induces multipolar spindles at clinically relevant doses but does not substantially increase mitotic indices. Paclitaxel's anti-cancer effects are hypothesized to occur by promoting chromosome mis-segregation on multipolar spindles leading to apoptosis, necrosis and cyclic-GMP-AMP Synthase-Stimulator of Interferon Genes (cGAS-STING) pathway activation in daughter cells, leading to secretion of type I interferon (IFN) and immunogenic cell death. Eribulin and vinorelbine have also been reported to cause increases in multipolar spindles in cancer cells. Recently, suppression of Anaphase-Promoting Complex/Cyclosome-Cell Division Cycle 20 (APC/C-CDC20) activity using CRISPR/Cas9 mutagenesis has been reported to increase sensitivity to Kinesin Family 18a (KIF18a) inhibition, which functions to suppress multipolar mitotic spindles in cancer cells. We propose that a way to enhance the effectiveness of anti-cancer agents that increase multipolar spindles is by suppressing the APC/C-CDC20 to delay, but not block, anaphase entry. Delaying anaphase entry in genomically unstable cells may enhance multipolar spindle-induced cell death. In genomically stable healthy human cells, delayed anaphase entry may suppress the level of multipolar spindles induced by anti-cancer drugs and lower mitotic cytotoxicity. We outline specific combinations of molecules to investigate that may achieve the goal of enhancing the effectiveness of anti-cancer agents.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase , Antineoplásicos , Fuso Acromático , Humanos , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Antineoplásicos/farmacologia , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Proteínas Cdc20/metabolismo , Proteínas Cdc20/genética , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Mitose/efeitos dos fármacos
7.
Commun Biol ; 7(1): 164, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38337031

RESUMO

Accurate mitosis is coordinated by the spindle assembly checkpoint (SAC) through the mitotic checkpoint complex (MCC), which inhibits the anaphase-promoting complex or cyclosome (APC/C). As an essential regulator, Cdc20 promotes mitotic exit through activating APC/C and monitors kinetochore-microtubule attachment through activating SAC. Cdc20 requires multiple interactions with APC/C and MCC subunits to elicit these functions. Functionally assessing these interactions within cells requires efficient depletion of endogenous Cdc20, which is highly difficult to achieve by RNA interference (RNAi). Here we generated Cdc20 RNAi-sensitive cell lines which display a penetrant metaphase arrest by a single RNAi treatment. In this null background, we accurately measured the contribution of each known motif of Cdc20 on APC/C and SAC activation. The CRY box, a previously identified degron, was found critical for SAC by promoting MCC formation and its interaction with APC/C. These data reveal additional regulation within the SAC and establish a novel method to interrogate Cdc20.


Assuntos
Proteínas Cdc20 , Pontos de Checagem da Fase M do Ciclo Celular , Fuso Acromático , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdc20/química , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/genética , Fuso Acromático/genética , Fuso Acromático/metabolismo , Transdução de Sinais , Humanos
8.
Genes Genomics ; 46(4): 437-449, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438666

RESUMO

BACKGROUND: Bladder cancer is a prevalent malignancy. CDC20, a pivotal cell cycle regulator gene, plays a significant role in tumour cell proliferation, but its role in bladder cancer remains unclear. OBJECTIVE: This study aimed to analyse CDC20 expression in bladder cancer and explore its roles in tumour progression, treatment response, patient prognosis, and cellular proliferation mechanisms. METHODS: We systematically analysed CDC20 expression in bladder cancer using bioinformatics. Our study investigated the impact of CDC20 on chemotherapy and radiotherapy sensitivity, patient prognosis, and changes in CDC20 methylation levels. We also explored the role and potential underlying mechanisms of CDC20 in bladder cancer cell growth. We used lentiviral transfection to downregulate CDC20 expression in 5637 and T24 cells, followed by CCK-8, colony formation, scratch, invasion, apoptosis, and cell cycle analyses. RESULTS: CDC20 is highly expressed in bladder cancer and is significantly correlated with poor prognosis. Moreover, CDC20 demonstrated high diagnostic potential for bladder cancer (AUC > 0.9). The tumour methylation levels of CDC20 in tumour tissues markedly decreased compared with those in normal tissues, and lower methylation levels were associated with a worse prognosis. Elevated CDC20 expression is linked to increased mutation burden. Our findings suggested a potential association between high CDC20 expression and resistance to chemotherapy and radiotherapy, as CDC20 expression may impact immune cell infiltration levels. Mechanistic analysis revealed the influence of CDC20 on bladder cancer cell proliferation through cell cycle-related pathways. According to the cell experiments, CDC20 downregulation significantly impedes bladder cancer cell proliferation and invasion, leading to G1 phase arrest. CONCLUSION: Aberrantly high CDC20 expression promotes tumour progression in bladder cancer, resulting in a poor prognosis, and may also constitute a promising therapeutic target.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Linhagem Celular Tumoral , Neoplasias da Bexiga Urinária/metabolismo , Proliferação de Células/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Biologia Computacional , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo
9.
FEBS Open Bio ; 14(3): 444-454, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38151757

RESUMO

SETDB2 is a H3K9 histone methyltransferase required for accurate chromosome segregation. Its H3K9 histone methyltransferase activity was reported to be associated with chromosomes during metaphase. Here, we confirm that SETDB2 is required for mitosis and accurate chromosome segregation. However, these functions are independent of its histone methyltransferase activity. Further analysis showed that SETDB2 can interact with BUBR1, and is required for CDC20 binding to BUBR1 and APC/C complex and CYCLIN B1 degradation. The ability of SETDB2 to regulate the binding of CDC20 to BUBR1 or APC/C complex, and stabilization of CYCLIN B1 are also independent of its histone methyltransferase activity. These results suggest that SETDB2 interacts with BUBR1 to promote binding of CDC20 to BUBR1 and APC3, then degrades CYCLIN B1 to ensure accurate chromosome segregation and mitosis, independently of its histone methyltransferase activity.


Assuntos
Segregação de Cromossomos , Proteínas Serina-Treonina Quinases , Proteínas Serina-Treonina Quinases/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Ciclina B1/genética , Ciclina B1/metabolismo , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Fuso Acromático/metabolismo , Proteínas de Ciclo Celular/genética
10.
Sci Rep ; 14(1): 13906, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886545

RESUMO

Colon adenocarcinoma (COAD) is the second leading cause of cancer death, and there is still a lack of diagnostic biomarkers and therapeutic targets. In this study, bioinformatics analysis of the TCGA database was used to obtain RUNX1, a gene with prognostic value in COAD. RUNX1 plays an important role in many malignancies, and its molecular regulatory mechanisms in COAD remain to be fully understood. To explore the physiological role of RUNX1, we performed functional analyses, such as CCK-8, colony formation and migration assays. In addition, we investigated the underlying mechanisms using transcriptome sequencing and chromatin immunoprecipitation assays. RUNX1 is highly expressed in COAD patients and significantly correlates with survival. Silencing of RUNX1 significantly slowed down the proliferation and migratory capacity of COAD cells. Furthermore, we demonstrate that CDC20 and MCM2 may be target genes of RUNX1, and that RUNX1 may be physically linked to the deubiquitinating enzyme USP31, which mediates the upregulation of RUNX1 protein to promote transcriptional function. Our results may provide new insights into the mechanism of action of RUNX1 in COAD and reveal potential therapeutic targets for this disease.


Assuntos
Proteínas Cdc20 , Subunidade alfa 2 de Fator de Ligação ao Core , Regulação Neoplásica da Expressão Gênica , Componente 2 do Complexo de Manutenção de Minicromossomo , Ubiquitinação , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Proteínas Cdc20/metabolismo , Proteínas Cdc20/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Proliferação de Células/genética , Proteases Específicas de Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/genética , Progressão da Doença , Movimento Celular/genética
11.
Curr Med Sci ; 44(3): 623-632, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38853192

RESUMO

OBJECTIVE: Endometrial carcinoma (EC) is a prevalent gynecological malignancy characterized by increasing incidence and mortality rates. This underscores the critical need for novel therapeutic targets. One such potential target is cell division cycle 20 (CDC20), which has been implicated in oncogenesis. This study investigated the effect of the CDC20 inhibitor Apcin on EC and elucidated the underlying mechanism involved. METHODS: The effects of Apcin on EC cell proliferation, apoptosis, and the cell cycle were evaluated using CCK8 assays and flow cytometry. RNA sequencing (RNA-seq) was subsequently conducted to explore the underlying molecular mechanism, and Western blotting and coimmunoprecipitation were subsequently performed to validate the results. Animal studies were performed to evaluate the antitumor effects in vivo. Bioinformatics analysis was also conducted to identify CDC20 as a potential therapeutic target in EC. RESULTS: Treatment with Apcin inhibited proliferation and induced apoptosis in EC cells, resulting in cell cycle arrest. Pathways associated with apoptosis and the cell cycle were activated following treatment with Apcin. Notably, Apcin treatment led to the upregulation of the cell cycle regulator p21, which was verified to interact with CDC20 and consequently decrease the expression of downstream cyclins in EC cells. In vivo experiments confirmed that Apcin treatment significantly impeded tumor growth. Higher CDC20 expression was observed in EC tissue than in nonmalignant tissue, and increased CDC20 expression in EC patients was associated with shorter overall survival and progress free interval. CONCLUSION: CDC20 is a novel molecular target in EC, and Apcin could be developed as a candidate antitumor drug for EC treatment.


Assuntos
Apoptose , Proteínas Cdc20 , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21 , Neoplasias do Endométrio , Feminino , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/patologia , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Humanos , Apoptose/efeitos dos fármacos , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Camundongos Nus
12.
Eur J Med Chem ; 268: 116204, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364716

RESUMO

The involvement of CDC20 in promoting tumor growth in different types of human cancers and it disturbs the process of cell division and impedes tumor proliferation. In this work, a novel of Apcin derivatives targeting CDC20 were designed and synthesized to evaluate for their biological activities. The inhibitory effect on the proliferation of four human tumor cell lines (MCF-7, MDA-MB-231, MDA-MB-468 and A549) was observed. Among them, compound E1 exhibited the strongest inhibitory effect on the proliferation of MDA-MB-231 cells with an IC50 value of 1.43 µM, which was significantly superior to that of Apcin. Further biological studies demonstrated that compound E1 inhibited cancer cell migration and colony formation. Furthermore, compound E1 specifically targeted CDC20 and exhibited a higher binding affinity to CDC20 compared to that of Apcin, thereby inducing cell cycle arrest in the G2/M phase of cancer cells. Moreover, it has been observed that compound E1 induces autophagy in cancer cells. In 4T1 Xenograft Models compound E1 exhibited the potential antitumor activity without obvious toxicity. These findings suggest that E1 could be regarded as a CDC20 inhibitor deserved further investigation.


Assuntos
Antineoplásicos , Diaminas , Neoplasias de Mama Triplo Negativas , Humanos , Proliferação de Células , Neoplasias de Mama Triplo Negativas/patologia , Apoptose , Carbamatos/farmacologia , Linhagem Celular Tumoral , Proteínas de Ciclo Celular , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas Cdc20
13.
Cell Rep ; 43(6): 114262, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38776225

RESUMO

The anaphase-promoting complex/cyclosome (APC/C) is a critical and tightly regulated E3 ligase that orchestrates the cellular life cycle by controlling the degradation of cell cycle regulators. An intriguing feature of this complex is an autoinhibition mechanism: an intrinsically disordered loop domain, Apc1-300L, blocks Cdc20 coactivator binding, yet phosphorylation of Apc1-300L counteracts this autoinhibition. Many such disordered loops within APC/C remain unexplored. Our systematic analysis of loop-deficient APC/C mutants uncovered a pivotal role for Apc8's C-terminal loop (Apc8-L) in mitotic activation. Apc8-L directly recruits the CDK adaptor protein, Xe-p9/Cks2, positioning the Xe-p9-CDK-CycB complex near Apc1-300L. This stimulates the phosphorylation and removal of Apc1-300L, prompting the formation of active APC/CCdc20. Strikingly, without both Apc8-L and Apc3-L, the APC/C is rendered inactive during mitosis, highlighting Apc8-L's synergistic role with other loops and kinases. This study broadens our understanding of the intricate dynamics in APC/C regulation and provides insights on the regulation of macromolecular complexes.


Assuntos
Mitose , Animais , Feminino , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Subunidade Apc8 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Fosforilação , Ligação Proteica , Domínios Proteicos , Xenopus laevis
14.
J Cell Biol ; 223(11)2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39105756

RESUMO

Mitosis in early embryos often proceeds at a rapid pace, but how this pace is achieved is not understood. Here, we show that cyclin B3 is the dominant driver of rapid embryonic mitoses in the C. elegans embryo. Cyclins B1 and B2 support slow mitosis (NEBD to anaphase ∼600 s), but the presence of cyclin B3 dominantly drives the approximately threefold faster mitosis observed in wildtype. Multiple mitotic events are slowed down in cyclin B1 and B2-driven mitosis, and cyclin B3-associated Cdk1 H1 kinase activity is ∼25-fold more active than cyclin B1-associated Cdk1. Addition of cyclin B1 to fast cyclin B3-only mitosis introduces an ∼60-s delay between completion of chromosome alignment and anaphase onset; this delay, which is important for segregation fidelity, is dependent on inhibitory phosphorylation of the anaphase activator Cdc20. Thus, cyclin B3 dominance, coupled to a cyclin B1-dependent delay that acts via Cdc20 phosphorylation, sets the rapid pace and ensures mitotic fidelity in the early C. elegans embryo.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Ciclina B1 , Embrião não Mamífero , Mitose , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Ciclina B1/metabolismo , Ciclina B1/genética , Embrião não Mamífero/metabolismo , Fosforilação , Proteína Quinase CDC2/metabolismo , Proteína Quinase CDC2/genética , Ciclina B/metabolismo , Ciclina B/genética , Proteínas Cdc20/metabolismo , Proteínas Cdc20/genética , Ciclina B2/metabolismo , Ciclina B2/genética
15.
Biochimie ; 221: 75-80, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38307244

RESUMO

Alterations in cell cycle regulation contribute to Zika virus (ZIKV)-associated pathogenesis and may have implications for the development of therapeutic avenues. As a matter of fact, ZIKV alters cell cycle progression at multiple stages, including G1, S, G2, and M phases. During a cell cycle, the progression of mitosis is particularly controlled to avoid any abnormalities in cell division. In this regard, the critical metaphase-anaphase transition is triggered by the activation of anaphase-promoting complex/cyclosome (APC/C) by its E3 ubiquitin ligase subunit Cdc20. Cdc20 recognizes substrates by interacting with a destruction box motif (D-box). Recently, the ZIKV nonstructural protein 5 (NS5), one of the most highly conserved flavivirus proteins, has been shown to localize to the centrosome in each pole and to spindle fibers during mitosis. Inducible expression of NS5 reveals an interaction of this viral factor with centrosomal proteins leading to an increase in the time required to complete mitosis. By analyzing the NS5 sequence, we discovered the presence of a D-box. Taken together, these data support the idea that, in addition to its role in viral replication, NS5 plays a critical role in the control of the cell cycle of infected cells and, more specifically, in the regulation of the mitotic spindle. Here we propose that the NS5 protein may interfere with the metaphase-anaphase progression, and thus cause the observed delay in mitosis via the regulation of APC/C.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase , Mitose , Proteínas não Estruturais Virais , Infecção por Zika virus , Zika virus , Humanos , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdc20/metabolismo , Ciclo Celular , Centrossomo/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Zika virus/fisiologia , Zika virus/metabolismo , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia , Infecção por Zika virus/patologia
16.
Cell Rep ; 43(5): 114155, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678563

RESUMO

Cell cycle control relies on a delicate balance of phosphorylation with CDK1 and phosphatases like PP1 and PP2A-B55. Yet, identifying the primary substrate responsible for cell cycle oscillations remains a challenge. We uncover the pivotal role of phospho-regulation in the anaphase-promoting complex/cyclosome (APC/C), particularly through the Apc1-loop300 domain (Apc1-300L), orchestrated by CDK1 and PP2A-B55. Premature activation of PP2A-B55 during mitosis, induced by Greatwall kinase depletion, leads to Apc1-300L dephosphorylation, stalling APC/C activity and delaying Cyclin B degradation. This effect can be counteracted using the B55-specific inhibitor pEnsa or by removing Apc1-300L. We also show Cdc20's dynamic APC/C interaction across cell cycle stages, but dephosphorylation of Apc1-300L specifically inhibits further Cdc20 recruitment. Our study underscores APC/C's central role in cell cycle oscillation, identifying it as a primary substrate regulated by the CDK-PP2A partnership.


Assuntos
Proteína Quinase CDC2 , Ciclo Celular , Proteína Fosfatase 2 , Animais , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteína Quinase CDC2/metabolismo , Proteínas Cdc20/metabolismo , Mitose , Fosforilação , Proteína Fosfatase 2/metabolismo , Células Sf9 , Xenopus
17.
Tese em Português | Arca: Repositório institucional da Fiocruz | ID: arc-55551

RESUMO

O vírus zika tornou-se um problema de saúde pública global devido a sua alta capacidade de disseminação e infecção em humanos e por estar associado com o aumento na incidência de distúrbios neurológicos como Síndrome Congênita do Zika. O vírus apresenta apresenta tropismo por células neuronais levando a morte e inibindo a proliferação e diferenciação dessa linhagem celular. O vírus utiliza da maquinaria celular no processo de replicação e como consequência causam alterações no funcionamento dessas células. Nesse cenário, estudar as interações das proteínas virais com as proteínas das células permite compreender os mecanismos da patogenia da infecção viral. Neste projeto, a nossa hipótese seria que as proteínas estruturais do zika interagem diretamente com a proteína de divisão celular. Para isso, analisamos a interação da proteínas estruturais e não-estruturais do ZIKV, individualmente, com a expressão da proteína Cdc20 em células SH-SY5Y, que por sua vez, está envolvida na ativação/inativação do APC, complexo proteico multifuncional relacionado principalmente com a regulação do ciclo de divisão celular. Nossos resultados mostram que em células neuronais infectadas pelo ZIKV ocorre downregulação da expressão de Cdc20 após 48 pós infecção. Análise da expressão proteica nessa mesma linhagem celular transfectadas com vetores contendo os genes estruturais e não estruturais do ZIKV revelaram que as proteínas E e prM inibem a expressão de Cdc20, sugerindo que essas proteínas desregulam o funcionamento do APC. Além disso, avaliação da proliferação e do ciclo celular por citometira de fluxo, revelaram que as proteínas virais inibem a proliferação e aumentam a porcentagem de células na fase G0-G1 do ciclo. De modo geral, esses resultados sugerem possível interação das proteínas E, prM e NS5 com a proteínas Cdc20 causando desregulação do ciclo celular e consequentemente comprometendo a capacidade proliferativa dessa linhagem celular .


Assuntos
Zika virus , Proteínas Cdc20 , Divisão Celular , Modelos Biológicos , Neurônios , Virologia , Citologia , Infecção por Zika virus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA