Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 476
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 615(7951): 285-291, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859541

RESUMO

The germline mutation rate determines the pace of genome evolution and is an evolving parameter itself1. However, little is known about what determines its evolution, as most studies of mutation rates have focused on single species with different methodologies2. Here we quantify germline mutation rates across vertebrates by sequencing and comparing the high-coverage genomes of 151 parent-offspring trios from 68 species of mammals, fishes, birds and reptiles. We show that the per-generation mutation rate varies among species by a factor of 40, with mutation rates being higher for males than for females in mammals and birds, but not in reptiles and fishes. The generation time, age at maturity and species-level fecundity are the key life-history traits affecting this variation among species. Furthermore, species with higher long-term effective population sizes tend to have lower mutation rates per generation, providing support for the drift barrier hypothesis3. The exceptionally high yearly mutation rates of domesticated animals, which have been continually selected on fecundity traits including shorter generation times, further support the importance of generation time in the evolution of mutation rates. Overall, our comparative analysis of pedigree-based mutation rates provides ecological insights on the mutation rate evolution in vertebrates.


Assuntos
Evolução Molecular , Mutação em Linhagem Germinativa , Taxa de Mutação , Vertebrados , Animais , Feminino , Masculino , Aves/genética , Peixes/genética , Mutação em Linhagem Germinativa/genética , Mamíferos/genética , Répteis/genética , Vertebrados/genética
2.
Mol Cell ; 78(1): 57-69.e4, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32059760

RESUMO

Homeothermic organisms maintain their core body temperature in a narrow, tightly controlled range. Whether and how subtle circadian oscillations or disease-associated changes in core body temperature are sensed and integrated in gene expression programs remain elusive. Furthermore, a thermo-sensor capable of sensing the small temperature differentials leading to temperature-dependent sex determination (TSD) in poikilothermic reptiles has not been identified. Here, we show that the activity of CDC-like kinases (CLKs) is highly responsive to physiological temperature changes, which is conferred by structural rearrangements within the kinase activation segment. Lower body temperature activates CLKs resulting in strongly increased phosphorylation of SR proteins in vitro and in vivo. This globally controls temperature-dependent alternative splicing and gene expression, with wide implications in circadian, tissue-specific, and disease-associated settings. This temperature sensor is conserved across evolution and adapted to growth temperatures of diverse poikilotherms. The dynamic temperature range of reptilian CLK homologs suggests a role in TSD.


Assuntos
Processamento Alternativo , Regulação da Temperatura Corporal/genética , Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Répteis/genética , Animais , Evolução Biológica , Células HEK293 , Humanos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/fisiologia , Répteis/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo
3.
Nature ; 584(7821): 403-409, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760000

RESUMO

The tuatara (Sphenodon punctatus)-the only living member of the reptilian order Rhynchocephalia (Sphenodontia), once widespread across Gondwana1,2-is an iconic species that is endemic to New Zealand2,3. A key link to the now-extinct stem reptiles (from which dinosaurs, modern reptiles, birds and mammals evolved), the tuatara provides key insights into the ancestral amniotes2,4. Here we analyse the genome of the tuatara, which-at approximately 5 Gb-is among the largest of the vertebrate genomes yet assembled. Our analyses of this genome, along with comparisons with other vertebrate genomes, reinforce the uniqueness of the tuatara. Phylogenetic analyses indicate that the tuatara lineage diverged from that of snakes and lizards around 250 million years ago. This lineage also shows moderate rates of molecular evolution, with instances of punctuated evolution. Our genome sequence analysis identifies expansions of proteins, non-protein-coding RNA families and repeat elements, the latter of which show an amalgam of reptilian and mammalian features. The sequencing of the tuatara genome provides a valuable resource for deep comparative analyses of tetrapods, as well as for tuatara biology and conservation. Our study also provides important insights into both the technical challenges and the cultural obligations that are associated with genome sequencing.


Assuntos
Evolução Molecular , Genoma/genética , Filogenia , Répteis/genética , Animais , Conservação dos Recursos Naturais/tendências , Feminino , Genética Populacional , Lagartos/genética , Masculino , Anotação de Sequência Molecular , Nova Zelândia , Caracteres Sexuais , Serpentes/genética , Sintenia
4.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35058358

RESUMO

Rates of species formation vary widely across the tree of life and contribute to massive disparities in species richness among clades. This variation can emerge from differences in metapopulation-level processes that affect the rates at which lineages diverge, persist, and evolve reproductive barriers and ecological differentiation. For example, populations that evolve reproductive barriers quickly should form new species at faster rates than populations that acquire reproductive barriers more slowly. This expectation implicitly links microevolutionary processes (the evolution of populations) and macroevolutionary patterns (the profound disparity in speciation rate across taxa). Here, leveraging extensive field sampling from the Neotropical Cerrado biome in a biogeographically controlled natural experiment, we test the role of an important microevolutionary process-the propensity for population isolation-as a control on speciation rate in lizards and snakes. By quantifying population genomic structure across a set of codistributed taxa with extensive and phylogenetically independent variation in speciation rate, we show that broad-scale patterns of species formation are decoupled from demographic and genetic processes that promote the formation of population isolates. Population isolation is likely a critical stage of speciation for many taxa, but our results suggest that interspecific variability in the propensity for isolation has little influence on speciation rates. These results suggest that other stages of speciation-including the rate at which reproductive barriers evolve and the extent to which newly formed populations persist-are likely to play a larger role than population isolation in controlling speciation rate variation in squamates.


Assuntos
Evolução Biológica , Especiação Genética , Isolamento Reprodutivo , Répteis/genética , Animais , Biodiversidade , Evolução Molecular , Genética Populacional , Lagartos/classificação , Lagartos/genética , Filogenia , Filogeografia , Répteis/classificação , Serpentes/classificação , Serpentes/genética
5.
Mol Biol Evol ; 40(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37695804

RESUMO

Uric acid is the main means of nitrogen excretion in uricotelic vertebrates (birds and reptiles) and the end product of purine catabolism in humans and a few other mammals. While uricase is inactivated in mammals unable to degrade urate, the presence of orthologous genes without inactivating mutations in avian and reptilian genomes is unexplained. Here we show that the Gallus gallus gene we name cysteine-rich urate oxidase (CRUOX) encodes a functional protein representing a unique case of cysteine enrichment in the evolution of vertebrate orthologous genes. CRUOX retains the ability to catalyze urate oxidation to hydrogen peroxide and 5-hydroxyisourate (HIU), albeit with a 100-fold reduced efficiency. However, differently from all uricases hitherto characterized, it can also facilitate urate regeneration from HIU, a catalytic property that we propose depends on its enrichment in cysteine residues. X-ray structural analysis highlights differences in the active site compared to known orthologs and suggests a mechanism for cysteine-mediated self-aggregation under H2O2-oxidative conditions. Cysteine enrichment was concurrent with the transition to uricotelism and a shift in gene expression from the liver to the skin where CRUOX is co-expressed with ß-keratins. Therefore, the loss of urate degradation in amniotes has followed opposite evolutionary trajectories: while uricase has been eliminated by pseudogenization in some mammals, it has been repurposed as a redox-sensitive enzyme in the reptilian skin.


Assuntos
Cisteína , Répteis , Pele , Urato Oxidase , Animais , Cisteína/genética , Peróxido de Hidrogênio , Pele/enzimologia , Urato Oxidase/genética , Urato Oxidase/metabolismo , Ácido Úrico , Galinhas/genética , Répteis/genética , Répteis/metabolismo
6.
Biol Lett ; 20(7): 20240216, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39046287

RESUMO

Most described species have not been explicitly included in phylogenetic trees-a problem named the Darwinian shortfall-owing to a lack of molecular and/or morphological data, thus hampering the explicit incorporation of evolution into large-scale biodiversity analyses. We investigate potential drivers of the Darwinian shortfall in tetrapods, a group in which at least one-third of described species still lack phylogenetic data, thus necessitating the imputation of their evolutionary relationships in fully sampled phylogenies. We show that the number of preserved specimens in scientific collections is the main driver of phylogenetic knowledge accumulation, highlighting the major role of biological collections in unveiling novel biodiversity data and the importance of continued sampling efforts to reduce knowledge gaps. Additionally, large-bodied and wide-ranged species, as well as terrestrial and aquatic amphibians and reptiles, are phylogenetically better known. Future efforts should prioritize phylogenetic research on organisms that are narrow-ranged, small-bodied and underrepresented in scientific collections, such as fossorial species. Addressing the Darwinian shortfall will be imperative for advancing our understanding of evolutionary drivers shaping biodiversity patterns and implementing comprehensive conservation strategies.


Assuntos
Biodiversidade , Evolução Biológica , Filogenia , Vertebrados , Animais , Vertebrados/genética , Vertebrados/classificação , Anfíbios/genética , Anfíbios/classificação , Répteis/classificação , Répteis/genética
7.
Physiol Genomics ; 55(3): 113-131, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36645671

RESUMO

Solute carrier 12 (Slc12) is a family of electroneutral cation-coupled chloride (Cl-) cotransporters. Na+/K+/2Cl- (Nkcc) and Na+/Cl- cotransporters (Ncc) belong to the Nkcc/Ncc subfamily. Human and mouse possess one gene for the Na+/Cl- cotransporter (ncc gene: slc12a3), whereas teleost fishes possess multiple ncc genes, slc12a3 (ncc1) and slc12a10 (ncc2), in addition to their species-specific paralogs. Amphibians and squamates have two ncc genes: slc12a3 (ncc1) and ncc3. However, the evolutionary relationship between slc12a10 and ncc3 remains unresolved, and the presence of slc12a10 (ncc2) in mammals has not been clarified. Synteny and phylogenetic analyses of vertebrate genome databases showed that ncc3 is the ortholog of slc12a10, and slc12a10 is present in most ray-finned fishes, coelacanths, amphibians, reptiles, and a few mammals (e.g., platypus and horse) but pseudogenized or deleted in birds, most mammals, and some ray-finned fishes (pufferfishes). This shows that slc12a10 is widely present among bony vertebrates and pseudogenized or deleted independently in multiple lineages. Notably, as compared with some fish that show varied slc12a10 tissue expression profile, spotted gar, African clawed frog, red-eared slider turtle, and horse express slc12a10 in the ovaries or premature gonads. In horse tissues, an unexpectedly large number of splicing variants for Slc12a10 have been cloned, many of which encode truncated forms of Slc12a10, suggesting that the functional constraints of horse slc12a10 are weakened, which may be in the process of becoming a pseudogene. Our results elaborate on the evolution of Nkcc/Ncc subfamily of Slc12 in vertebrates.NEW & NOTEWORTHY slc12a10 is not a fish-specific gene and is present in a few mammals (e.g., platypus and horse), non-avian reptiles, amphibians, but was pseudogenized or deleted in most mammals (e.g., human, mouse, cat, cow, and rhinoceros), birds, and some ray-finned fishes (pufferfishes).


Assuntos
Ornitorrinco , Feminino , Bovinos , Animais , Humanos , Cavalos , Camundongos , Membro 3 da Família 12 de Carreador de Soluto , Filogenia , Peixes/genética , Répteis/genética , Aves , Anfíbios/genética
8.
BMC Genomics ; 24(1): 243, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147622

RESUMO

BACKGROUND: Sex determination is the process whereby the bipotential embryonic gonads become committed to differentiate into testes or ovaries. In genetic sex determination (GSD), the sex determining trigger is encoded by a gene on the sex chromosomes, which activates a network of downstream genes; in mammals these include SOX9, AMH and DMRT1 in the male pathway, and FOXL2 in the female pathway. Although mammalian and avian GSD systems have been well studied, few data are available for reptilian GSD systems. RESULTS: We conducted an unbiased transcriptome-wide analysis of gonad development throughout differentiation in central bearded dragon (Pogona vitticeps) embryos with GSD. We found that sex differentiation of transcriptomic profiles occurs at a very early stage, before the gonad consolidates as a body distinct from the gonad-kidney complex. The male pathway genes dmrt1 and amh and the female pathway gene foxl2 play a key role in early sex differentiation in P. vitticeps, but the central player of the mammalian male trajectory, sox9, is not differentially expressed in P. vitticeps at the bipotential stage. The most striking difference from GSD systems of other amniotes is the high expression of the male pathway genes amh and sox9 in female gonads during development. We propose that a default male trajectory progresses if not repressed by a W-linked dominant gene that tips the balance of gene expression towards the female trajectory. Further, weighted gene expression correlation network analysis revealed novel candidates for male and female sex differentiation. CONCLUSION: Our data reveal that interpretation of putative mechanisms of GSD in reptiles cannot solely depend on lessons drawn from mammals.


Assuntos
Répteis , Processos de Determinação Sexual , Diferenciação Sexual , Animais , Feminino , Masculino , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/metabolismo , Répteis/genética , Processos de Determinação Sexual/genética , Diferenciação Sexual/genética , Fatores de Transcrição SOX9/genética
9.
Mol Ecol ; 32(1): 258-274, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36221927

RESUMO

While key elements of fitness in vertebrate animals are impacted by their microbiomes, the host genetic characteristics that factor into microbiome composition are not fully understood. Here, we correlate host genomic heterozygosity and gut microbiome phylogenetic diversity across a community of reptiles in southwestern New Mexico to test hypotheses about the behaviour of host genes that drive microbiome assembly. We find that microbiome communities are phylogenetically under-dispersed relative to random expectations, and that host heterozygosity is not correlated with microbiome diversity. Our analyses reinforce results from functional genomic work that identify conserved host immune and nonimmune genes as key players in microbiome assembly, rather than gene families that rely on heterozygosity for their function.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Microbioma Gastrointestinal/genética , Filogenia , Genômica , Répteis/genética
10.
Mol Ecol ; 32(22): 6044-6058, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37795930

RESUMO

An animal's gut microbiota plays an important role in host health, reproduction and digestion. However, many studies focus on only a few individuals or a single species, limiting our ability to recognize emergent patterns across a wider taxonomic grouping. Here, we compiled and reanalysed published 16S rRNA gene sequence data for 745 gut microbiota samples from 91 reptile species using a uniform bioinformatics pipeline to draw broader conclusions about the taxonomy of the reptile gut microbiota and the forces shaping it. Our meta-analysis revealed the significant differences in alpha- and beta-diversity across host order, environment, diet, habitat and conservation status, with host diet and order contributing the most to these differences. We identified the principal bacterial phyla present in the reptile gut microbiota as Bacteroidota, Proteobacteria (mostly Gamma class), and Firmicutes, and detected the bacterial genus Bacteroides in most reptile individuals, thus representing a putative 'core' microbiota. Our study provides novel insights into key drivers of the reptile gut microbiota, highlights existing knowledge gaps and lays the groundwork for future research on these fascinating hosts and their associated microbes.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Animais , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/genética , Genes de RNAr , Répteis/genética
11.
Genetica ; 151(3): 201-213, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37069365

RESUMO

Adaptation to various altitudes and oxygen levels is a major aspect of vertebrate evolution. Hemoglobin is an erythrocyte protein belonging to the globin superfamily, and the α-, ß-globin genes of jawed vertebrates encode tetrameric ((α2ß2) hemoglobin, which contributes to aerobic metabolism by delivering oxygen from the respiratory exchange surfaces into cells. However, there are various gaps in knowledge regarding hemoglobin gene evolution, including patterns in cartilaginous fish and the roles of gene conversion in various taxa. Hence, we evaluated the evolutionary history of the vertebrate hemoglobin gene family by analyses of 97 species representing all classes of vertebrates. By genome-wide analyses, we extracted 879 hemoglobin sequences. Members of the hemoglobin gene family were conserved in birds and reptiles but variable in mammals, amphibians, and teleosts. Gene motifs, structures, and synteny were relatively well-conserved among vertebrates. Our results revealed that purifying selection contributed substantially to the evolution of all vertebrate hemoglobin genes, with mean dN/dS (ω) values ranging from 0.057 in teleosts to 0.359 in reptiles. In general, after the fish-specific genome duplication, the teleost hemoglobin genes showed variation in rates of evolution, and the ß-globin genes showed relatively high ω values after a gene transposition event in amniotes. We also observed that the frequency of gene conversion was high in amniotes, with fewer hemoglobin genes and higher rates of evolution. Collectively, our findings provide detail insight into complex evolutionary processes shaping the vertebrate hemoglobin gene family, involving gene duplication, gene loss, purifying selection, and gene conversion.


Assuntos
Estudo de Associação Genômica Ampla , Vertebrados , Animais , Vertebrados/genética , Peixes/genética , Duplicação Gênica , Répteis/genética , Hemoglobinas/genética , Evolução Molecular , Globinas beta/genética , Filogenia , Família Multigênica , Mamíferos/genética
12.
Cell Biol Int ; 47(8): 1314-1326, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37178380

RESUMO

Primordial germ cells (PGCs), are the source of gametes in vertebrates. There are similarities in the development of PGCs of reptiles with avian and mammalian species PGCs development. PGCs culture has been performed for avian and mammalian species but there is no report for reptilian PGCs culture. In vitro culture of PGCs is needed to produce transgenic animals, preservation of endangered animals and for studies on cell behaviour and research on fertility. Reptiles are traded as exotic pets and a source of food and they are valuable for their skin and they are useful as model for medical research. Transgenic reptile has been suggested to be useful for pet industry and medical research. In this research different aspects of PGCs development was compared in three main classes of vertebrates including mammalian, avian and reptilian species. It is proposed that a discussion on similarities between reptilian PGCs development with avian and mammalian species helps to find clues for studies of reptilian PGCs development details and finding an efficient protocol for in vitro culture of reptilian PG.


Assuntos
Técnicas de Cultura de Células , Espécies em Perigo de Extinção , Células Germinativas , Répteis , Células Germinativas/citologia , Répteis/genética , Répteis/crescimento & desenvolvimento , Criopreservação , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Epigênese Genética , Animais
13.
Nucleic Acids Res ; 49(D1): D144-D150, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33084905

RESUMO

Alternative splicing is widespread throughout eukaryotic genomes and greatly increases transcriptomic diversity. Many alternative isoforms have functional roles in developmental processes and are precisely temporally regulated. To facilitate the study of alternative splicing in a developmental context, we created MeDAS, a Metazoan Developmental Alternative Splicing database. MeDAS is an added-value resource that re-analyses publicly archived RNA-seq libraries to provide quantitative data on alternative splicing events as they vary across the time course of development. It has broad temporal and taxonomic scope and is intended to assist the user in identifying trends in alternative splicing throughout development. To create MeDAS, we re-analysed a curated set of 2232 Illumina polyA+ RNA-seq libraries that chart detailed time courses of embryonic and post-natal development across 18 species with a taxonomic range spanning the major metazoan lineages from Caenorhabditis elegans to human. MeDAS is freely available at https://das.chenlulab.com both as raw data tables and as an interactive browser allowing searches by species, tissue, or genomic feature (gene, transcript or exon ID and sequence). Results will provide details on alternative splicing events identified for the queried feature and can be visualised at the gene-, transcript- and exon-level as time courses of expression and inclusion levels, respectively.


Assuntos
Processamento Alternativo , Bases de Dados Genéticas , Regulação da Expressão Gênica no Desenvolvimento , Genoma , RNA Mensageiro/genética , Transcriptoma , Anfíbios/genética , Anfíbios/crescimento & desenvolvimento , Anfíbios/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Cefalocordados/genética , Cefalocordados/crescimento & desenvolvimento , Cefalocordados/metabolismo , Éxons , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Internet , Íntrons , Mamíferos/genética , Mamíferos/crescimento & desenvolvimento , Mamíferos/metabolismo , RNA Mensageiro/metabolismo , Répteis/genética , Répteis/crescimento & desenvolvimento , Répteis/metabolismo , Software , Urocordados/genética , Urocordados/crescimento & desenvolvimento , Urocordados/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
14.
Biol Reprod ; 107(5): 1217-1227, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835578

RESUMO

DNA methylation plays a significant role in transducing external environmental signals to a cellular response in reptiles; however, whether the methylation patterns are conserved across species remains unclear. Here, we examined the genome-wide DNA methylation differentiation between male and female hatchling gonads of the temperature-dependent sex determination (TSD) Mauremys mutica (M. mutica) using methylation-dependent restriction-site associated DNA sequencing (MethylRAD-seq) to test differentially methylated genes underlying sexual development. Several categories, including heat-shock genes (HSP90A, HSP30C), histone- (KDM8) and ubiquitin-related genes (TRIM39), kinases (WNK3), and gonad differentiation or gonadal-development-related genes (HSD17B8, HSD17B12), were identified as candidates for future study. Additionally, we identified several regulatory pathways potentially mediating TSD thermosensitivity such as the GnRH signaling pathway and calcium signaling pathway. These findings provide evidence that sexually dimorphic DNA methylation may be associated with sex determination or sex differentiation in TSD M. mutica.


Assuntos
Metilação de DNA , Processos de Determinação Sexual , Animais , Feminino , Masculino , Processos de Determinação Sexual/genética , Temperatura , Gônadas , Diferenciação Sexual , Répteis/genética
15.
Mol Phylogenet Evol ; 169: 107435, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35131425

RESUMO

The albumin family of proteins consists of vitamin-D binding protein/group-specific component (GC), serum albumin (ALB), alpha-fetoprotein (AFP), and afamin (AFM), which are responsible for transporting many ligands throughout the body. The albumin family proteins are physiologically and medically important, but our understanding of their functions and applications is hindered by the dearth of information regarding these proteins' evolutionary relationships and functions in non-mammalian lineages. In this study we investigate the evolution of the albumin family proteins in reptiles, using bioinformatic methods to survey available reptile genomes and transcriptomes for albumin family proteins and phylogenetically characterize their relationships. We reinforce the established evolutionary relationships among the albumin protein family in reptiles, however, they are variable in their number of domains, overall genetic sequence, and synteny. We find a novel absence of the physiologically important ALB in squamates and identify two distinct lineages of AFP, one in mammals and another in reptiles. Our study provides a comparative genomic framework for further studies identifying lineage-specific gene expansions that may compensate for the lack of serum albumin in squamates.


Assuntos
Répteis , Albumina Sérica , Animais , Mamíferos/metabolismo , Filogenia , Répteis/genética , Albumina Sérica/genética , Albumina Sérica/metabolismo
16.
Conserv Biol ; 36(6): e13939, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35603473

RESUMO

Reptiles are increasingly of conservation concern due to their susceptibility to habitat loss, emerging disease, and harvest in the wildlife trade. However, reptile populations are often difficult to monitor given the frequency of crypsis in their life history. This difficulty has left uncertain the conservation status of many species and the efficacy of conservation actions unknown. Environmental DNA (eDNA) surveys consistently elevate the detection rate of species they are designed to monitor, and while their use is promising for terrestrial reptile conservation, successes in developing such surveys have been sparse. We tested the degree to which inclusion of surface and soil eDNA sampling into conventional artificial-cover methods elevates the detection probability of a small, cryptic terrestrial lizard, Scincella lateralis. The eDNA sampling of cover object surfaces with paint rollers elevated per sample detection probabilities for this species 4-16 times compared with visual surveys alone. We readily detected S. lateralis eDNA under cover objects up to 2 weeks after the last visual detection, and at some cover objects where no S. lateralis were visually observed in prior months. With sufficient sampling intensity, eDNA testing of soil under cover objects produced comparable per sample detection probabilities as roller surface methods. Our results suggest that combining eDNA and cover object methods can considerably increase the detection power of reptile monitoring programs, allowing more accurate estimates of population size, detection of temporal and spatial changes in habitat use, and tracking success of restoration efforts. Further research into the deposition and decay rates of reptile eDNA under cover objects, as well as tailored protocols for different species and habitats, is needed to bring the technique into widespread use.


El interés por la conservación de los reptiles es cada vez mayor debido a su susceptibilidad ante la pérdida del hábitat, enfermedades emergentes y la captura para el mercado de fauna. Sin embargo, las poblaciones de reptiles son difíciles de monitorear por lo frecuente que es la cripsis en sus historias de vida. Esta dificultad deja incierto el estado de conservación de muchas especies y desconocida la eficacia de las acciones de conservación. Los censos de ADN ambiental (DNAa) elevan sistemáticamente la tasa de detección de las especies que monitorean, y aunque su uso es prometedor para la conservación de los reptiles terrestres, han sido escasos los éxitos en el desarrollo de dichos censos. Analizamos el grado al que la inclusión del muestreo de DNAa superficial y del suelo a los métodos convencionales de cobertura artificial eleva la probabilidad de detección de una pequeña lagartija terrestre críptica: Scincella lateralis. El muestreo de DNAa de las superficies con cobertura de objetos con rodillos de pintura elevó las probabilidades de detección por muestra para esta especie 4-16 veces más que los censos visuales. Detectamos fácilmente el DNAa de S. lateralis bajo los objetos de cubierta hasta dos semanas después de la última detección visual y en algunos objetos de cubierta en donde no se había observado en los meses previos a S. lateralis. Con suficiente intensidad de muestreo, el análisis de DNAa del suelo bajo objetos de cubierta produjo probabilidades de detección por muestra comparables como métodos de rodillo superficial. Nuestros resultados sugieren que la combinación del DNAa y los métodos de objetos de cobertura puede incrementar considerablemente el poder de detección de los programas de monitoreo de reptiles, lo que permite estimaciones más precisas del tamaño poblacional, detección de los cambios espaciales y temporales en el uso de hábitat y el éxito de rastreo de los esfuerzos de restauración. Además, se necesita la investigación sobre las tasas de depósito y descomposición del DNAa de reptiles bajo objetos de cubierta, así como los protocolos hechos para diferentes especies y hábitats, para que la técnica entre al uso difundido.


Assuntos
DNA Ambiental , Animais , Solo , Conservação dos Recursos Naturais , Répteis/genética , Ecossistema , Monitoramento Ambiental/métodos
17.
BMC Biol ; 19(1): 268, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34949191

RESUMO

BACKGROUND: Evolution can occur with surprising predictability when organisms face similar ecological challenges. For most traits, it is difficult to ascertain whether this occurs due to constraints imposed by the number of possible phenotypic solutions or because of parallel responses by shared genetic and regulatory architecture. Exceptionally, oral venoms are a tractable model of trait evolution, being largely composed of proteinaceous toxins that have evolved in many tetrapods, ranging from reptiles to mammals. Given the diversity of venomous lineages, they are believed to have evolved convergently, even though biochemically similar toxins occur in all taxa. RESULTS: Here, we investigate whether ancestral genes harbouring similar biochemical activity may have primed venom evolution, focusing on the origins of kallikrein-like serine proteases that form the core of most vertebrate oral venoms. Using syntenic relationships between genes flanking known toxins, we traced the origin of kallikreins to a single locus containing one or more nearby paralogous kallikrein-like clusters. Additionally, phylogenetic analysis of vertebrate serine proteases revealed that kallikrein-like toxins in mammals and reptiles are genetically distinct from non-toxin ones. CONCLUSIONS: Given the shared regulatory and genetic machinery, these findings suggest that tetrapod venoms evolved by co-option of proteins that were likely already present in saliva. We term such genes 'toxipotent'-in the case of salivary kallikreins they already had potent vasodilatory activity that was weaponized by venomous lineages. Furthermore, the ubiquitous distribution of kallikreins across vertebrates suggests that the evolution of envenomation may be more common than previously recognized, blurring the line between venomous and non-venomous animals.


Assuntos
Evolução Molecular , Mamíferos , Animais , Mamíferos/genética , Filogenia , Répteis/genética , Peçonhas/genética , Peçonhas/metabolismo
18.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36232446

RESUMO

In sharp contrast to birds and mammals, in numerous cold-blooded vertebrates, sex chromosomes have been described as homomorphic. This sex chromosome homomorphy has been suggested to result from the high turnovers often observed across deeply diverged clades. However, little is known about the tempo and mode of sex chromosome evolution among the most closely related species. Here, we examined the evolution of sex chromosome among nine species of the torrent frog genus Amolops. We analyzed male and female GBS and RAD-seq from 182 individuals and performed PCR verification for 176 individuals. We identified signatures of sex chromosomes involving two pairs of chromosomes. We found that sex-chromosome homomorphy results from both turnover and X-Y recombination in the Amolops species, which simultaneously exhibits heterogeneous evolution on homologous and non-homologous sex chromosomes. A low turnover rate of non-homologous sex chromosomes exists in these torrent frogs. The ongoing X-Y recombination in homologous sex chromosomes will act as an indispensable force in preventing sex chromosomes from differentiating.


Assuntos
Recombinação Genética , Cromossomos Sexuais , Animais , Anuros , Feminino , Humanos , Masculino , Mamíferos/genética , Ranidae/genética , Répteis/genética , Cromossomos Sexuais/genética
19.
Mol Biol Evol ; 37(3): 904-922, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31710677

RESUMO

Marker selection has emerged as an important component of phylogenomic study design due to rising concerns of the effects of gene tree estimation error, model misspecification, and data-type differences. Researchers must balance various trade-offs associated with locus length and evolutionary rate among other factors. The most commonly used reduced representation data sets for phylogenomics are ultraconserved elements (UCEs) and Anchored Hybrid Enrichment (AHE). Here, we introduce Rapidly Evolving Long Exon Capture (RELEC), a new set of loci that targets single exons that are both rapidly evolving (evolutionary rate faster than RAG1) and relatively long in length (>1,500 bp), while at the same time avoiding paralogy issues across amniotes. We compare the RELEC data set to UCEs and AHE in squamate reptiles by aligning and analyzing orthologous sequences from 17 squamate genomes, composed of 10 snakes and 7 lizards. The RELEC data set (179 loci) outperforms AHE and UCEs by maximizing per-locus genetic variation while maintaining presence and orthology across a range of evolutionary scales. RELEC markers show higher phylogenetic informativeness than UCE and AHE loci, and RELEC gene trees show greater similarity to the species tree than AHE or UCE gene trees. Furthermore, with fewer loci, RELEC remains computationally tractable for full Bayesian coalescent species tree analyses. We contrast RELEC to and discuss important aspects of comparable methods, and demonstrate how RELEC may be the most effective set of loci for resolving difficult nodes and rapid radiations. We provide several resources for capturing or extracting RELEC loci from other amniote groups.


Assuntos
Biologia Computacional/métodos , Répteis/genética , Sequenciamento Completo do Genoma/métodos , Animais , Teorema de Bayes , Evolução Molecular , Éxons , Loci Gênicos , Filogenia , Répteis/classificação , Alinhamento de Sequência
20.
J Exp Zool B Mol Dev Evol ; 336(2): 94-115, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32558244

RESUMO

Some form of regeneration occurs in all lifeforms and extends from single-cell organisms to humans. The degree to which regenerative ability is distributed across different taxa, however, is harder to ascertain given the potential for phylogenetic constraint or inertia, and adaptive processes to shape this pattern. Here, we examine the phylogenetic history of regeneration in two groups where the trait has been well-studied: arthropods and reptiles. Because autotomy is often present alongside regeneration in these groups, we performed ancestral state reconstructions for both traits to more precisely assess the timing of their origins and the degree to which these traits coevolve. Using an ancestral trait reconstruction, we find that autotomy and regeneration were present at the base of the arthropod and reptile trees. We also find that when autotomy is lost it does not re-evolve easily. Lastly, we find that the distribution of regeneration is intimately connected to autotomy with the association being stronger in reptiles than in arthropods. Although these patterns suggest that decoupling autotomy and regeneration at a broad phylogenetic scale may be difficult, the available data provides useful insight into their entanglement. Ultimately, our reconstructions provide the important groundwork to explore how selection may have played a role during the loss of regeneration in specific lineages.


Assuntos
Adaptação Fisiológica , Artrópodes/fisiologia , Evolução Biológica , Regeneração/genética , Regeneração/fisiologia , Répteis/fisiologia , Animais , Artrópodes/genética , Humanos , Répteis/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA