RESUMO
Space radiation is a notable hazard for long-duration human spaceflight1. Associated risks include cancer, cataracts, degenerative diseases2 and tissue reactions from large, acute exposures3. Space radiation originates from diverse sources, including galactic cosmic rays4, trapped-particle (Van Allen) belts5 and solar-particle events6. Previous radiation data are from the International Space Station and the Space Shuttle in low-Earth orbit protected by heavy shielding and Earth's magnetic field7,8 and lightly shielded interplanetary robotic probes such as Mars Science Laboratory and Lunar Reconnaissance Orbiter9,10. Limited data from the Apollo missions11-13 and ground measurements with substantial caveats are also available14. Here we report radiation measurements from the heavily shielded Orion spacecraft on the uncrewed Artemis I lunar mission. At differing shielding locations inside the vehicle, a fourfold difference in dose rates was observed during proton-belt passes that are similar to large, reference solar-particle events. Interplanetary cosmic-ray dose equivalent rates in Orion were as much as 60% lower than previous observations9. Furthermore, a change in orientation of the spacecraft during the proton-belt transit resulted in a reduction of radiation dose rates of around 50%. These measurements validate the Orion for future crewed exploration and inform future human spaceflight mission design.
Assuntos
Radiação Cósmica , Lua , Monitoramento de Radiação , Voo Espacial , Astronave , Humanos , Astronautas , Radiação Cósmica/efeitos adversos , Prótons/efeitos adversos , Doses de Radiação , Proteção Radiológica/instrumentação , Proteção Radiológica/métodos , Voo Espacial/instrumentação , Voo Espacial/métodos , Astronave/instrumentação , Feminino , Adulto , Reprodutibilidade dos TestesRESUMO
In the United States, the Federal Aviation Administration has officially classified flight crews (FC) consisting of commercial pilots, cabin crew, or flight attendants as "radiation workers" since 1994 due to the potential for cosmic ionizing radiation (CIR) exposure at cruising altitudes originating from solar activity and galactic sources. Several epidemiological studies have documented elevated incidence and mortality for several cancers in FC, but it has not yet been possible to establish whether this is attributable to CIR. CIR and its constituents are known to cause a myriad of DNA lesions, which can lead to carcinogenesis unless DNA repair mechanisms remove them. But critical knowledge gaps exist with regard to the dosimetry of CIR, the role of other genotoxic exposures among FC, and whether possible biological mechanisms underlying higher cancer rates observed in FC exist. This review summarizes our understanding of the role of DNA damage and repair responses relevant to exposure to CIR in FC. We aimed to stimulate new research directions and provide information that will be useful for guiding regulatory, public health, and medical decision-making to protect and mitigate the risks for those who travel by air.
Assuntos
Radiação Cósmica , Dano ao DNA , Exposição Ocupacional , Humanos , Radiação Cósmica/efeitos adversos , Exposição Ocupacional/efeitos adversos , Reparo do DNA , Radiação Ionizante , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/genética , Neoplasias/etiologia , Neoplasias/genéticaRESUMO
Human exploration of the solar system will expose crew members to galactic cosmic radiation (GCR), with a potential for adverse health effects. GCR particles (protons and ions) move at nearly the speed of light and easily penetrate space station walls, as well as the human body. Previously, we have shown reactivation of latent herpesviruses, including herpes simplex virus, Varicella zoster virus, Epstein-Barr virus, and cytomegalovirus (CMV), during stays at the International Space Station. Given the prevalence of latent CMV and the known propensity of space radiation to cause alterations in many cellular processes, we undertook this study to understand the role of GCR in reactivating latent CMV. Latently infected Kasumi cells with CMV were irradiated with 137Cs gamma rays, 150 MeV protons, 600 MeV/n carbon ions, 600 MeV/n iron ions, proton ions, and simulated GCR. The CMV copy number increased significantly in the cells exposed to radiation as compared with the non-irradiated controls. Viral genome sequencing did not reveal significant nucleotide differences among the compared groups. However, transcriptome analysis showed the upregulation of transcription of the UL49 ORF, implicating it in the switch from latent to lytic replication. These findings support our hypothesis that GCR may be a strong contributor to the reactivation of CMV infection seen in ISS crew members.
Assuntos
Radiação Cósmica , Citomegalovirus , Ativação Viral , Replicação Viral , Radiação Cósmica/efeitos adversos , Citomegalovirus/fisiologia , Citomegalovirus/efeitos da radiação , Humanos , Replicação Viral/efeitos da radiação , Ativação Viral/efeitos da radiação , Latência Viral/efeitos da radiação , Genoma Viral , Raios gama , Infecções por Citomegalovirus/virologia , Linhagem CelularRESUMO
Cosmic radiation experienced during space travel may increase the risk of cognitive impairment. While simulated galactic cosmic radiation (GCRsim) has led to memory deficits in wildtype (WT) mice, it has not been investigated whether GCRsim in combination with genetic risk factors for Alzheimer's disease (AD) worsens memory further in aging mice. Here, we investigated the central nervous system (CNS) effects of 0 Gy (sham) or 0.75 Gy five-ion GCRsim or 2 Gy gamma radiation (IRR) in 14-month-old female and male APPNL-F/NL-F knock-in (KI) mice bearing humanized ApoE3 or ApoE4 (APP;E3F and APP;E4F). As travel to a specialized facility was required for irradiation, both traveled sham-irradiated C57BL/6J WT and KI mice and non-traveled (NT) KI mice acted as controls for potential effects of travel. Mice underwent four behavioral tests at 20 months of age and were euthanized for pathological and biochemical analyses 1 month later. Fecal samples were collected pre- and post-irradiation at four different time points. GCRsim seemed to impair memory in male APP;E3F mice compared to their sham counterparts. Travel tended to improve cognition in male APP;E3F mice and lowered total Aß in female and male APP;E3F mice compared to their non-traveled counterparts. Sham-irradiated male APP;E4F mice accumulated more fibrillar amyloid than their APP;E3F counterparts. Radiation exposure had only modest effects on behavior and brain changes, but travel-, sex-, and genotype-specific effects were seen. Irradiated mice had immediate and long-term differences in their gut bacterial composition that correlated to Alzheimer's disease phenotypes.
Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Cognição , Radiação Cósmica , Camundongos Transgênicos , Animais , Feminino , Masculino , Radiação Cósmica/efeitos adversos , Camundongos , Cognição/efeitos da radiação , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Técnicas de Introdução de Genes , Camundongos Endogâmicos C57BL , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Modelos Animais de Doenças , Fatores Sexuais , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , HumanosRESUMO
Astronauts on exploratory missions will be exposed to galactic cosmic rays (GCR), which can induce neuroinflammation and oxidative stress (OS) and may increase the risk of neurodegenerative disease. As key regulators of inflammation and OS in the CNS, microglial cells may be involved in GCR-induced deficits, and therefore could be a target for neuroprotection. This study assessed the effects of exposure to helium (4He) and iron (56Fe) particles on inflammation and OS in microglia in vitro, to establish a model for testing countermeasure efficacy. Rat microglia were exposed to a single dose of 20 cGy (300 MeV/n) 4He or 2 Gy 56Fe (600 MeV/n), while the control cells were not exposed (0 cGy). Immediately following irradiation, fresh media was applied to the cells, and biomarkers of inflammation (cyclooxygenase-2 [COX-2], nitric oxide synthase [iNOS], phosphorylated IκB-α [pIκB-α], tumor necrosis factor-α [TNFα], and nitrite [NO2-]) and OS (NADPH oxidase [NOX2]) were assessed 24 h later using standard immunochemical techniques. Results showed that radiation did not increase levels of NO2- or protein levels of COX-2, iNOS, pIκB-α, TNFα, or NOX2 compared to non-irradiated control conditions in microglial cells (p > 0.05). Therefore, microglia in isolation may not be the primary cause of neuroinflammation and OS following exposures to helium or iron GCR particles.
Assuntos
Biomarcadores , Radiação Cósmica , Inflamação , Microglia , Estresse Oxidativo , Animais , Microglia/metabolismo , Microglia/efeitos da radiação , Radiação Cósmica/efeitos adversos , Estresse Oxidativo/efeitos da radiação , Ratos , Inflamação/metabolismo , Inflamação/etiologia , Biomarcadores/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ferro/metabolismo , Ciclo-Oxigenase 2/metabolismo , Hélio/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , NADPH Oxidase 2/metabolismoRESUMO
Understanding the hazards of space radiation is imperative as astronauts begin voyaging on missions with increasing distances from Earth's protective shield. Previous studies investigating the acute or long-term effects of specific ions comprising space radiation have revealed threats to organs generally considered radioresistant, like the brain, and have shown males to be more vulnerable than their female counterparts. However, astronauts will be exposed to a combination of ions that may result in additive effects differing from those of any one particle species. To better understand this nuance, we irradiated 4-month-old male and female, wild-type and Alzheimer's-like mice with 0, 0.5, or 0.75 Gy galactic cosmic ray simulation (GCRsim) or 0, 0.75, or 2 Gy gamma radiation (wild-type only). At 11 months, mice underwent brain and heart MRIs or behavioral tests, after which they were euthanized to assess amyloid-beta pathology, heart and kidney gene expression and fibrosis, and plasma cytokines. Although there were no changes in amyloid-beta pathology, we observed many differences in brain MRIs and behavior, including opposite effects of GCRsim on motor coordination in male and female transgenic mice. Additionally, several genes demonstrated persistent changes in the heart and kidney. Overall, we found sex- and genotype-specific, long-term effects of GCRsim and gamma radiation on the brain, heart, and kidney.
Assuntos
Doença de Alzheimer , Encéfalo , Radiação Cósmica , Raios gama , Coração , Rim , Camundongos Transgênicos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Feminino , Masculino , Raios gama/efeitos adversos , Encéfalo/efeitos da radiação , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Camundongos , Rim/efeitos da radiação , Rim/metabolismo , Rim/patologia , Coração/efeitos da radiação , Radiação Cósmica/efeitos adversos , Mutação , Caracteres Sexuais , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética , Modelos Animais de Doenças , Fatores SexuaisRESUMO
According to NASA's plans, a human travel to the Moon is planned by the end of 2025 with the Artemis II mission, and humans should land on the Moon again in 2026. Exposure to space radiation is one of the main risks for the crew members; while for these short missions the doses from galactic cosmic rays would be relatively low, the possible occurrence of an intense solar particle event (SPE) represents a major concern, especially considering that in 2025 the Sun activity will be at its peak. Quantifying the amount and the effects of such exposure is therefore crucial, to identify shielding conditions that allow respecting the dose limits established by the various space agencies. By exploiting an interface between the BIANCA biophysical model and the FLUKA Monte Carlo radiation transport code, in this work we implemented a male and a female voxel phantom and we calculated absorbed doses and Gy-Eq doses in the various tissues/organs, as well as effective doses, following exposure to the August 1972 SPE, the most intense event of the modern era. The calculations were performed respect the organ dose limits for 30 d missions. A detailed comparison between male and female doses was then carried out, also considering that the Artemis II crew will include a woman. The results showed that female doses tend to be higher than male doses, especially with light shielding. This should be taken into account in mission design, also considering that, in a typical lunar mission, up to 15% of time may be spent in extra-vehicular activities, and thus with light shielding. More generally, this work outlines the importance of performing separate calculations for male and female astronauts when dealing with radiation doses and effects.
Assuntos
Astronautas , Radiação Cósmica , Imagens de Fantasmas , Doses de Radiação , Exposição à Radiação , Atividade Solar , Humanos , Feminino , Masculino , Exposição à Radiação/análise , Radiação Cósmica/efeitos adversos , Método de Monte Carlo , Exposição Ocupacional/análise , Proteção Radiológica , Voo EspacialRESUMO
The Late Devonian was a protracted period of low speciation resulting in biodiversity decline, culminating in extinction events near the Devonian-Carboniferous boundary. Recent evidence indicates that the final extinction event may have coincided with a dramatic drop in stratospheric ozone, possibly due to a global temperature rise. Here we study an alternative possible cause for the postulated ozone drop: a nearby supernova explosion that could inflict damage by accelerating cosmic rays that can deliver ionizing radiation for up to [Formula: see text] ky. We therefore propose that the end-Devonian extinctions were triggered by supernova explosions at [Formula: see text], somewhat beyond the "kill distance" that would have precipitated a full mass extinction. Such nearby supernovae are likely due to core collapses of massive stars; these are concentrated in the thin Galactic disk where the Sun resides. Detecting either of the long-lived radioisotopes [Formula: see text] or [Formula: see text] in one or more end-Devonian extinction strata would confirm a supernova origin, point to the core-collapse explosion of a massive star, and probe supernova nucleosynthesis. Other possible tests of the supernova hypothesis are discussed.
Assuntos
Radiação Cósmica/efeitos adversos , Extinção Biológica , Fósseis/história , Biodiversidade , Meio Ambiente Extraterreno/química , História Antiga , Astros CelestesRESUMO
During space missions that travel beyond the cocoon of the Earth's magnetosphere, astronauts are subjected to the microgravity and radiation stressors of outer space [...].
Assuntos
Radiação Cósmica , Voo Espacial , Ausência de Peso , Humanos , Astronautas , Meio Ambiente Extraterreno , Transdução de Sinais , Radiação Cósmica/efeitos adversosRESUMO
Gastrointestinal (GI) cancer risk among astronauts after encountering galactic cosmic radiation (GCR) is predicted to exceed safe permissible limits in long duration deep-space missions. Current predictions are based on relative biological effectiveness (RBE) values derived from in-vivo studies using single-ion beams, while GCR is essentially a mixed radiation field composed of protons (H), helium (He), and heavy ions. Therefore, a sequentially delivered proton (H) â Helium (He) â Oxygen (O) â Silicon (Si) beam was designed to simulate simplified-mixed-field GCR (Smf-GCR), and Apc1638N/+ mice were total-body irradiated to sham or γ (157Cs) or Smf-GCR followed by assessment of GI-tumorigenesis at 150 days post-exposure. Further, GI-tumor data from equivalent doses of heavy-ions (i.e., 0.05 Gy of O and Si) in 0.5 Gy of Smf-GCR were compared to understand the contributions of heavy-ions in GI-tumorigenesis. The Smf-GCR-induced tumor and carcinoma count were significantly greater than γ-rays, and male preponderance for GI-tumorigenesis was consistent with our earlier findings. Comparison of tumor data from Smf-GCR and equivalent doses of heavy ions revealed an association between higher GI-tumorigenesis where dose received from heavy-ions contributed to > 95% of the total GI-tumorigenic effect observed after Smf-GCR. This study provides the first experimental evidence that cancer risk after GCR exposure could largely depend on doses received from constituent heavy-ions.
Assuntos
Radiação Cósmica , Íons Pesados , Neoplasias Induzidas por Radiação , Exposição à Radiação , Voo Espacial , Camundongos , Masculino , Animais , Íons Pesados/efeitos adversos , Hélio , Radiação Cósmica/efeitos adversos , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/patologia , Carcinogênese , PrótonsRESUMO
The biological effects of high linear energy transfer (LET) radiation show both a qualitative and quantitative difference when compared to low-LET radiation. However, models used to estimate risks ignore qualitative differences and involve extensive use of gamma-ray data, including low-LET radiation epidemiology, quality factors (QF), and dose and dose-rate effectiveness factors (DDREF). We consider a risk prediction that avoids gamma-ray data by formulating a track structure model of excess relative risk (ERR) with parameters estimated from animal studies using high-LET radiation. The ERR model is applied with U.S. population cancer data to predict lifetime risks to astronauts. Results for male liver and female breast cancer risk show that the ERR model agrees fairly well with estimates of a QF model on non-targeted effects (NTE) and is about 2-fold higher than the QF model that ignores NTE. For male or female lung cancer risk, the ERR model predicts about a 3-fold and more than 7-fold lower risk compared to the QF models with or without NTE, respectively. We suggest a relative risk approach coupled with improved models of tissue-specific cancers should be pursued to reduce uncertainties in space radiation risk projections. This approach would avoid low-LET uncertainties, while including qualitive effects specific to high-LET radiation.
Assuntos
Radiação Cósmica , Neoplasias Induzidas por Radiação , Voo Espacial , Animais , Astronautas , Radiação Cósmica/efeitos adversos , Feminino , Humanos , Transferência Linear de Energia , Masculino , Neoplasias Induzidas por Radiação/epidemiologia , Neoplasias Induzidas por Radiação/etiologia , RiscoRESUMO
Space research seems to be object of a renewed interest, also considering that human missions to the Moon, and possibly Mars, are being planned. Among the risks affecting such missions, astronauts' exposure to space radiation is a major concern. In this work, the question of the evaluation of biological damage by Galactic Cosmic Rays (GCR) was addressed by a biophysical model called BIophysical ANalysis of Cell death and chromosome Aberrations (BIANCA), which simulates the induction of cell death and chromosome aberrations by different ions. While previously BIANCA has been validated for calculating cell death along hadrontherapy beams up to oxygen, herein the approach was extended up to Fe ions. Specifically, experimental survival curves available in literature for V79 cells irradiated by Si-, Ne-, Ar- and Fe-ions were reproduced, and a reference radiobiological database describing V79 cell survival as a function of ion type (1 ⩽Z⩽ 26), energy and dose was constructed. Analogous databases were generated for Chinese hamster ovary hamster cells and human skin fibroblasts, finding good agreement between simulations and data. Concerning chromosome aberrations, which are regarded as radiation risk biomarkers, dicentric data in human lymphocytes irradiated by heavy ions up to iron were reproduced, and a radiobiological database allowing calculation of lymphocyte dicentric yields as a function of dose, ion type (1 ⩽Z⩽ 26) and energy was constructed. Following interface between BIANCA and the FLUKA Monte Carlo transport code, a feasibility study was performed to calculate the relative biological effectiveness (RBE) of different GCR spectrum components, for both dicentrics and cell death. Fe-ions, although representing only 10% of the total absorbed dose, were found to be responsible for about 35%-40% of the RBE-weighted dose. Interestingly, the RBE for dicentrics was higher than that for cell survival. More generally, this work shows that BIANCA can calculate RBE values for cell death and lymphocyte dicentrics not only for ion therapy, but also for space radiation.
Assuntos
Radiação Cósmica , Íons Pesados , Animais , Células CHO , Morte Celular , Aberrações Cromossômicas , Radiação Cósmica/efeitos adversos , Cricetinae , Cricetulus , Humanos , FerroRESUMO
Galactic cosmic radiation (GCR), composed of highly energetic and fully ionized atomic nuclei, produces diverse deleterious effects on the body. In researching the neurological risks of GCR exposures, including during human spaceflight, various ground-based single-ion GCR irradiation paradigms induce differential disruptions of cellular activity and overall behavior. However, it remains less clear how irradiation comprising a mix of multiple ions, more accurately recapitulating the space GCR environment, impacts the central nervous system. We therefore examined how mixed-ion GCR irradiation (two similar 5-6 beam combinations of protons, helium, oxygen, silicon and iron ions) influenced neuronal connectivity, functional generation of activity within neural circuits and cognitive behavior in mice. In electrophysiological recordings we find that space-relevant doses of mixed-ion GCR preferentially alter hippocampal inhibitory neurotransmission and produce related disruptions in the local field potentials of hippocampal oscillations. Such underlying perturbation in hippocampal network activity correspond with perturbed learning, memory and anxiety behavior.
Assuntos
Radiação Cósmica/efeitos adversos , Hipocampo/efeitos da radiação , Transmissão Sináptica/efeitos da radiação , Animais , Comportamento Animal/efeitos da radiação , Disfunção Cognitiva/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
After having been an instrument of the Cold War, space exploration has become a major technological, scientific and societal challenge for a number of countries. With new projects to return to the Moon and go to Mars, radiobiologists have been called upon to better assess the risks linked to exposure to radiation emitted from space (IRS), one of the major hazards for astronauts. To this aim, a major task is to identify the specificities of the different sources of IRS that concern astronauts. By considering the probabilities of the impact of IRS against spacecraft shielding, three conclusions can be drawn: (1) The impacts of heavy ions are rare and their contribution to radiation dose may be low during low Earth orbit; (2) secondary particles, including neutrons emitted at low energy from the spacecraft shielding, may be common in deep space and may preferentially target surface tissues such as the eyes and skin; (3) a "bath of radiation" composed of residual rays and fast neutrons inside the spacecraft may present a concern for deep tissues such as bones and the cardiovascular system. Hence, skin melanoma, cataracts, loss of bone mass, and aging of the cardiovascular system are possible, dependent on the dose, dose-rate, and individual factors. This suggests that both radiosusceptibility and radiodegeneration may be concerns related to space exploration. In addition, in the particular case of extreme solar events, radiosensitivity reactions-such as those observed in acute radiation syndrome-may occur and affect blood composition, gastrointestinal and neurologic systems. This review summarizes the specificities of space radiobiology and opens the debate as regards refinements of current radiation protection concepts that will be useful for the better estimation of risks.
Assuntos
Radiação Cósmica/efeitos adversos , Monitoramento de Radiação , Proteção Radiológica , Voo Espacial , Astronave , Astronautas , HumanosRESUMO
Space is a high-stress environment. One major risk factor for the astronauts when they leave the Earth's magnetic field is exposure to ionizing radiation from galactic cosmic rays (GCR). Several adverse changes occur in mammalian anatomy and physiology in space, including bone loss. In this study, we assessed the effects of simplified GCR exposure on skeletal health in vivo. Three months following exposure to 0.5 Gy total body simulated GCR, blood, bone marrow and tissue were collected from 9 months old male mice. The key findings from our cell and tissue analysis are (1) GCR induced femoral trabecular bone loss in adult mice but had no effect on spinal trabecular bone. (2) GCR increased circulating osteoclast differentiation markers and osteoclast formation but did not alter new bone formation or osteoblast differentiation. (3) Steady-state levels of mitochondrial reactive oxygen species, mitochondrial and non-mitochondrial respiration were increased without any changes in mitochondrial mass in pre-osteoclasts after GCR exposure. (4) Alterations in substrate utilization following GCR exposure in pre-osteoclasts suggested a metabolic rewiring of mitochondria. Taken together, targeting radiation-mediated mitochondrial metabolic reprogramming of osteoclasts could be speculated as a viable therapeutic strategy for space travel induced bone loss.
Assuntos
Osso Esponjoso/efeitos da radiação , Radiação Cósmica/efeitos adversos , Mitocôndrias/efeitos da radiação , Osteoclastos/efeitos da radiação , Osteogênese/efeitos da radiação , Animais , Masculino , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismoRESUMO
A recognized risk of long-duration space travel arises from the elevated exposure astronauts face from galactic cosmic radiation (GCR), which is composed of a diverse array of energetic particles. There is now abundant evidence that exposures to many different charged particle GCR components within acute time frames are sufficient to induce central nervous system deficits that span from the molecular to the whole animal behavioral scale. Enhanced spacecraft shielding can lessen exposures to charged particle GCR components, but may conversely elevate neutron radiation levels. We previously observed that space-relevant neutron radiation doses, chronically delivered at dose-rates expected during planned human exploratory missions, can disrupt hippocampal neuronal excitability, perturb network long-term potentiation and negatively impact cognitive behavior. We have now determined that acute exposures to similar low doses (18 cGy) of neutron radiation can also lead to suppressed hippocampal synaptic signaling, as well as decreased learning and memory performance in male mice. Our results demonstrate that similar nervous system hazards arise from neutron irradiation regardless of the exposure time course. While not always in an identical manner, neutron irradiation disrupts many of the same central nervous system elements as acute charged particle GCR exposures. The risks arising from neutron irradiation are therefore important to consider when determining the overall hazards astronauts will face from the space radiation environment.
Assuntos
Radiação Cósmica/efeitos adversos , Hipocampo/efeitos da radiação , Nêutrons/efeitos adversos , Animais , Comportamento Animal/efeitos da radiação , Masculino , Memória/efeitos da radiação , Camundongos , Plasticidade Neuronal/efeitos da radiaçãoRESUMO
Galactic cosmic rays are primarily composed of protons (85%), helium (14%), and high charge/high energy ions (HZEs) such as 56Fe, 28Si, and 16O. HZE exposure is a major risk factor for astronauts during deep-space travel due to the possibility of HZE-induced cancer. A systems biology integrated omics approach encompassing transcriptomics, proteomics, lipidomics, and functional biochemical assays was used to identify microenvironmental changes induced by HZE exposure. C57BL/6 mice were placed into six treatment groups and received the following irradiation treatments: 600 MeV/n 56Fe (0.2 Gy), 1 GeV/n 16O (0.2 Gy), 350 MeV/n 28Si (0.2 Gy), 137Cs (1.0 Gy) gamma rays, 137Cs (3.0 Gy) gamma rays, and sham irradiation. Left liver lobes were collected at 30, 60, 120, 270, and 360 days post-irradiation. Analysis of transcriptomic and proteomic data utilizing ingenuity pathway analysis identified multiple pathways involved in mitochondrial function that were altered after HZE irradiation. Lipids also exhibited changes that were linked to mitochondrial function. Molecular assays for mitochondrial Complex I activity showed significant decreases in activity after HZE exposure. HZE-induced mitochondrial dysfunction suggests an increased risk for deep space travel. Microenvironmental and pathway analysis as performed in this research identified possible targets for countermeasures to mitigate risk.
Assuntos
Radiação Cósmica/efeitos adversos , Complexo I de Transporte de Elétrons/metabolismo , Raios gama/efeitos adversos , Fígado/enzimologia , Mitocôndrias Hepáticas/enzimologia , Lesões Experimentais por Radiação/enzimologia , Animais , Relação Dose-Resposta à Radiação , Fígado/patologia , Masculino , Camundongos , Mitocôndrias Hepáticas/patologia , Proteômica , Lesões Experimentais por Radiação/patologia , Voo EspacialRESUMO
The proposed deep space exploration to the moon and later to Mars will result in astronauts receiving significant chronic exposures to space radiation (SR). SR exposure results in multiple neurocognitive impairments. Recently, our cross-species (mouse/rat) studies reported impaired associative memory formation in both species following a chronic 6-month low dose exposure to a mixed field of neutrons (1 mGy/day for a total dose pf 18 cGy). In the present study, we report neutron exposure induced synaptic plasticity in the medial prefrontal cortex, accompanied by microglial activation and significant synaptic loss in the hippocampus. In a parallel study, neutron exposure was also found to alter fluorescence assisted single synaptosome LTP (FASS-LTP) in the hippocampus of rats, that may be related to a reduced ability to insert AMPAR into the post-synaptic membrane, which may arise from increased phosphorylation of the serine 845 residue of the GluA1 subunit. Thus, we demonstrate for the first time, that low dose chronic neutron irradiation impacts homeostatic synaptic plasticity in the hippocampal-cortical circuit in two rodent species, and that the ability to successfully encode associative recognition memory is a dynamic, multicircuit process, possibly involving compensatory changes in AMPAR density on the synaptic surface.
Assuntos
Região CA1 Hipocampal/efeitos da radiação , Radiação Cósmica/efeitos adversos , Plasticidade Neuronal/efeitos da radiação , Nêutrons/efeitos adversos , Córtex Pré-Frontal/efeitos da radiação , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Região CA1 Hipocampal/metabolismo , Dendritos/efeitos da radiação , Proteína 4 Homóloga a Disks-Large/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos WistarRESUMO
The study examined association between oscillations of body temperature of laboratory Wistar rats maintained under constant illumination with the amplitude of fluctuations of secondary cosmic rays reported by neutron count rate provided by neutron monitors and geomagnetic undulations. In contrast to geomagnetic undulations, neutron count rate variations and body temperature oscillations in rats assessed by spectrum analysis of the corresponding step functions at 1-min intervals demonstrated almost permanent variations with the periods ranging from 100 to 400 min. Under conditions of constant illumination inducing changes in the period of circadian rhythm and predominance of the ultradian rhythms, an association between neutron count rate fluctuations and body temperature oscillations was observed perpetually during the day- and nighttime.
Assuntos
Temperatura Corporal/fisiologia , Radiação Cósmica/efeitos adversos , Nêutrons/efeitos adversos , Ritmo Ultradiano/fisiologia , Animais , Ritmo Circadiano , Iluminação , Masculino , Ratos , Ratos WistarRESUMO
BACKGROUND: Cosmic radiation exposures have been found to elicit cognitive impairments involving a wide-range of underlying neuropathology including elevated oxidative stress, neural stem cell loss, and compromised neuronal architecture. Cognitive impairments have also been associated with sustained microglia activation following low dose exposure to helium ions. Space-relevant charged particles elicit neuroinflammation that persists long-term post-irradiation. Here, we investigated the potential neurocognitive benefits of microglia depletion following low dose whole body exposure to helium ions. METHODS: Adult mice were administered a dietary inhibitor (PLX5622) of colony stimulating factor-1 receptor (CSF1R) to deplete microglia 2 weeks after whole body helium irradiation (4He, 30 cGy, 400 MeV/n). Cohorts of mice maintained on a normal and PLX5622 diet were tested for cognitive function using seven independent behavioral tasks, microglial activation, hippocampal neuronal morphology, spine density, and electrophysiology properties 4-6 weeks later. RESULTS: PLX5622 treatment caused a rapid and near complete elimination of microglia in the brain within 3 days of treatment. Irradiated animals on normal diet exhibited a range of behavioral deficits involving the medial pre-frontal cortex and hippocampus and increased microglial activation. Animals on PLX5622 diet exhibited no radiation-induced cognitive deficits, and expression of resting and activated microglia were almost completely abolished, without any effects on the oligodendrocyte progenitors, throughout the brain. While PLX5622 treatment was found to attenuate radiation-induced increases in post-synaptic density protein 95 (PSD-95) puncta and to preserve mushroom type spine densities, other morphologic features of neurons and electrophysiologic measures of intrinsic excitability were relatively unaffected. CONCLUSIONS: Our data suggest that microglia play a critical role in cosmic radiation-induced cognitive deficits in mice and, that approaches targeting microglial function are poised to provide considerable benefit to the brain exposed to charged particles.