Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 347
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 77(2): 368-383.e7, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31677973

RESUMO

Interphase chromatin is hierarchically organized into higher-order architectures that are essential for gene functions, yet the biomolecules that regulate these 3D architectures remain poorly understood. Here, we show that scaffold attachment factor B (SAFB), a nuclear matrix (NM)-associated protein with RNA-binding functions, modulates chromatin condensation and stabilizes heterochromatin foci in mouse cells. SAFB interacts via its R/G-rich region with heterochromatin-associated repeat transcripts such as major satellite RNAs, which promote the phase separation driven by SAFB. Depletion of SAFB leads to changes in 3D genome organization, including an increase in interchromosomal interactions adjacent to pericentromeric heterochromatin and a decrease in genomic compartmentalization, which could result from the decondensation of pericentromeric heterochromatin. Collectively, we reveal the integrated roles of NM-associated proteins and repeat RNAs in the 3D organization of heterochromatin, which may shed light on the molecular mechanisms of nuclear architecture organization.


Assuntos
Heterocromatina/genética , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas Associadas à Matriz Nuclear/genética , RNA Satélite/genética , Receptores de Estrogênio/genética , Animais , Linhagem Celular , Cromatina/genética , Genoma/genética , Humanos , Camundongos
2.
EMBO J ; 42(18): e114331, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37526230

RESUMO

Satellite DNA is characterized by long, tandemly repeated sequences mainly found in centromeres and pericentromeric chromosomal regions. The recent advent of telomere-to-telomere sequencing data revealed the complete sequences of satellite regions, including centromeric α-satellites and pericentromeric HSat1-3, which together comprise ~ 5.7% of the human genome. Despite possessing constitutive heterochromatin features, these regions are transcribed to produce long noncoding RNAs with highly repetitive sequences that associate with specific sets of proteins to play various regulatory roles. In certain stress or pathological conditions, satellite RNAs are induced to assemble mesoscopic membraneless organelles. Specifically, under heat stress, nuclear stress bodies (nSBs) are scaffolded by HSat3 lncRNAs, which sequester hundreds of RNA-binding proteins. Upon removal of the stressor, nSBs recruit additional regulatory proteins, including protein kinases and RNA methylases, which modify the previously sequestered nSB components. The sequential recruitment of substrates and enzymes enables nSBs to efficiently regulate the splicing of hundreds of pre-mRNAs under limited temperature conditions. This review discusses the structural features and regulatory roles of satellite RNAs in intracellular architecture and gene regulation.


Assuntos
RNA Longo não Codificante , RNA Satélite , Humanos , RNA Satélite/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , DNA Satélite/genética , Heterocromatina , Centrômero/metabolismo
3.
PLoS Pathog ; 20(4): e1012174, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38630801

RESUMO

As a type of parasitic agent, satellite RNAs (satRNAs) rely on cognate helper viruses to achieve their replication and transmission. During the infection of satRNAs, helper virus RNAs serve as templates for synthesizing viral proteins, including the replication proteins essential for satRNA replication. However, the role of non-template functions of helper virus RNAs in satRNA replication remains unexploited. Here we employed the well-studied model that is composed of cucumber mosaic virus (CMV) and its associated satRNA. In the experiments employing the CMV trans-replication system, we observed an unexpected phenomenon the replication proteins of the mild strain LS-CMV exhibited defective in supporting satRNA replication, unlike those of the severe strain Fny-CMV. Independent of translation products, all CMV genomic RNAs could enhance satRNA replication, when combined with the replication proteins of CMV. This enhancement is contingent upon the recruitment and complete replication of helper virus RNAs. Using the method developed for analyzing the satRNA recruitment, we observed a markedly distinct ability of the replication proteins from both CMV strains to recruit the positive-sense satRNA-harboring RNA3 mutant for replication. This is in agreement with the differential ability of both 1a proteins in binding satRNAs in plants. The discrepancies provide a convincing explanation for the variation of the replication proteins of both CMV strains in replicating satRNAs. Taken together, our work provides compelling evidence that the non-template functions of helper virus RNAs create an optimal replication environment to enhance satRNA proliferation.


Assuntos
Cucumovirus , Vírus Auxiliares , RNA Satélite , RNA Viral , Replicação Viral , Vírus Auxiliares/genética , Vírus Auxiliares/fisiologia , Cucumovirus/genética , Cucumovirus/metabolismo , Cucumovirus/fisiologia , RNA Satélite/metabolismo , RNA Satélite/genética , RNA Viral/genética , RNA Viral/metabolismo , Doenças das Plantas/virologia , Nicotiana/virologia , Nicotiana/metabolismo , Nicotiana/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética
4.
Mol Cell ; 70(5): 842-853.e7, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29861157

RESUMO

Heterochromatic repetitive satellite RNAs are extensively transcribed in a variety of human cancers, including BRCA1 mutant breast cancer. Aberrant expression of satellite RNAs in cultured cells induces the DNA damage response, activates cell cycle checkpoints, and causes defects in chromosome segregation. However, the mechanism by which satellite RNA expression leads to genomic instability is not well understood. Here we provide evidence that increased levels of satellite RNAs in mammary glands induce tumor formation in mice. Using mass spectrometry, we further show that genomic instability induced by satellite RNAs occurs through interactions with BRCA1-associated protein networks required for the stabilization of DNA replication forks. Additionally, de-stabilized replication forks likely promote the formation of RNA-DNA hybrids in cells expressing satellite RNAs. These studies lay the foundation for developing novel therapeutic strategies that block the effects of non-coding satellite RNAs in cancer cells.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Dano ao DNA , Instabilidade Genômica , Heterocromatina/genética , RNA Neoplásico/genética , RNA Satélite/genética , Animais , Proteína BRCA1/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Heterocromatina/metabolismo , Humanos , Células MCF-7 , Camundongos , Ligação Proteica , RNA Neoplásico/metabolismo , RNA Satélite/metabolismo , Carga Tumoral
5.
PLoS Pathog ; 19(6): e1010889, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37285391

RESUMO

Satellites associated with plant or animal viruses have been largely detected and characterized, while those from mycoviruses together with their roles remain far less determined. Three dsRNA segments (dsRNA 1 to 3 termed according to their decreasing sizes) were identified in a strain of phytopathogenic fungus Pestalotiopsis fici AH1-1 isolated from a tea leaf. The complete sequences of dsRNAs 1 to 3, with the sizes of 10316, 5511, and 631 bp, were determined by random cloning together with a RACE protocol. Sequence analyses support that dsRNA1 is a genome of a novel hypovirus belonging to genus Alphahypovirus of the family Hypoviridae, tentatively named Pestalotiopsis fici hypovirus 1 (PfHV1); dsRNA2 is a defective RNA (D-RNA) generating from dsRNA1 with septal deletions; and dsRNA3 is the satellite component of PfHV1 since it could be co-precipitated with other dsRNA components in the same sucrose fraction by ultra-centrifuge, suggesting that it is encapsulated together with PfHV1 genomic dsRNAs. Moreover, dsRNA3 shares an identical stretch (170 bp) with dsRNAs 1 and 2 at their 5' termini and the remaining are heterogenous, which is distinct from a typical satellite that generally has very little or no sequence similarity with helper viruses. More importantly, dsRNA3 lacks a substantial open reading frame (ORF) and a poly (A) tail, which is unlike the known satellite RNAs of hypoviruses, as well as unlike those in association with Totiviridae and Partitiviridae since the latters are encapsidated in coat proteins. As up-regulated expression of RNA3, dsRNA1 was significantly down-regulated, suggesting that dsRNA3 negatively regulates the expression of dsRNA1, whereas dsRNAs 1 to 3 have no obvious impact on the biological traits of the host fungus including morphologies and virulence. This study indicates that PfHV1 dsRNA3 is a special type of satellite-like nucleic acid that has substantial sequence homology with the host viral genome without encapsidation in a coat protein, which broadens the definition of fungal satellite.


Assuntos
Micovírus , Vírus de RNA , RNA Satélite , Pestalotiopsis/genética , RNA de Cadeia Dupla/genética , Filogenia , RNA Viral/genética , Genoma Viral , Micovírus/genética , Fases de Leitura Aberta
6.
EMBO J ; 39(16): e103614, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32677148

RESUMO

MIWI, a murine member of PIWI proteins mostly expressed during male meiosis, is crucial for piRNA biogenesis, post-transcriptional regulation, and spermiogenesis. However, its meiotic function remains unknown. Here, we report that MIWI deficiency alters meiotic kinetochore assembly, significantly increases chromosome misalignment at the meiosis metaphase I plate, and causes chromosome mis-segregation. Consequently, Miwi-deficient mice show elevated aneuploidy in metaphase II and spermatid death. Furthermore, in Miwi-null and Miwi slicer-deficient mutants, major and minor satellite RNAs from centromeric and pericentromeric satellite repeats accumulate in excess. Over-expression of satellite repeats in wild-type spermatocytes also causes elevated chromosome misalignment, whereas reduction of both strands of major or minor satellite RNAs results in lower frequencies of chromosome misalignment. We show that MIWI, guided by piRNA, cleaves major satellite RNAs, generating RNA fragments that may form substrates for subsequent Dicer cleavage. Furthermore, Dicer cleaves all satellite RNAs in conjunction with MIWI. These findings reveal a novel mechanism in which MIWI- and Dicer-mediated cleavage of the satellite RNAs prevents the over-expression of satellite RNAs, thus ensuring proper kinetochore assembly and faithful chromosome segregation during meiosis.


Assuntos
Aneuploidia , Proteínas Argonautas/metabolismo , Segregação de Cromossomos , Cromossomos de Mamíferos/metabolismo , Meiose , Estabilidade de RNA , RNA Satélite/metabolismo , Animais , Proteínas Argonautas/genética , Cromossomos de Mamíferos/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Cinetocoros/metabolismo , Camundongos , Camundongos Transgênicos , RNA Satélite/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo
7.
Theor Appl Genet ; 136(3): 35, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36897398

RESUMO

KEY MESSAGE: We identified markers associated with GRD resistance after screening an Africa-wide core collection across three seasons in Uganda Groundnut is cultivated in several African countries where it is a major source of food, feed and income. One of the major constraints to groundnut production in Africa is groundnut rosette disease (GRD), which is caused by a complex of three agents: groundnut rosette assistor luteovirus, groundnut rosette umbravirus and its satellite RNA. Despite several years of breeding for GRD resistance, the genetics of the disease is not fully understood. The objective of the current study was to use the African core collection to establish the level of genetic variation in their response to GRD, and to map genomic regions responsible for the observed resistance. The African groundnut core genotypes were screened across two GRD hotspot locations in Uganda (Nakabango and Serere) for 3 seasons. The Area Under Disease Progress Curve combined with 7523 high quality SNPs were analyzed to establish marker-trait associations (MTAs). Genome-Wide Association Studies based on Enriched Compressed Mixed Linear Model detected 32 MTAs at Nakabango: 21 on chromosome A04, 10 on B04 and 1 on B08. Two of the significant markers were localised on the exons of a putative TIR-NBS-LRR disease resistance gene on chromosome A04. Our results suggest the likely involvement of major genes in the resistance to GRD but will need to be further validated with more comprehensive phenotypic and genotypic datasets. The markers identified in the current study will be developed into routine assays and validated for future genomics-assisted selection for GRD resistance in groundnut.


Assuntos
Fabaceae , Estudo de Associação Genômica Ampla , Arachis/genética , Melhoramento Vegetal , Fabaceae/genética , RNA Satélite , Resistência à Doença
8.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003589

RESUMO

Senescent cells secrete inflammatory proteins and small extracellular vesicles (sEVs), collectively termed senescence-associated secretory phenotype (SASP), and promote age-related diseases. Epigenetic alteration in senescent cells induces the expression of satellite II (SATII) RNA, non-coding RNA transcribed from pericentromeric repetitive sequences in the genome, leading to the expression of inflammatory SASP genes. SATII RNA is contained in sEVs and functions as an SASP factor in recipient cells. However, the molecular mechanism of SATII RNA loading into sEVs is unclear. In this study, we identified Y-box binding protein 1 (YBX1) as a carrier of SATII RNA via mass spectrometry analysis after RNA pull-down. sEVs containing SATII RNA induced cellular senescence and promoted the expression of inflammatory SASP genes in recipient cells. YBX1 knockdown significantly reduced SATII RNA levels in sEVs and inhibited the propagation of SASP in recipient cells. The analysis of the clinical dataset revealed that YBX1 expression is higher in cancer stroma than in normal stroma of breast and ovarian cancer tissues. Furthermore, high YBX1 expression was correlated with poor prognosis in breast and ovarian cancers. This study demonstrated that SATII RNA loading into sEVs is regulated via YBX1 and that YBX1 is a promising target in novel cancer therapy.


Assuntos
Vesículas Extracelulares , Neoplasias Ovarianas , Humanos , Feminino , RNA Satélite , Neoplasias Ovarianas/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Fenótipo , Células Cultivadas , Senescência Celular/genética , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo
9.
Arch Virol ; 167(11): 2287-2292, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35857148

RESUMO

Carrot virome analysis using high-throughput sequencing revealed the presence of two RNA molecules with properties of satellite RNAs that are homologous to the satellite RNA of cereal yellow dwarf virus-RPV (CYDV-RPV). Satellite 1 is 298 nt long, while satellite 2 is 368 nt long. Their positive and negative genome strands contain hammerhead ribozymes similar to those found in other self-cleaving satellite RNAs. While both satellites were detected in Spanish carrot populations, only satellite 2 was found in French carrot populations. The most likely helper virus for these two satellites is carrot red leaf virus (CtRLV), which, like CYDV-RPV, is a polerovirus.


Assuntos
Daucus carota , Luteoviridae , RNA Catalítico , Sequência de Bases , Luteoviridae/genética , RNA Catalítico/química , RNA Catalítico/genética , RNA Catalítico/metabolismo , RNA Satélite/genética , RNA Viral/química , RNA Viral/genética , Viroma
10.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012656

RESUMO

Viral satellite RNAs (satRNAs) are small subviral particles that are associated with the genomic RNA of a helper virus (HV). Their replication, encapsidation, and movement depend on the HV. In this paper, we performed a global analysis of the satRNAs associated with different isolates of tomato black ring virus (TBRV). We checked the presence of satRNAs in 42 samples infected with TBRV, performed recombination and genetic diversity analyses, and examined the selective pressure affecting the satRNAs population. We identified 18 satRNAs in total that differed in length and the presence of point mutations. Moreover, we observed a strong effect of selection operating upon the satRNA population. We also constructed infectious cDNA clones of satRNA and examined the viral load of different TBRV isolates in the presence and absence of satRNAs, as well as the accumulation of satRNA molecules on infected plants. Our data provide evidence that the presence of satRNAs significantly affects viral load; however, the magnitude of this effect differs among viral isolates and plant hosts. We also showed a positive correlation between the number of viral genomic RNAs (gRNAs) and satRNAs for two analysed TBRV isolates.


Assuntos
RNA Satélite , RNA Viral , Variação Genética , Vírus Auxiliares/genética , Nepovirus , Doenças das Plantas/genética , Plantas/genética , RNA Satélite/genética , RNA Viral/genética , Replicação Viral/genética
11.
Arch Virol ; 166(8): 2199-2208, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34057609

RESUMO

Cucumber mosaic virus (CMV) is a generalist pathogen that infects many economically important crops in Greece. The present study was designed to evaluate the genetic variability of Greek CMV isolates in combination with their satellite RNAs (satRNAs). To achieve this goal, 77 CMV isolates were collected from symptomatic Greek vegetables, mainly tomatoes and cucurbits, alongside their neighboring crops, during a four-year period from 2015 to 2018. Phylogenetic analysis of a partial coat protein (CP) gene segment revealed that all of the isolates belong to CMV subgroups IA and IB and that they are closely related to previously reported Greek isolates. It should be noted, however, that the latter mainly included tomato isolates. Network analysis of the evolutionary relationships among the CP sequences of the Greek isolates in comparison to the corresponding sequences obtained from the GenBank database indicated two predominant common ancestors and at least three differentiated peripherals, and possibly host-associated (tomatoes, legumes, cucurbits) haplogroups (strain groups). More specifically, host-adaptive evolution can be postulated regarding the tomato isolates in subgroup IB. Necrogenic or non-necrogenic satRNAs were detected in four samples from tomato and melon, and this is the first report of non-necrogenic satRNAs in CMV in Greece.


Assuntos
Proteínas do Capsídeo/genética , Cucumovirus/classificação , RNA Satélite/genética , Análise de Sequência de RNA/métodos , Verduras/virologia , Produtos Agrícolas/virologia , Cucumovirus/genética , Cucumovirus/isolamento & purificação , Cucurbitaceae/virologia , Evolução Molecular , Variação Genética , Grécia , Solanum lycopersicum/virologia , Filogenia , Folhas de Planta/virologia , RNA Satélite/classificação
12.
Virus Genes ; 57(1): 1-22, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33226576

RESUMO

Plant viral satellites fall under the category of subviral agents. Their genomes are composed of small RNA or DNA molecules a few hundred nucleotides in length and contain an assortment of highly complex and overlapping functions. Each lacks the ability to either replicate or undergo encapsidation or both in the absence of a helper virus (HV). As the number of known satellites increases steadily, our knowledge regarding their sequence conservation strategies, means of replication and specific interactions with host and helper viruses is improving. This review demonstrates that the molecular interactions of these satellites are unique and highly complex, largely influenced by the highly specific host plants and helper viruses that they associate with. Circularized forms of single-stranded RNA are of particular interest, as they have recently been found to play a variety of novel cellular functions. Linear forms of satRNA are also of great significance as they may complement the helper virus genome in exacerbating symptoms, or in certain instances, actively compete against it, thus reducing symptom severity. This review serves to describe the current literature with respect to these molecular mechanisms in detail as well as to discuss recent insights into this emerging field in terms of evolution, classification and symptom development. The review concludes with a discussion of future steps in plant viral satellite research and development.


Assuntos
Doenças das Plantas/virologia , Vírus de Plantas , Vírus Satélites , DNA Satélite , DNA Viral , Vírus Auxiliares/fisiologia , Interações entre Hospedeiro e Microrganismos , Vírus de Plantas/genética , Vírus de Plantas/patogenicidade , Vírus de Plantas/fisiologia , RNA Satélite , RNA Viral , Vírus Satélites/genética , Vírus Satélites/patogenicidade , Vírus Satélites/fisiologia , Replicação Viral
13.
Plant Cell Rep ; 40(7): 1247-1267, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34028582

RESUMO

KEY MESSAGE: PSV infection changed the abundance of host plant's transcripts and proteins associated with various cellular compartments, including ribosomes, chloroplasts, mitochondria, the nucleus and cytosol, affecting photosynthesis, translation, transcription, and splicing. Virus infection is a process resulting in numerous molecular, cellular, and physiological changes, a wide range of which can be analyzed due to development of many high-throughput techniques. Plant RNA viruses are known to replicate in the cytoplasm; however, the roles of chloroplasts and other cellular structures in the viral replication cycle and in plant antiviral defense have been recently emphasized. Therefore, the aim of this study was to analyze the small RNAs, transcripts, proteins, and phosphoproteins affected during peanut stunt virus strain P (PSV-P)-Nicotiana benthamiana interactions with or without satellite RNA (satRNA) in the context of their cellular localization or functional connections with particular cellular compartments to elucidate the compartments most affected during pathogenesis at the early stages of infection. Moreover, the processes associated with particular cell compartments were determined. The 'omic' results were subjected to comparative data analyses. Transcriptomic and small RNA (sRNA)-seq data were obtained to provide new insights into PSV-P-satRNA-plant interactions, whereas previously obtained proteomic and phosphoproteomic data were used to broaden the analysis to terms associated with cellular compartments affected by virus infection. Based on the collected results, infection with PSV-P contributed to changes in the abundance of transcripts and proteins associated with various cellular compartments, including ribosomes, chloroplasts, mitochondria, the nucleus and the cytosol, and the most affected processes were photosynthesis, translation, transcription, and mRNA splicing. Furthermore, sRNA-seq and phosphoproteomic analyses indicated that kinase regulation resulted in decreases in phosphorylation levels. The kinases were associated with the membrane, cytoplasm, and nucleus components.


Assuntos
Cucumovirus/patogenicidade , Nicotiana/citologia , Nicotiana/virologia , Biologia de Sistemas/métodos , Núcleo Celular/genética , Núcleo Celular/virologia , Cloroplastos/genética , Cloroplastos/virologia , Citoesqueleto/genética , Citoesqueleto/virologia , Citosol/virologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/fisiologia , MicroRNAs , Nitrogênio/metabolismo , Fosfoproteínas/metabolismo , Células Vegetais/virologia , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas/genética , RNA Satélite , Nicotiana/genética
14.
Cell Mol Life Sci ; 77(7): 1371-1386, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31346634

RESUMO

FA-SAT is a highly conserved satellite DNA sequence transcribed in many Bilateria species. To disclose the cellular and functional profile of FA-SAT non-coding RNAs, a comprehensive experimental approach, including the transcripts location in the cell and in the cell cycle, the identification of its putative protein interactors, and silencing/ectopic expression phenotype analysis, was performed. FA-SAT non-coding RNAs play a nuclear function at the G1 phase of the cell cycle and the interactomic assay showed that the PKM2 protein is the main interactor. The disruption of the FA-SAT non-coding RNA/PKM2 protein complex, by the depletion of either FA-SAT or PKM2, results in the same phenotype-apoptosis, and the ectopic overexpression of FA-SAT did not affect the cell-cycle progression, but promotes the PKM2 nuclear accumulation. Overall, our data first describe the importance of this ribonucleoprotein complex in apoptosis and cell-cycle progression, what foresees a promising novel candidate molecular target for cancer therapy and diagnosis.


Assuntos
Apoptose , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , RNA não Traduzido/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Gatos , Núcleo Celular/metabolismo , Proliferação de Células , Células HeLa , Humanos , Modelos Biológicos , Fenótipo , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Satélite/genética , RNA Satélite/metabolismo , RNA não Traduzido/genética , Proteínas de Ligação a Hormônio da Tireoide
15.
J Cell Biochem ; 120(9): 14700-14710, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31090102

RESUMO

Oncogenesis involves continuous genetic alterations that lead to compromised cellular integrity and immortal cell fate. The cells remain under excessive stress due to endo- and exogenous influences. Human Satellite III long noncoding RNA (SatIII lncRNA) is a key regulator of the global cellular stress response, although its function is poorly explained in cancers. The principal regulator of cancer meshwork is tumor protein p53, which if altered may result in chemoresistance. The heat shock factor 1 (HSF1) being a common molecule between the oncogenic control and global cellular stress acts as an oncogene as well as transcribes SatIII upon heat shock. This prompted us to determine the structure of SatIII RNA and establish the association between SatIII-HSF1-p53. We determined the most stable structure of SatIII RNA with the least energy of - 115.7 kcal/mol. Also, we observed a possible interaction of p53 with SatIII and HSF1 using support vector machine (SVM) algorithm for predicting RNA-protein interaction (RPI). Further, we employ the STRING database to understand if p53 is an interacting component of the nuclear stress bodies (nSBs). A precise inference was drawn from molecular docking which confirmed the interaction of SatIII-HSF1-p53, where a mutated p53 resulted in an altered DNA-binding property with the SatIII molecule. This study being first of its kind infers p53 to be a possible integral component of the nSBs, which may regulate cellular stress response during cancer progression in the presence of HSF1 and SatIII. An extended research on the regulations of SatIII and p53 may open new avenues in the field of apoptosis in cancer and the early approach of molecular targeting.


Assuntos
Carcinogênese/patologia , Núcleo Celular/genética , Fatores de Transcrição de Choque Térmico/metabolismo , RNA Longo não Codificante/metabolismo , RNA Satélite/metabolismo , Estresse Fisiológico , Proteína Supressora de Tumor p53/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Células HeLa , Fatores de Transcrição de Choque Térmico/química , Fatores de Transcrição de Choque Térmico/genética , Resposta ao Choque Térmico , Humanos , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Conformação Proteica , RNA Longo não Codificante/química , RNA Longo não Codificante/genética , RNA Satélite/química , RNA Satélite/genética , Transcrição Gênica , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética
16.
Biochem Biophys Res Commun ; 516(2): 419-423, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31227213

RESUMO

Nuclear stress bodies (nSBs) are thermal stress-inducible membrane-less nuclear bodies that are formed on highly repetitive satellite III architectural noncoding RNAs (HSATIII arcRNAs). Upon thermal stress exposure, HSATIII expression is induced to sequestrate specific sets of RNA-binding proteins and form nSBs. The major population of nSBs contain SAFB as a marker, whereas the minor population are SAFB-negative. Here, we found that HNRNPM, which was previously reported to localize in nuclear foci adjacent to SAFB-positive foci upon thermal stress, localizes in a minor population of HSATIII-dependent nSBs. Hence, we used the terms nSB-S and nSB-M to distinguish the SAFB foci and HNRNPM foci, respectively. Analysis of the components of the nSBs revealed that each set contains distinct RNA-binding proteins, including SLTM and NCO5A in nSB-Ss and HNRNPA1 and HNRNPH1 in nSB-Ms. Overall, our findings indicate that two sets of nSBs containing HSATIII arcRNAs and distinct sets of RNA-binding proteins are formed upon thermal stress exposure.


Assuntos
Núcleo Celular/metabolismo , RNA Satélite/genética , RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequências Repetitivas de Ácido Nucleico/genética , Estresse Fisiológico , Temperatura , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas Grupo M/metabolismo , Humanos , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Receptores de Estrogênio/metabolismo
17.
Plant Cell ; 28(10): 2586-2602, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27702772

RESUMO

RNA trafficking plays pivotal roles in regulating plant development, gene silencing, and adaptation to environmental stress. Satellite RNAs (satRNAs), parasites of viruses, depend on their helper viruses (HVs) for replication, encapsidation, and efficient spread. However, it remains largely unknown how satRNAs interact with viruses and the cellular machinery to undergo trafficking. Here, we show that the P20 protein of Bamboo mosaic potexvirus satRNA (satBaMV) can functionally complement in trans the systemic trafficking of P20-defective satBaMV in infected Nicotiana benthamiana The transgene-derived satBaMV, uncoupled from HV replication, was able to move autonomously across a graft union identified by RT-qPCR, RNA gel blot, and in situ RT-PCR analyses. Coimmunoprecipitation experiments revealed that the major nucleolar protein fibrillarin is coprecipitated in the P20 protein complex. Notably, silencing fibrillarin suppressed satBaMV-, but not HV-, phloem-based movement following grafting or coinoculation with HV Confocal microscopy revealed that the P20 protein colocalized with fibrillarin in the nucleoli and formed punctate structures associated with plasmodesmata. The mobile satBaMV RNA appears to exist as ribonucleoprotein (RNP) complex composed of P20 and fibrillarin, whereas BaMV movement proteins, capsid protein, and BaMV RNA are recruited with HV coinfection. Taken together, our findings provide insight into movement of satBaMV via the fibrillarin-satBaMV-P20 RNP complex in phloem-mediated systemic trafficking.


Assuntos
Vírus Auxiliares/genética , RNA de Plantas/genética , RNA Satélite/genética , Ribonucleoproteínas/metabolismo , Proteínas Virais/genética , Imunoprecipitação , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Int J Mol Sci ; 20(9)2019 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-31083506

RESUMO

Plants are constantly exposed to a diverse group of pathogens and have evolved sophisticated immune systems to combat pathogen attacks [...].


Assuntos
Resistência à Doença , Doenças das Plantas/microbiologia , Plantas/metabolismo , Plantas/microbiologia , Transdução de Sinais , Brassinosteroides/metabolismo , Raízes de Plantas/microbiologia , RNA Satélite/genética , Estresse Fisiológico
19.
Int J Mol Sci ; 19(10)2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340407

RESUMO

Signaling in host plants is an integral part of a successful infection by pathogenic RNA viruses. Therefore, identifying early signaling events in host plants that play an important role in establishing the infection process will help our understanding of the disease process. In this context, phosphorylation constitutes one of the most important post-translational protein modifications, regulating many cellular signaling processes. In this study, we aimed to identify the processes affected by infection with Peanut stunt virus (PSV) and its satellite RNA (satRNA) in Nicotiana benthamiana at the early stage of pathogenesis. To achieve this, we performed proteome and phosphoproteome analyses on plants treated with PSV and its satRNA. The analysis of the number of differentially phosphorylated proteins showed strong down-regulation in phosphorylation in virus-treated plants (without satRNA). Moreover, proteome analysis revealed more down-regulated proteins in PSV and satRNA-treated plants, which indicated a complex dependence between proteins and their modifications. Apart from changes in photosynthesis and carbon metabolism, which are usually observed in virus-infected plants, alterations in proteins involved in RNA synthesis, transport, and turnover were observed. As a whole, this is the first community (phospho)proteome resource upon infection of N. benthamiana with a cucumovirus and its satRNA and this resource constitutes a valuable data set for future studies.


Assuntos
Cucumovirus/fisiologia , Interações Hospedeiro-Patógeno , Nicotiana/metabolismo , Nicotiana/virologia , Doenças das Plantas/virologia , RNA Satélite , RNA Viral , Motivos de Aminoácidos , Sequência de Aminoácidos , Humanos , Fenótipo , Fosfoproteínas , Fosforilação , Matrizes de Pontuação de Posição Específica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteoma , Proteômica/métodos
20.
Arch Virol ; 162(2): 505-510, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27743256

RESUMO

We characterised the virus-derived small interfering RNAs (vsiRNA) of bamboo mosaic virus (Ba-vsiRNAs) and its associated satellite RNA (satRNA)-derived siRNAs (satsiRNAs) in a bamboo plant (Dendrocalamus latiflorus) by deep sequencing. Ba-vsiRNAs and satsiRNAs of 21-22 nt in length, with both (+) and (-) polarity, predominated. The 5'-terminal base of Ba-vsiRNA was biased towards A, whereas a bias towards C/U was observed in sense satsiRNAs, and towards A in antisense satsiRNAs. A large set of bamboo genes were identified as potential targets of Ba-vsiRNAs and satsiRNAs, revealing RNA silencing-based virus-host interactions in plants. Moreover, we isolated and characterised new isolates of bamboo mosaic virus (BaMV; 6,350 nt) and BaMV-associated satRNA (satBaMV; 834 nt), designated BaMV-MAZSL1 and satBaMV-MAZSL1, respectively.


Assuntos
Bambusa/virologia , Genes de Plantas , Potexvirus/genética , RNA Satélite/genética , RNA Interferente Pequeno/genética , RNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno , Fases de Leitura Aberta , Doenças das Plantas/virologia , Potexvirus/classificação , Potexvirus/isolamento & purificação , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA