RESUMO
Nitrilases are widely distributed in nature and are able to hydrolyze nitriles into their corresponding carboxylic acids and ammonia. In industry, nitrilases have been used as green biocatalysts for the production of high value-added products. To date, biocatalysts are considered to be important alternatives to chemical catalysts due to increasing environmental problems and resource scarcity. This review provides an overview of recent advances of nitrilases in aspects of distribution, enzyme screening, molecular structure and catalytic mechanism, protein engineering, and their potential applications in industry.
Assuntos
Aminoidrolases , Química Verde , Engenharia de Proteínas , Aminoidrolases/genética , Aminoidrolases/metabolismo , Ácidos Carboxílicos/metabolismo , Química Verde/tendências , Nitrilas/metabolismoRESUMO
This review article highlights part of the research activity of the C'Durable team at IRCELYON in the field of sustainable chemistry. This review presents a landscape of the work performed on the valorization of lignocellulosic biopolymers. These studies intend to transform cellulose, hemicellulose and lignin into valuable molecules. The methodology usually consists in evaluating the behavior of the biopolymers in the absence of catalyst under various conditions (solvent, temperature), and then to assess the influence of a catalyst, most often a heterogeneous catalyst, on the reactivity. The most significant results obtained on the upgrading of cellulose and lignin, which have been mainly investigated in the team, will be presented with an opening on studies involving raw lignocellulose.
Assuntos
Biopolímeros/química , Química Verde/métodos , Lignina/química , Biomassa , Biopolímeros/análise , Catálise , Celulose/química , Química Verde/tendências , Polissacarídeos/química , Solventes/análise , Madeira/químicaRESUMO
Metal oxide nanoparticles synthesized by the biological method represent the most recent research in nanotechnology. This study reports the rapid and ecofriendly approach for the synthesis of CeO2 nanoparticles mediated using the Abelmoschus esculentus extract. The medicinal plant extract acts as both a reducing and stabilizing agent. The characterization of CeO2 NPs was performed by scanning electron microscopy (SEM), X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), and Fourier transform infrared spectroscopy (FTIR). The in vitro cytotoxicity of green synthesized CeO2 was assessed against cervical cancerous cells (HeLa). The exposure of CeO2 to HeLa cells at 10-125 µg/mL caused a loss in cellular viability against cervical cancerous cells in a dose-dependent manner. The antibacterial activity of the CeO2 was assessed against S. aureus and K. pneumonia. A significant improvement in wound-healing progression was observed when cerium oxide nanoparticles were incorporated into the chitosan hydrogel membrane as a wound dressing.
Assuntos
Abelmoschus/química , Antioxidantes/síntese química , Extratos Vegetais/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Cério/química , Química Verde/tendências , Células HeLa , Humanos , Nanopartículas Metálicas/química , Microscopia Eletrônica de Varredura , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/patogenicidade , Cicatrização/efeitos dos fármacosRESUMO
Biocatalysis is a green and sustainable technology for which the ideal solvent should be nontoxic, biocompatible, biodegradable, and sustainable, in addition to supporting high enzyme activity and stability. Deep eutectic solvents (DESs), a novel class of green solvents, have recently emerged as excellent alternatives for use in various biocatalytic reactions and, in particular, in lipase-catalyzed reactions with enzymes. This review discusses the achievements that have been made so far in the use of DESs as reaction media for lipase-catalyzed reactions. In addition, the application of DESs in esterification, transesterification, and amidation reactions with isolated or immobilized biocatalysts, toward enabling the synthesis of biodiesels, sugar esters, phenolipids, and fatty acyl ethanolamides, is summarized, while advances in lipase-catalyzed chemoenzymatic epoxidation reactions, C-C bond-forming Aldol reactions, and hydrolysis reactions in DESs are also discussed. This review also summarize some remaining questions concerning the use of DESs, including the intriguing role of water as a cosolvent in biocatalytic reactions carried out in DESs, and the relationship between the nature of the DESs and their influence on the enzyme stability and activity at the molecular level.
Assuntos
Biocatálise , Enzimas Imobilizadas/metabolismo , Lipase/metabolismo , Solventes/química , Química Verde/tendências , Ligação de Hidrogênio , Fenômenos de Química OrgânicaRESUMO
The electrochemical reduction of carbon dioxide (CO2 ) to value-added products obtains great attention and investigation worldwide in recent years. The commercialization of this green process relies on the progress of relating high-performance electrocatalysts and their feasibility with proper reactor design. The microbial electrosynthesis (MES) is an alternative route to reduce CO2 with electroactive bio-film electrode as catalyst. This review presents the research status and development of cathode catalysts, particularly focusing on the active sites and development tendency, for highly efficient electrochemical reduction CO2 from personal viewpoint. Some of our results are also presented to exhibit contributions. MES shows a similar process to the typical electrochemical reduction of CO2 . Their combination is an important trend, and the future research in this field is full of challenges and opportunities.
Assuntos
Dióxido de Carbono/química , Técnicas Eletroquímicas/métodos , Bactérias/metabolismo , Biocatálise , Reatores Biológicos , Células Imobilizadas/metabolismo , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/tendências , Eletrodos/microbiologia , Química Verde/instrumentação , Química Verde/métodos , Química Verde/tendências , Compostos Orgânicos/síntese química , OxirreduçãoRESUMO
Multicopper oxidases (MCOs) are a pervasive family of enzymes that oxidize a wide range of phenolic and nonphenolic aromatic substrates, concomitantly with the reduction of dioxygen to water. MCOs are usually divided into two functional classes: metalloxidases and laccases. Given their broad substrate specificity and eco-friendliness (molecular oxygen from air as is used as the final electron acceptor and they only release water as byproduct), laccases are regarded as promising biological green tools for an array of applications. Among these laccases, those of bacterial origin have attracted research attention because of their notable advantages, including broad substrate spectrum, wide pH range, high thermostability, and tolerance to alkaline environments. This review aims to summarize the significant research efforts on the properties, mechanisms and structures, laccase-mediator systems, genetic engineering, immobilization, and biotechnological applications of the bacteria-source laccases and laccase-like enzymes, which principally include Bacillus laccases, actinomycetic laccases and some other species of bacterial laccases. In addition, these enzymes may offer tremendous potential for environmental and industrial applications.
Assuntos
Bactérias/enzimologia , Bioengenharia/tendências , Química Verde/tendências , Indústrias/tendências , Lacase/fisiologia , Animais , Bactérias/genética , Bioengenharia/métodos , Microbiologia Ambiental , Química Verde/métodos , Humanos , Indústrias/métodos , Invenções/tendências , Lacase/genéticaRESUMO
Petroleum hydrocarbons, oil, heavy metals pollution is becoming additional severe problem due to the growing call for crude oil and crude oil products related products in several fields of application. Such pollution have fascinated much considerations and attractions as it leads to ecological damages in both marines, aquatic and terrestrial ecosystems. Thus, different techniques including chemical surfactants and complex technologies have been proposed for their clean up from the environment, which in turn has detrimental effects on the environment. As of late, biosurfactant compounds have added much deliberation since they are considered as a reasonable option and eco-accommodating materials for remediation technology. The present society is confronting a few difficulties of usage, authorizing ecological protection and environmental change for the next generations. Biosurfactants hold the special property of minimizing and reducing the interfacial tension of liquids. Such features endure biosurfactants to afford a major part in emulsification, de-emulsification, biodegradability, foam formation, washing performance, surface activity, and detergent formulation, which have potential applications in the diverse industrial set-up. Conversations on cost-effective technologies, renewable materials, novel synthesis, downstream, upstream, emerging characterization techniques, molecular, and genetical engineering are substantial to produce biosurfactant of quality and quantity. Therefore, greater attention is being paid to biosurfactant production by identifying their environmental, and biotechnological applications. Be that as it may, the extravagant cost drew in with biosurfactants biotechnological synthesis and recovery can hamper their application in those areas. Notwithstanding these costs, biosurfactants can be used as these parts shows outstandingly high benefits that can at present beat the expenses incurred in the initial purification and downstream processes. Biosurfactant production by microorganisms is relatively considered one of the crucial know-how for improvement, growth, advancement, and environmental sustainability of the 21st century. There is a developing conversation around environmental safety and the significant role that biosurfactants will progressively play soon, for instance, the use of renewable by-products as substrates, potential reduction, re-use and recycling of waste and waste products. The review confers the usefulness of biosurfactants in the removal of environmental contaminants and, consequently, expanding environmental safety and drive towards greener technology.
Assuntos
Biodegradação Ambiental , Tensoativos/metabolismo , Bactérias/isolamento & purificação , Bactérias/metabolismo , Química Verde/tendências , Microbiologia Industrial/tendências , Propriedades de Superfície , Tensoativos/química , Tensoativos/toxicidadeRESUMO
Green Analytical Chemistry (GAC) is a research field that seeks for more sustainable analytical approaches to minimize the toxicity and amounts of wastes without hindering the analytical performance. This is a trend in Analytical Chemistry worldwide and because of the diversity of innovations on this subject, Brazil stands out as the third in the list of the main contributors to GAC, with ca. 11.2% of the published articles. Significant innovations and interesting applications in several fields have been presented and Brazil is continuously moving from Chemistry to Green Chemistry also in the Analytical Chemistry field. Selected contributions for sample preparation, spectro- and electroanalysis, separation techniques, chemometrics, and also procedures for point-of-care measurements are critically reviewed.
Assuntos
Técnicas de Química Analítica/tendências , Química Verde/tendências , Pesquisa/tendências , Brasil , Técnicas de Química Analítica/métodos , Química Verde/métodos , Humanos , Microextração em Fase Líquida/métodos , Microextração em Fase Líquida/tendências , Microextração em Fase Sólida/métodos , Microextração em Fase Sólida/tendências , Solventes , Análise Espectral/métodos , Análise Espectral/tendênciasRESUMO
Industrial ecology has revolutionized our understanding of material stocks and flows in our economy and society. For this important discipline to have even deeper impact, we must understand the inherent nature of these materials in terms of human health and the environment. This paper focuses on methods to design synthetic chemicals to reduce their intrinsic ability to cause adverse consequence to the biosphere. Advances in the fields of computational chemistry and molecular toxicology in recent decades allow the development of predictive models that inform the design of molecules with reduced potential to be toxic to humans or the environment. The approach presented herein builds on the important work in quantitative structure-activity relationships by linking toxicological and chemical mechanistic insights to the identification of critical physical-chemical properties needed to be modified. This in silico approach yields design guidelines using boundary values for physiochemical properties. Acute aquatic toxicity serves as a model endpoint in this study. Defining value ranges for properties related to bioavailability and reactivity eliminates 99% of the chemicals in the highest concern for acute aquatic toxicity category. This approach and its future implementations are expected to yield very powerful tools for life cycle assessment practitioners and molecular designers that allow rapid assessment of multiple environmental and human health endpoints and inform modifications to minimize hazard.
Assuntos
Organismos Aquáticos/efeitos dos fármacos , Ecologia/métodos , Química Verde/métodos , Substâncias Perigosas/toxicidade , Indústrias/métodos , Testes de Toxicidade Aguda/métodos , Animais , Cyprinidae , Daphnia , Análise Discriminante , Ecologia/tendências , Química Verde/tendências , Humanos , Indústrias/normas , Dose Letal Mediana , Modelos LinearesAssuntos
Química Farmacêutica/métodos , Química Verde/tendências , Ácidos/química , Indústria Farmacêutica , Estabilidade de Medicamentos , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , Líquens/química , Líquens/metabolismo , Pinturas/história , Fatores de TempoRESUMO
Cu-catalysed arylation reactions devoted to the formation of C-C and C-heteroatom bonds (Ullmann-type couplings) have acquired great importance in the last decade. This review discusses the history and development of coupling reactions between aryl halides and various classes of nucleophiles, focusing mostly on the different mechanisms proposed through the years. Selected mechanistic investigations are treated more in depth than others. For example, evidence in favour or against radical mechanisms is discussed. Cu(I) and Cu(III) complexes involved in the Ullmann reaction and N/O selectivity in aminoalcohol arylation are discussed. A separate section has been dedicated to the synthesis of heterocyclic rings through intramolecular couplings. Finally, recent developments in green chemistry for these reactions, such as reactions in aqueous media and heterogeneous catalysis, have also been reviewed.
Assuntos
Catálise , Química Orgânica , Cobre , Química Verde , Química Orgânica/métodos , Química Orgânica/tendências , Química Verde/métodos , Química Verde/tendênciasRESUMO
Oxidation catalysis not only plays a crucial role in the current chemical industry for the production of key intermediates such as alcohols, epoxides, aldehydes, ketones and organic acids, but also will contribute to the establishment of novel green and sustainable chemical processes. This review is devoted to dealing with selective oxidation reactions, which are important from the viewpoint of green and sustainable chemistry and still remain challenging. Actually, some well-known highly challenging chemical reactions involve selective oxidation reactions, such as the selective oxidation of methane by oxygen. On the other hand some important oxidation reactions, such as the aerobic oxidation of alcohols in the liquid phase and the preferential oxidation of carbon monoxide in hydrogen, have attracted much attention in recent years because of their high significance in green or energy chemistry. This article summarizes recent advances in the development of new catalytic materials or novel catalytic systems for these challenging oxidation reactions. A deep scientific understanding of the mechanisms, active species and active structures for these systems are also discussed. Furthermore, connections among these distinct catalytic oxidation systems are highlighted, to gain insight for the breakthrough in rational design of efficient catalytic systems for challenging oxidation reactions.
Assuntos
Química Verde , Nanotecnologia , Oxirredução , Catálise , Química Verde/métodos , Química Verde/tendências , Nanotecnologia/métodos , Nanotecnologia/tendênciasAssuntos
Química Verde/métodos , Campos de Petróleo e Gás , Pressão , Monitoramento Ambiental , Sedimentos Geológicos/química , Química Verde/tendências , Água Subterrânea/química , Humanos , Sistema de Registros , Medição de Risco , Estados Unidos , United States Environmental Protection Agency , Águas Residuárias/químicaRESUMO
Nanotechnology is the most innovative field of 21st century. Extensive research is going on for commercializing nanoproducts throughout the world. Due to their unique properties, nanoparticles have gained considerable importance compared to bulk counterparts. Among other metal nanoparticles, zinc oxide nanoparticles are very much important due to their utilization in gas sensors, biosensors, cosmetics, drug-delivery systems, and so forth. Zinc oxide nanoparticles (ZnO NPs) also have remarkable optical, physical, and antimicrobial properties and therefore have great potential to enhance agriculture. As far as method of formation is concerned, ZnO NPs can be synthesized by several chemical methods such as precipitation method, vapor transport method, and hydrothermal process. The biogenic synthesis of ZnO NPs by using different plant extracts is also common nowadays. This green synthesis is quite safe and ecofriendly compared to chemical synthesis. This paper elaborates the synthesis, properties, and applications of zinc oxide nanoparticles.
Assuntos
Agricultura , Química Verde , Nanopartículas Metálicas/química , Nanotecnologia , Óxido de Zinco/síntese química , Agricultura/tendências , Coriandrum , Química Verde/tendências , Nanotecnologia/tendências , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificaçãoRESUMO
Food insecurity and malnutrition are prominent issues for this century. As the world's population continues to increase, ensuring that the earth has enough food that is nutritious too will be a difficult task. Today one billion people of the world are undernourished and more than a third are malnourished. Moreover, the looming threat of climate change is exasperating the situation even further. At the same time, the total acreage of arable land that could support agricultural use is already near its limits, and may even decrease over the next few years due to salination and desertification patterns resulting from climate change. Clearly, changing the way we think about crop production must take place on multiple levels. New varieties of crops must be developed which can produce higher crop yields with less water and fewer agricultural inputs. Besides this, the crops themselves must have improved nutritional qualities or become biofortified in order to reduce the chances of 'hidden hunger' resulting from malnourishment. It is difficult to envision the optimum way to increase crop production using a single uniform strategy. Instead, a variety of approaches must be employed and tailored for any particular agricultural setting. New high-impact technologies such as green biotechnology, biofortification, and nanotechnology offer opportunities for boosting agricultural productivity and enhancing food quality and nutritional value with eco-friendly manner. These agricultural technologies currently under development will renovate our world to one that can comfortably address the new directions, our planet will take as a result of climate change.