RESUMO
G protein-coupled receptors (GPCRs) are known to interact with several other classes of integral membrane proteins that modulate their biology and pharmacology. However, the extent of these interactions and the mechanisms of their effects are not well understood. For example, one class of GPCR-interacting proteins, receptor activity-modifying proteins (RAMPs), comprise three related and ubiquitously expressed single-transmembrane span proteins. The RAMP family was discovered more than two decades ago, and since then GPCR-RAMP interactions and their functional consequences on receptor trafficking and ligand selectivity have been documented for several secretin (class B) GPCRs, most notably the calcitonin receptor-like receptor. Recent bioinformatics and multiplexed experimental studies suggest that GPCR-RAMP interactions might be much more widespread than previously anticipated. Recently, cryo-electron microscopy has provided high-resolution structures of GPCR-RAMP-ligand complexes, and drugs have been developed that target GPCR-RAMP complexes. In this review, we provide a summary of recent advances in techniques that allow the discovery of GPCR-RAMP interactions and their functional consequences and highlight prospects for future advances. We also provide an up-to-date list of reported GPCR-RAMP interactions based on a review of the current literature. SIGNIFICANCE STATEMENT: Receptor activity-modifying proteins (RAMPs) have emerged as modulators of many aspects of G protein-coupled receptor (GPCR)biology and pharmacology. The application of new methodologies to study membrane protein-protein interactions suggests that RAMPs interact with many more GPCRs than had been previously known. These findings, especially when combined with structural studies of membrane protein complexes, have significant implications for advancing GPCR-targeted drug discovery and the understanding of GPCR pharmacology, biology, and regulation.
Assuntos
Proteínas de Membrana , Receptores Acoplados a Proteínas G , Humanos , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Ligantes , Microscopia Crioeletrônica , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Membrana/metabolismoRESUMO
Cholestatic itch is a severe and debilitating symptom in liver diseases with limited treatment options. The class A G protein-coupled receptor (GPCR) Mas-related GPCR subtype X4 (MRGPRX4) has been identified as a receptor for bile acids, which are potential cholestatic pruritogens. An increasing number of GPCRs have been shown to interact with receptor activity-modifying proteins (RAMPs), which can modulate different aspects of GPCR biology. Using a combination of multiplexed immunoassay and proximity ligation assay, we show that MRGPRX4 interacts with RAMPs. The interaction of MRGPRX4 with RAMP2, but not RAMP1 or 3, causes attenuation of basal and agonist-dependent signaling, which correlates with a decrease of MRGPRX4 cell surface expression as measured using a quantitative NanoBRET pulse-chase assay. Finally, we use AlphaFold Multimer to predict the structure of the MRGPRX4-RAMP2 complex. The discovery that RAMP2 regulates MRGPRX4 may have direct implications for future drug development for cholestatic itch.
Assuntos
Prurido , Proteínas Modificadoras da Atividade de Receptores , Receptores Acoplados a Proteínas G , Membrana Celular/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Proteína 3 Modificadora da Atividade de Receptores/metabolismo , Proteínas Modificadoras da Atividade de Receptores/química , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Prurido/metabolismo , Ligação Proteica , HumanosRESUMO
Adrenomedullin 2/intermedin (AM2/IMD), adrenomedullin (AM), and calcitonin gene-related peptide (CGRP) have functions in the cardiovascular, lymphatic, and nervous systems by activating three heterodimeric receptors comprising the class B GPCR CLR and a RAMP1, -2, or -3 modulatory subunit. CGRP and AM prefer the RAMP1 and RAMP2/3 complexes, respectively, whereas AM2/IMD is thought to be relatively nonselective. Accordingly, AM2/IMD exhibits overlapping actions with CGRP and AM, so the rationale for this third agonist for the CLR-RAMP complexes is unclear. Here, we report that AM2/IMD is kinetically selective for CLR-RAMP3, known as the AM2R, and we define the structural basis for its distinct kinetics. In live cell biosensor assays, AM2/IMD-AM2R elicited longer-duration cAMP signaling than the other peptide-receptor combinations. AM2/IMD and AM bound the AM2R with similar equilibrium affinities, but AM2/IMD had a slower off-rate and longer receptor residence time, thus explaining its prolonged signaling capacity. Peptide and receptor chimeras and mutagenesis were used to map the regions responsible for the distinct binding and signaling kinetics to the AM2/IMD mid-region and the RAMP3 extracellular domain (ECD). Molecular dynamics simulations revealed how the former forms stable interactions at the CLR ECD-transmembrane domain interface and how the latter augments the CLR ECD binding pocket to anchor the AM2/IMD C terminus. These strong binding components only combine in the AM2R. Our findings uncover AM2/IMD-AM2R as a cognate pair with unique temporal features, reveal how AM2/IMD and RAMP3 collaborate to shape CLR signaling, and have significant implications for AM2/IMD biology.
Assuntos
Adrenomedulina , Peptídeo Relacionado com Gene de Calcitonina , Proteínas Modificadoras da Atividade de Receptores , Receptores de Adrenomedulina , Receptores Acoplados a Proteínas G , Animais , Humanos , Adrenomedulina/química , Adrenomedulina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/genética , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Chlorocebus aethiops , Células COS , AMP Cíclico/metabolismo , Células HEK293 , Modelos Moleculares , Simulação de Dinâmica Molecular , Estabilidade Proteica , Proteínas Modificadoras da Atividade de Receptores/química , Proteínas Modificadoras da Atividade de Receptores/genética , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptores de Adrenomedulina/genética , Receptores de Adrenomedulina/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de SinaisRESUMO
The melanocortin-4 receptor (MC4R) is a class A G protein-coupled receptor (GPCR), essential for regulation of appetite and metabolism. Pathogenic inactivating MC4R mutations are the most frequent cause of monogenic obesity, a growing medical and socioeconomic problem worldwide. The MC4R mediates either ligand-independent or ligand-dependent signaling. Agonists such as α-melanocyte-stimulating hormone (α-MSH) induce anorexigenic effects, in contrast to the endogenous inverse agonist agouti-related peptide (AgRP), which causes orexigenic effects by suppressing high basal signaling activity. Agonist action triggers the binding of different subtypes of G proteins and arrestins, leading to concomitant induction of diverse intracellular signaling cascades. An increasing number of experimental studies have unraveled molecular properties and mechanisms of MC4R signal transduction related to physiological and pathophysiological aspects. In addition, the MC4R crystal structure was recently determined at 2.75 Å resolution in an inactive state bound with a peptide antagonist. Underpinned by structural homology models of MC4R complexes simulating a presumably active-state conformation compared to the structure of the inactive state, we here briefly summarize the current understanding and key players involved in the MC4R switching process between different activity states. Finally, these perspectives highlight the complexity and plasticity in MC4R signaling regulation and identify gaps in our current knowledge.
Assuntos
Receptor Tipo 4 de Melanocortina/química , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais/genética , Proteína Relacionada com Agouti/química , Proteína Relacionada com Agouti/farmacologia , Sequência de Aminoácidos , Animais , Arrestinas/metabolismo , Sítios de Ligação , Humanos , Ligantes , Mutação com Perda de Função , Obesidade/genética , Ligação Proteica , Conformação Proteica , Proteínas Modificadoras da Atividade de Receptores/química , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptor Tipo 4 de Melanocortina/antagonistas & inibidores , Receptor Tipo 4 de Melanocortina/genética , alfa-MSH/química , alfa-MSH/farmacologiaRESUMO
The cardioprotective vasodilator peptide adrenomedullin 2/intermedin (AM2/IMD) and the related adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) signal through three heterodimeric receptors comprising the calcitonin receptor-like class B G protein-coupled receptor (CLR) and a variable receptor activity-modifying protein (RAMP1, -2, or -3) that determines ligand selectivity. The CGRP receptor (RAMP1:CLR) favors CGRP binding, whereas the AM1 (RAMP2:CLR) and AM2 (RAMP3:CLR) receptors favor AM binding. How AM2/IMD binds the receptors and how RAMPs modulate its binding is unknown. Here, we show that AM2/IMD binds the three purified RAMP-CLR extracellular domain (ECD) complexes with a selectivity profile that is distinct from those of CGRP and AM. AM2/IMD bound all three ECD complexes but preferred the CGRP and AM2 receptor complexes. A 2.05 Å resolution crystal structure of an AM2/IMD antagonist fragment-bound RAMP1-CLR ECD complex revealed that AM2/IMD binds the complex through a unique triple ß-turn conformation that was confirmed by peptide and receptor mutagenesis. Comparisons of the receptor-bound conformations of AM2/IMD, AM, and a high-affinity CGRP analog revealed differences that may have implications for biased signaling. Guided by the structure, enhanced-affinity AM2/IMD antagonist variants were developed, including one that discriminates the AM1 and AM2 receptors with â¼40-fold difference in affinities and one stabilized by an intramolecular disulfide bond. These results reveal differences in how the three peptides engage the receptors, inform development of AM2/IMD-based pharmacological tools and therapeutics, and provide insights into RAMP modulation of receptor pharmacology.
Assuntos
Adrenomedulina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Hormônios Peptídicos/metabolismo , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptores de Adrenomedulina/metabolismo , Adrenomedulina/isolamento & purificação , Peptídeo Relacionado com Gene de Calcitonina/isolamento & purificação , Proteína Semelhante a Receptor de Calcitonina/isolamento & purificação , Desenho de Fármacos , Células HEK293 , Humanos , Ligantes , Mutagênese Sítio-Dirigida , Hormônios Peptídicos/antagonistas & inibidores , Hormônios Peptídicos/genética , Hormônios Peptídicos/isolamento & purificação , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas , Proteína 1 Modificadora da Atividade de Receptores/isolamento & purificação , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Proteína 2 Modificadora da Atividade de Receptores/isolamento & purificação , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Proteína 3 Modificadora da Atividade de Receptores/isolamento & purificação , Proteína 3 Modificadora da Atividade de Receptores/metabolismo , Proteínas Modificadoras da Atividade de Receptores/isolamento & purificação , Receptores de Adrenomedulina/isolamento & purificaçãoRESUMO
It is now recognized that G protein-coupled receptors (GPCRs), once considered largely independent functional units, have a far more diverse molecular architecture. Receptor activity-modifying proteins (RAMPs) provide an important example of proteins that interact with GPCRs to modify their function. RAMPs are able to act as pharmacological switches and chaperones, and they can regulate signaling and/or trafficking in a receptor-dependent manner. This review covers recent discoveries in the RAMP field and summarizes the known GPCR partners and functions of RAMPs. We also discuss the first peptide-bound structures of RAMP-GPCR complexes, which give insight into the molecular mechanisms that enable RAMPs to alter the pharmacology and signaling of GPCRs.
Assuntos
Proteínas Modificadoras da Atividade de Receptores/metabolismo , Animais , Humanos , Proteínas de Membrana/metabolismo , Ligação Proteica/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologiaRESUMO
Receptor activity modifying proteins (RAMPs) associate with G-protein-coupled receptors (GPCRs) at the plasma membrane and together bind a variety of peptide ligands, serving as a communication interface between the extracellular and intracellular environments. The collection of RAMP-interacting GPCRs continues to expand and now consists of GPCRs from families A, B and C, suggesting that RAMP activity is extremely prevalent. RAMP association with GPCRs can regulate GPCR function by altering ligand binding, receptor trafficking and desensitization, and downstream signaling pathways. Here, we elaborate on these RAMP-dependent mechanisms of GPCR regulation, which provide opportunities for pharmacological intervention.
Assuntos
Proteínas Modificadoras da Atividade de Receptores/fisiologia , Ligantes , Filogenia , Ligação Proteica , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Transdução de SinaisRESUMO
The calcitonin receptor-like receptor (CLR) is a class B G protein-coupled receptor (GPCR) that forms the basis of three pharmacologically distinct receptors, the calcitonin gene-related peptide (CGRP) receptor, and two adrenomedullin (AM) receptors. These three receptors are created by CLR interacting with three receptor activity-modifying proteins (RAMPs). Class B GPCRs have an N-terminal extracellular domain (ECD) and transmembrane bundle that are both important for binding endogenous ligands. These two domains are joined together by a stretch of amino acids that is referred to as the "stalk". Studies of other class B GPCRs suggest that the stalk may act as hinge, allowing the ECD to adopt multiple conformations. It is unclear what the role of the stalk is within CLR and whether RAMPs can influence its function. Therefore, this study investigated the role of this region using an alanine scan. Effects of mutations were measured with all three RAMPs through cell surface expression, cAMP production and, in select cases, radioligand binding and total cell expression assays. Most mutants did not affect expression or cAMP signaling. CLR C127A, N140A, F142A, and L144A impaired cell surface expression with all three RAMPs. T125A decreased the potency of all peptides at all receptors. N128A, V135A, and L139A showed ligand-dependent effects. While the stalk appears to play a role in CLR function, the effect of RAMPs on this region seems limited, in contrast to their effects on the structure of CLR in other receptor regions.
Assuntos
Proteína Semelhante a Receptor de Calcitonina/metabolismo , AMP Cíclico/metabolismo , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Células COS , Proteína Semelhante a Receptor de Calcitonina/análise , Proteína Semelhante a Receptor de Calcitonina/genética , Chlorocebus aethiops , Humanos , Domínios Proteicos , Receptores de Adrenomedulina/metabolismoRESUMO
Melanocortin 4 receptor (MC4R), which is a member of the G protein-coupled receptor (GPCR) family, mediates regulation of energy homeostasis upon the binding of α-melanocyte-stimulating hormone (α-MSH) in the central nervous system (CNS). Melanocortin 2 receptor accessory protein 2 (MRAP2) modulates the function of MC4R. We performed cDNA cloning of cat MC4R and MRAP2 and characterized their amino acid sequences, mRNA expression patterns in cat tissues, protein-protein interactions, and functions. We found high sequence homology (>88%) with other mammalian MC4R and MRAP2 encoding 332 and 206 amino acid residues, respectively. Reverse transcription-polymerase chain reaction analysis revealed that cat MC4R and MRAP2 mRNA were expressed highly in the CNS. In CHO-K1 cells transfected with cat MC4R, stimulation with α-MSH increased intracellular cyclic adenosine monophosphate (cAMP) concentration in a dose-dependent manner. Furthermore, the presence of MRAP2 enhanced the cat MC4R-mediated cAMP production. These results suggested that cat MC4R acts as a neuronal mediator in the CNS and that its function is modulated by MRAP2. In addition, our NanoBiT study showed the dynamics of their interactions in living cells; stimulation with α-MSH slightly affected the interaction between MC4R and MRAP2, and did not affect MC4R homodimerization, suggesting that they interact in the basal state and that structural change of MC4R by activation may affect the interaction between MC4R and MRAP2.
Assuntos
Proteínas Modificadoras da Atividade de Receptores/genética , Receptor Tipo 4 de Melanocortina/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Células CHO , Gatos , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , DNA Complementar/genética , Perfilação da Expressão Gênica , Glicosilação , Homeostase , Ligação Proteica , Multimerização Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Modificadoras da Atividade de Receptores/química , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptor Tipo 4 de Melanocortina/química , alfa-MSH/metabolismoRESUMO
The calcitonin (CT)/CT gene-related peptide (CGRP) family is conserved in vertebrates. The activities of this peptide family are regulated by a combination of two receptors, namely the calcitonin receptor (CTR) and the CTR-like receptor (CLR), and three receptor activity-modifying proteins (RAMPs). Furthermore, RAMPs act as escort proteins by translocating CLR to the cell membrane. Recently, CT/CGRP family peptides have been identified or inferred in several invertebrates. However, the molecular characteristics and relevant functions of the CTR/CLR and RAMPs in invertebrates remain unclear. In this study, we identified three CT/CGRP family peptides (Bf-CTFPs), one CTR/CLR-like receptor (Bf-CTFP-R), and three RAMP-like proteins (Bf-RAMP-LPs) in the basal chordate amphioxus (Branchiostoma floridae). The Bf-CTFPs were shown to possess an N-terminal circular region typical of the CT/CGRP family and a C-terminal Pro-NH2. The Bf-CTFP genes were expressed in the central nervous system and in endocrine cells of the midgut, indicating that Bf-CTFPs serve as brain and/or gut peptides. Cell surface expression of the Bf-CTFP-R was enhanced by co-expression with each Bf-RAMP-LP. Furthermore, Bf-CTFPs activated Bf-CTFP-R·Bf-RAMP-LP complexes, resulting in cAMP accumulation. These results confirmed that Bf-RAMP-LPs, like vertebrate RAMPs, are prerequisites for the function and translocation of the Bf-CTFP-R. The relative potencies of the three peptides at each receptor were similar. Bf-CTFP2 was a potent ligand at all receptors in cAMP assays. Bf-RAMP-LP effects on ligand potency order were distinct to vertebrate CGRP/adrenomedullin/amylin receptors. To the best of our knowledge, this is the first molecular and functional characterization of an authentic invertebrate CT/CGRP family receptor and RAMPs.
Assuntos
Calcitonina/genética , Calcitonina/metabolismo , Evolução Molecular , Regulação da Expressão Gênica , Anfioxos/metabolismo , Família Multigênica , Adrenomedulina/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Membrana Celular/metabolismo , Sistema Nervoso Central/metabolismo , Chlorocebus aethiops , Cordados , Clonagem Molecular , AMP Cíclico/metabolismo , Citometria de Fluxo , Células HEK293 , Humanos , Mucosa Intestinal/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Estrutura Terciária de Proteína , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptores da Calcitonina/metabolismo , Homologia de Sequência de AminoácidosRESUMO
Unidirectional flow of oviductal fluid from the ovarian to uterine side of the ampulla plays a significant role in successful pregnancy, and is produced by ciliary beating. Various systems regulate ciliary beating, such as paracrine, autocrine, and endocrine. We hypothesized that Adrenomedullin (ADM)-a peptide hormone that acts via its receptors, which are complexes of Calcitonin receptor-like receptor (CRLR) and Receptor activity-modifying protein (RAMP) 2 or 3 - promotes oviductal fluid flow in the ampulla of bovine oviducts. First, we examined the expression of ADM, CRLR, RAMP2, and RAMP3 mRNAs in isolated epithelial cells throughout the estrous cycle, and the localization of ADM receptor protein constituents in the ampulla. RAMP2 expression was significantly higher in the follicular phase. Furthermore, RAMP2 protein was detected only in ciliated cells, whereas CRLR and RAMP3 were detected in all epithelial cells. The effects of ADM and an ADM antagonist on fluid-flow speed were examined using microbeads in ampullary tissue. ADM antagonist decreased bead transport speed, and this decrease was reversed by ADM. In addition, ADM recovered the bead transport speed that decreased in the absence of calcium. Overall, our results suggest that ADM contributes to the regulation of oviductal fluid flow in ampulla.
Assuntos
Adrenomedulina/fisiologia , Cílios/fisiologia , Oviductos/citologia , Oviductos/fisiologia , Animais , Cálcio/metabolismo , Bovinos , Feminino , Modelos Biológicos , Proteínas Modificadoras da Atividade de Receptores/metabolismoRESUMO
Calcitonin (CT) is a hormone that decreases serum calcium level by suppressing osteoclastic activity in the vertebrate bone. In vertebrates, the structure-function relationship of CTs has been studied extensively. We recently identified three CT superfamily peptides, Bf-CTFP1 to 3, and clarified the molecular and functional characteristics of their receptor and receptor activity-modifying protein in amphioxus, Branchiostoma floridae. However, the CT activity of Bf-CTFPs has yet to be investigated. In the present study, a functional analysis of Bf-CTFPs was performed using goldfish scales having both osteoclasts and osteoblasts. All Bf-CTFPs suppressed osteoclastic activity via a goldfish CT receptor. Although the primary amino acid sequences of the Bf-CTFPs showed low sequence similarity to vertebrate CTs, Bf-CTFP1 to 3 share three amino acids, Thr25, Thr27, and Pro32-NH2, that are required for receptor binding, with salmon CT. Moreover, homology model analysis revealed that the Bf-CTFPs form alpha-helical structures. The alpha-helical position and length of Bf-CTFP1 and 2 were conserved with those of a highly potent ligand, teleost CT. Interestingly, the composition of the alpha-helix of Bf-CTFP3 differed from those of teleost CT, despite that the action of Bf-CTFP3 on goldfish scales was the same as that of Bf-CTFP1 and 2. Collectively, the present study provides new insights into the structure-function relationship of CT and its functional evolution in chordates.
Assuntos
Calcitonina/genética , Carpa Dourada/metabolismo , Peptídeos/genética , Sequência de Aminoácidos , Animais , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Relação Estrutura-AtividadeRESUMO
Receptor activity-modifying proteins (RAMPs) are single pass membrane proteins initially identified by their ability to determine the pharmacology of the calcitonin receptor-like receptor (CLR), a family B G protein-coupled receptor (GPCR). It is now known that RAMPs can interact with a much wider range of GPCRs. This review considers recent developments on the structure of the complexes formed between the extracellular domains (ECDs) of CLR and RAMP1 or RAMP2 as these provide insights as to how the RAMPs direct ligand binding. The range of RAMP interactions is also considered; RAMPs can interact with numerous family B GPCRs as well as examples of family A and family C GPCRs. They influence receptor expression at the cell surface, trafficking, ligand binding and G protein coupling. The GPCR-RAMP interface offers opportunities for drug targeting, illustrated by examples of drugs developed for migraine.
Assuntos
Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Conformação ProteicaRESUMO
Calcitonin gene-related peptide (CALCB) and its family members adrenomedullin (ADM) and intermedin (ADM2) play important roles in maintaining vascular adaptations during pregnancy in animal models. The present study was designed to evaluate the responses of omental arteries to CALCB, ADM, and ADM2 in pregnant and nonpregnant women, and to determine the mechanisms involved. By using resistance omental arteries collected from nonpregnant women (n = 15) during laparotomy and from term pregnant women (n = 15) at cesarean delivery, this study shows that the receptor components--calcitonin receptor-like receptor (CALCRL) and receptor activity-modifying proteins (RAMPs) 1, 2 and 3--are localized to endothelial and smooth muscle cells in omental arteries, with increased expressions of both mRNA and protein in pregnant compared with nonpregnant women. The myography study demonstrated that CALCB, ADM, and ADM2 (0.1-100 nM) dose dependently relax U46619 (1 muM) precontracted omental artery segments, and the maximum possible effects to CALCB and ADM2, but not to ADM, are significantly enhanced in pregnant compared with nonpregnant women. Further, the vasodilatory responses to CALCB, ADM, and ADM2 are reduced by inhibitors of nitric oxide (NO) synthase (L-NAME), adenylyl cyclase (SQ22536), voltage-activated potassium channels (4-aminopyrodin and tetrabutylammonium), Ca(2+)-activated potassium channel (charybdotoxin), and cyclooxygenase (indomethacin). In conclusion, the CALCB family of peptides, CALCB and ADM2, increase human omental artery relaxation during pregnancy through diverse mechanisms, including NO, endothelium-derived hyperpolarizing factors (EDHFs) and prostaglandins, and thus could contribute to the vascular adaptations during pregnancy in the human.
Assuntos
Adrenomedulina/farmacologia , Artérias/efeitos dos fármacos , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Omento/irrigação sanguínea , Hormônios Peptídicos/farmacologia , Vasodilatação/efeitos dos fármacos , Artérias/metabolismo , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Feminino , Humanos , Óxido Nítrico/metabolismo , Gravidez , Proteínas Modificadoras da Atividade de Receptores/metabolismoRESUMO
This study describes the effect of variable oxygen supply on relaxing responses induced by α-calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) on isolated pig coronary arteries in vitro. Organ culture during normoxia (21% of O2) and hypoxia (5% of O2) induced a significant leftward shift of the AM concentration-response curves compared with fresh vessels altering the pEC50 values from 6.9 ± 0.04 to 8.0 ± 0.04, whereas the potency (pEC50) of αCGRP was attenuated from 8.8 ± 0.04 to 7.6 ± 0.04. AM22â52 exerted significant antagonistic effect on AM-induced vasorelaxation in hypoxic and normoxic conditions (apparent pK(B) = 6.8-7.2), whereas no antagonistic effect was observed in fresh and hyperoxic (95%) organ cultured vessels. The antagonistic effect exerted by αCGRP8â37 (10â»6·5-10â»5·5 M) on αCGRP-induced vasodilatation in fresh vessels (derived from Schild plot pA2 = 7.4 ± 0.1) was unaltered during organ culture. The antagonistic effect exerted by αCGRP8â37 (10â»6 M) on AM-induced vasorelaxation in fresh vessels (apparent pK(B) = 7.4 ± 0.1) was absent during hypoxic organ culture. The receptor activity-modifying proteins 1 (RAMP1)/calcitonin-like receptor (CLR) messenger RNA ratio was reduced and RAMP2/CLR messenger RNA ratio was increased during hypoxic and normoxic organ culture compared with fresh vessels. Hypoxic organ culture for 24-72 hours potentiated the AM-induced vasorelaxation through an AM22â52-sensitive receptor but attenuated the vasorelaxant effect of CGRP through the CGRP receptors. This could possibly be explained by relatively decreased levels of RAMP1, thus favoring RAMP2 + CLR complex (=AM receptor) formation during hypoxic organ culture.
Assuntos
Adrenomedulina/farmacologia , Vasos Coronários/efeitos dos fármacos , Hipóxia/fisiopatologia , Vasodilatadores/farmacologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/biossíntese , Contração Muscular/efeitos dos fármacos , Miocárdio/metabolismo , Técnicas de Cultura de Órgãos , Fragmentos de Peptídeos/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Suínos , Vasodilatação/efeitos dos fármacosRESUMO
The chicken (Gallus gallus) melanocortin-2 receptor (cMC2R) can be functionally expressed in CHO cells when chicken melanocortin-2 receptor accessory protein 1 (cMRAP1) is co-expressed. The transiently transfected CHO cells responded in a robust manner to stimulation by hACTH(1-24) (EC50 value=2.7 × 10(-12)M +/- 1.3 × 10(-12)), but the transfected CHO cells could not be stimulated by NDP-MSH at concentrations as high as 10(-7)M. Incubation of cMC2R/cMRAP1 transfected cells with alanine substituted analogs of hACTH(1-24) at amino acid positions F(7) or W(9) completely blocked stimulation of the transfected cells. Similarly, incubation of cMC2R/cMRAP1 transfected cells with an analog of hACTH(1-24) with alanine substitutions at amino acid positions R(17)R(18)P(19) resulted in a 276 fold shift in EC50 value relative to the positive control (p<0.004). Collectively these observations suggest that cMC2R has binding sites for the HFRW motif and KKRRP motif of hACTH(1-24), and both motifs are required for full activation of the receptor. While previous studies had shown that Anolis carolinensis MC2R and Xenopus tropicalis MC2R could be functionally expressed in CHO cells that co-expressed mouse MRAP1, co-expression of these non-mammalian tetrapod MC2Rs with cMRAP1 resulted in a significant increase in sensitivity to hACTH(1-24), as measured by EC50 value, for A. carolinensis MC2R (p<0.005) and X. tropicalis MC2R (p<0.007). The implications of these observations are discussed.
Assuntos
Galinhas/metabolismo , Proteínas Modificadoras da Atividade de Receptores/farmacologia , Receptor Tipo 2 de Melanocortina/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Alanina , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Ligantes , Camundongos , Dados de Sequência Molecular , Proteínas Modificadoras da Atividade de Receptores/química , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptor Tipo 2 de Melanocortina/química , Homologia de Sequência de AminoácidosRESUMO
Receptor activity-modifying proteins (RAMPs) form complexes with G protein-coupled receptors (GPCRs) and may regulate their cellular trafficking and pharmacology. RAMP interactions have been identified for about 50 GPCRs, but only a few GPCR-RAMP complexes have been studied in detail. To elucidate a comprehensive GPCR-RAMP interactome, we created a library of 215 dual epitope-tagged (DuET) GPCRs representing all GPCR subfamilies and coexpressed each GPCR with each of the three RAMPs. Screening the GPCR-RAMP pairs with customized multiplexed suspension bead array (SBA) immunoassays, we identified 122 GPCRs that showed strong evidence for interaction with at least one RAMP. We screened for interactions in three cell lines and found 23 endogenously expressed GPCRs that formed complexes with RAMPs. Mapping the GPCR-RAMP interactome expands the current system-wide functional characterization of RAMP-interacting GPCRs to inform the design of selective therapeutics targeting GPCR-RAMP complexes.
Assuntos
Ligação Proteica , Proteínas Modificadoras da Atividade de Receptores , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Mapeamento de Interação de Proteínas/métodos , Células HEK293 , Mapas de Interação de ProteínasRESUMO
Intermedin (IMD) plays an important regulatory role in cardiovascular function. We aimed to explore the protein expression of IMD and its receptors, calcitonin receptor-like receptor (CRLR) and receptor activity-modifying proteins (RAMPs), and the role of endogenous IMD in myocardial ischemia/reperfusion (I/R) injury in rats. The rat model of I/R was created by ligating cardiac left anterior descending artery. Western blot was used to determine protein expression of CRLR and RAMPs, and radioimmunoassay was used to detect IMD content. Compared with control, protein levels of CRLR and RAMPs in both ischemic and nonischemic region were upregulated at different stages of reperfusion. IMD protein content in nonischemic area myocardium also increased. However, IMD protein content in ischemic area downregulated at 3-, 6-, and 12-h reperfusion. In hypoxia/reoxygenation model of neonatal cardiomyocytes, IMD attenuated myocyte injury, and IMD receptor antagonist IMD17-47 aggravated myocyte impairment by blocking endogenous IMD. In conclusion, the downregulation of IMD at early stage of reperfusion might augment myocardium injury.
Assuntos
Adrenomedulina/metabolismo , Regulação para Baixo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Neuropeptídeos/metabolismo , Animais , Animais Recém-Nascidos , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Eletrocardiografia , Masculino , Traumatismo por Reperfusão Miocárdica/diagnóstico por imagem , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Ratos Sprague-Dawley , Proteínas Modificadoras da Atividade de Receptores/metabolismo , UltrassonografiaRESUMO
Adrenomedullins (AM) form a multifunctional subfamily of the calcitonin gene-related peptide (CGRP) superfamily, the members of which exert their physiological roles through a 1:1 combination of calcitonin receptor-like receptors (CLRs) and receptor activity-modifying proteins (RAMPs). It has been shown that RAMPs can modify the biochemical properties of CLRs; for example, RAMP escorts CLR to the plasma membrane, affects glycosylation state of CLR, and transforms the ligand selectivity of CLR, but on the other hand the effects of CLRs on the biochemical and functional properties of the partner RAMPs are not well established. In this study, using pufferfish (mefugu, mf) homolog, we revealed that mfCLR1 could affect the post-translational modification and trafficking pathway of mfRAMP1. In addition, mfCLRs boosted mfRAMP1, mfRAMP2b, and mfRAMP3 translocation to cell surface. We further revealed that mfRAMPs, except mfRAMP1 and mfRAMP3, could be expressed as multimers on the plasma membrane. However, only monomeric form of mfRAMP2a, mfRAMP4, and mfRAMP5 could heteromerize with mfCLR1 but not with mfCLR2 or mfCLR3, which was consistent with their abilities to induce cAMP response. Collectively our results indicate that the glycosylation, subcellular trafficking, and pharmacological properties of the components of RAMP-CLR receptor complexes are regulated in an interdependent manner.
Assuntos
Proteína Semelhante a Receptor de Calcitonina/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Animais , Células COS , Chlorocebus aethiops , Glicosilação , Humanos , Takifugu/metabolismoRESUMO
AIMS: Adrenomedullin (AM) is a peptide that displays cardiovascular protective activity. We investigated the effects of chronic ethanol consumption on arterial blood pressure, vascular reactivity to AM and the expression of AM system components in the rat mesenteric arterial bed (MAB). METHODS: Male Wistar rats were treated with ethanol (20% vol/vol) for 6 weeks. Systolic, diastolic and mean arterial blood pressure were monitored in conscious rats. Vascular reactivity experiments were performed on isolated rat MAB. Matrix metalloproteinase-2 (MMP-2) levels were determined by gelatin zymography. Nitrite and nitrate generation were measured by chemiluminescence. Protein and mRNA levels of pre-pro-AM, CRLR (calcitonin receptor-like receptor) and RAMP1, 2 and 3 (receptor activity-modifying proteins) were assessed by western blot and quantitative real-time polymerase chain reaction, respectively. RESULTS: Ethanol consumption induced hypertension and decreased the relaxation induced by AM and acetylcholine in endothelium-intact rat MAB. Phenylephrine-induced contraction was increased in endothelium-intact MAB from ethanol-treated rats. Ethanol consumption did not alter basal levels of nitrate and nitrite, nor did it affect the expression of MMP-2 or the net MMP activity in the rat MAB. Ethanol consumption increased mRNA levels of pre-pro-AM and protein levels of AM in the rat MAB. Finally, no differences in protein levels or mRNA of CRLR and RAMP1, 2 and 3 were observed after treatment with ethanol. CONCLUSION: Our study demonstrates that ethanol consumption increases blood pressure and the expression of AM in the vasculature and reduces the relaxation induced by this peptide in the rat MAB.