Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 850
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Strahlenther Onkol ; 197(6): 547-554, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33791816

RESUMO

PURPOSE: This study compares the plan quality of high-dose-rate brachytherapy (HDR-BT) and volumetric modulated arc therapy (VMAT) for superficial irradiation of large areas of skin with significant curvature in one or more planes. METHODS: A total of 14 patients from two centres previously treated with either HDR-BT or VMAT were retrospectively replanned using the alternative technique. Sites included scalp and lower limbs. Identical computed tomography (CT) scans, clinical target volume (CTV) and organs at risk (OARs) and prescription were used for both techniques. Conformity, skin surface dose and OAR doses were compared. RESULTS: Conformity index was consistently better with VMAT than HDR-BT (p < 0.01). Maximum skin surface dose (D0.1cc) had a higher mean of 49.6 Gy with HDR-BT compared to 31.4 Gy for VMAT (p < 0.01). Significantly smaller volumes of healthy tissue were irradiated with VMAT than with HDR-BT. This can be seen in brain volumes receiving 10, 20 and 30 Gy EQD2 and in extremities receiving 5 and 10 Gy. When close to the volume, the lens received significantly lower doses with VMAT (p < 0.01). CONCLUSION: In this small sample, VMAT gives equal coverage with lower OAR and skin surface doses than HDR-BT for both scalp and extremities. VMAT is a useful technique for treating large, superficial volumes with significant curvature in one or more planes.


Assuntos
Braquiterapia/métodos , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada/métodos , Pele/efeitos da radiação , Braquiterapia/instrumentação , Encéfalo/efeitos da radiação , Catéteres , Fracionamento da Dose de Radiação , Relação Dose-Resposta à Radiação , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Órgãos em Risco , Impressão Tridimensional , Lesões por Radiação/prevenção & controle , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/instrumentação , Estudos Retrospectivos , Couro Cabeludo/diagnóstico por imagem , Couro Cabeludo/efeitos da radiação , Pele/diagnóstico por imagem , Neoplasias Cutâneas/radioterapia , Tomografia Computadorizada por Raios X
2.
BMC Cancer ; 21(1): 261, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33691654

RESUMO

BACKGROUND: To investigate the beam complexity and monitor unit (MU) efficiency issues for two different volumetric modulated arc therapy (VMAT) delivery technologies for patients with left-sided breast cancer (BC) and nasopharyngeal carcinoma (NPC). METHODS: Twelve left-sided BC and seven NPC cases were enrolled in this study. Each delivered treatment plan was optimized in the Pinnacle3 treatment planning system with the Auto-Planning module for the Trilogy and Synergy systems. Similar planning dose objectives and beam configurations were used for each site in the two different delivery systems to produce clinically acceptable plans. The beam complexity was evaluated in terms of the segment area (SA), segment width (SW), leaf sequence variability (LSV), aperture area variability (AAV), and modulation complexity score (MCS) based on the multileaf collimator sequence and MU. Plan delivery and a gamma evaluation were performed using a helical diode array. RESULTS: With similar plan quality, the average SAs for the Trilogy plans were smaller than those for the Synergy plans: 55.5 ± 21.3 cm2 vs. 66.3 ± 17.9 cm2 (p < 0.05) for the NPC cases and 100.7 ± 49.2 cm2 vs. 108.5 ± 42.7 cm2 (p < 0.05) for the BC cases, respectively. The SW was statistically significant for the two delivery systems (NPC: 6.87 ± 1.95 cm vs. 6.72 ± 2.71 cm, p < 0.05; BC: 8.84 ± 2.56 cm vs. 8.09 ± 2.63 cm, p < 0.05). The LSV was significantly smaller for Trilogy (NPC: 0.84 ± 0.033 vs. 0.86 ± 0.033, p < 0.05; BC: 0.89 ± 0.026 vs. 0.90 ± 0.26, p < 0.05). The mean AAV was significantly larger for Trilogy than for Synergy (NPC: 0.18 ± 0.064 vs. 0.14 ± 0.037, p < 0.05; BC: 0.46 ± 0.15 vs. 0.33 ± 0.13, p < 0.05). The MCS values for Trilogy were higher than those for Synergy: 0.14 ± 0.016 vs. 0.12 ± 0.017 (p < 0.05) for the NPC cases and 0.42 ± 0.106 vs. 0.30 ± 0.087 (p < 0.05) for the BC cases. Compared with the Synergy plans, the average MUs for the Trilogy plans were larger: 828.6 ± 74.1 MU and 782.9 ± 85.2 MU (p > 0.05) for the NPC cases and 444.8 ± 61.3 MU and 393.8 ± 75.3 MU (p > 0.05) for the BC cases. The gamma index agreement scores were never below 91% using 3 mm/3% (global) distance to agreement and dose difference criteria and a 10% lower dose exclusion threshold. CONCLUSIONS: The Pinnacle3 Auto-Planning system can optimize BC and NPC plans to achieve the same plan quality using both the Trilogy and Synergy systems. We found that these two systems resulted in different SAs, SWs, LSVs, AAVs and MCSs. As a result, we suggested that the beam complexity should be considered in the development of further methodologies while optimizing VMAT autoplanning.


Assuntos
Neoplasias da Mama/radioterapia , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/instrumentação , Fracionamento da Dose de Radiação , Feminino , Humanos , Órgãos em Risco , Radiometria , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos
3.
Radiol Med ; 126(3): 453-459, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32803540

RESUMO

OBJECTIVES: Motivation of this study is to check the sensitivity of dosimetric tool gamma with 2D detector array combination when unexpected errors occur while transferring intensity-modulated radiation therapy treatment plans from planning system to treatment unit. METHODS: This study consists of 17 head and neck cancer patient's treatment plans. Nine types of verification plans are created for all 17 clinically approved treatment plans by consecutively deleting different segments (up to eight) one by one from each field of the plan. Decrement factor (χ) is introduced in our study which illustrated the degree of decay of gamma passing rate when intentional errors are introduced. We analyzed the data by two different methods-one without selecting the region of interest (ROI) in dose distributions and the other by selecting the region of interest. RESULTS: By linear regression, the absolute value of slopes is 0.025, 0.024 and 0.015 without ROI and 0.030, 0.027 and 0.015 with ROI for 2%/2 mm, 3%/3 mm and 5%/5 mm criteria, respectively. The higher absolute value of the fitted slope indicates the higher sensitivity of this method to identify erroneous plan in treatment unit. The threshold value for 2%/2 mm equivalent to 95% passing criteria in 3%/3 mm used in clinical practice is obtained as 83.44%. CONCLUSIONS: The 2D detector array with dosimetric tool gamma is less sensitive in detecting errors when unprecedented errors of segment deletion occur within the treatment plans.


Assuntos
Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Erros de Configuração em Radioterapia , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Humanos , Modelos Lineares , Aceleradores de Partículas , Radiometria/métodos , Radioterapia de Intensidade Modulada/instrumentação , Sensibilidade e Especificidade
4.
J Appl Clin Med Phys ; 21(3): 75-86, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32043760

RESUMO

In this work, the feasibility of using flattening filter free (FFF) beams in volumetric modulated arc therapy (VMAT) total body irradiation (TBI) treatment planning to decrease protracted beam-on times for these treatments was investigated. In addition, a methodology was developed to generate standardized VMAT TBI treatment plans based on patient physical dimensions to eliminate plan optimization time. A planning study cohort of 47 TBI patients previously treated with optimized VMAT ARC 6 MV beams was retrospectively examined. These patients were sorted into six categories depending on height and anteroposterior (AP) width at the umbilicus. Using Varian Eclipse, clinical 40 cm × 10 cm open field arcs were substituted with 6 MV FFF. Mid-plane lateral dose profiles in conjunction with relative arc output factors (RAOF) yielded how far a given multileaf collimator (MLC) leaf must move in order to achieve a mid-plane 100% isodose for a specific control point. Linear interpolation gave the dynamic MLC aperture for the entire arc for each patient AP width category, which was subsequently applied through Python scripting. All FFF VMAT TBI plans were then evaluated by two radiation oncologists and deemed clinically acceptable. The FFF and clinical VMAT TBI plans had similar Body-5 mm D98% distributions, but overall the FFF plans had statistically significantly increased or broader Body-5 mm D2% and mean lung dose distributions. These differences are not considered clinically significant. Median beam-on times for the FFF and clinical VMAT TBI plans were 11.07 and 18.06 min, respectively, and planning time for the FFF VMAT TBI plans was reduced by 34.1 min. In conclusion, use of FFF beams in VMAT TBI treatment planning resulted in dose homogeneity similar to our current VMAT TBI technique. Clinical dosimetric criteria were achieved for a majority of patients while planning and calculated beam-on times were reduced, offering the possibility of improved patient experience.


Assuntos
Neoplasias/radioterapia , Garantia da Qualidade dos Cuidados de Saúde/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/instrumentação , Radioterapia de Intensidade Modulada/normas , Irradiação Corporal Total/normas , Humanos , Órgãos em Risco/efeitos da radiação , Prognóstico , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos
5.
J Appl Clin Med Phys ; 21(2): 82-88, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31961036

RESUMO

PURPOSE: Treatment planning system (TPS) dose calculation is sensitive to multileaf collimator (MLC) modeling, especially when treating with intensity-modulated radiation therapy (IMRT) or VMAT. This study investigates the dosimetric impact of the MLC leaf-tip model in a commercial TPS (RayStation v.6.1). The detectability of modeling errors was assessed through both measurements with an anthropomorphic head-and-neck phantom and patient-specific IMRT QA using a 3D diode array. METHODS AND MATERIALS: An Agility MLC (Elekta Inc.) was commissioned in RayStation. Nine IMRT and VMAT plans were optimized to treat the head-and-neck phantom from the Imaging and Radiation Oncology Core Houston branch (IROC-H). Dose distributions for each plan were re-calculated on 27 beam models, varying leaf-tip width (2.0, 4.5, and 6.5 mm) and leaf-tip offset (-2.0 to +2.0 mm) values. Doses were compared to phantom TLD measurements. Patient-specific IMRT QA was performed, and receiver-operating characteristic (ROC) analysis was performed to determine the detectability of modeling errors. RESULTS: Dose calculations were very sensitive to leaf-tip offset values. Offsets of ±1.0 mm resulted in dose differences up to 10% and 15% in the PTV and spinal cord TLDs respectively. Offsets of ±2.0 mm caused dose deviations up to 50% in the spinal cord TLD. Patient-specific IMRT QA could not reliably detect these deviations, with an ROC area under the curve (AUC) value of 0.537 for a ±1.0 mm change in leaf-tip offset, corresponding to >7% dose deviation. Leaf-tip width had a modest dosimetric impact with <2% and 5.6% differences in the PTV and spinal cord TLDs respectively. CONCLUSIONS: Small changes in the MLC leaf-tip offset in this TPS model can cause large changes in the calculated dose for IMRT and VMAT plans that are difficult to identify through either dose curves or standard patient-specific IMRT QA. These results may, in part, explain the reported high failure rate of IROC-H phantom tests.


Assuntos
Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/instrumentação , Radioterapia de Intensidade Modulada/métodos , Antropometria , Área Sob a Curva , Desenho de Equipamento , Humanos , Aceleradores de Partículas , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde , Controle de Qualidade , Curva ROC , Radioterapia (Especialidade)/normas , Radiometria , Dosagem Radioterapêutica , Reprodutibilidade dos Testes
6.
J Appl Clin Med Phys ; 21(4): 6-12, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32039544

RESUMO

Cone-beam CT-guided single dose of lung stereotactic body radiotherapy (SBRT) treatment with a flattening filter free (FFF) beam and volumetric modulated arc therapy (VMAT) is a safe and highly effective treatment modality for selective small lung lesions. Four-dimensional (4D) CT-based treatment plans were generated using advanced AcurosXB algorithm for heterogeneity corrections. 6X-FFF beam produced highly conformal radiosurgical dose distribution to the target and reduced lung SBRT fraction duration to less than 10 min for a single dose of 30 Gy, significantly improving patient comfort and clinic workflow. Early follow-up CT imaging results (mean, 8 months) show high local control rates (100%) with no acute lung or rib toxicity. Longer clinical follow-up in a larger patient cohort managed in this fashion is underway to further validate this treatment approach.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Tomografia Computadorizada de Feixe Cônico/métodos , Tomografia Computadorizada Quadridimensional/métodos , Neoplasias Pulmonares/radioterapia , Radiocirurgia/métodos , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Seguimentos , Humanos , Radiometria , Radiocirurgia/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/instrumentação
7.
J Appl Clin Med Phys ; 21(2): 14-25, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32058663

RESUMO

PURPOSE: To assess the performance and limitations of contour propagation with three commercial deformable image registration (DIR) algorithms using fractional scans of CT-on-rails (CTOR) and Cone Beam CT (CBCT) in image guided prostate therapy patients treated with IMRT/VMAT. METHODS: Twenty prostate cancer patients treated with IMRT/VMAT were selected for analysis. A total of 453 fractions across those patients were analyzed. Image data were imported into MIM (MIM Software, Inc., Cleveland, OH) and three DIR algorithms (DIR Profile, normalized intensity-based (NIB) and shadowed NIB DIR algorithms) were applied to deformably register each fraction with the planning CT. Manually drawn contours of bladder and rectum were utilized for comparison against the DIR propagated contours in each fraction. Four metrics were utilized in the evaluation of contour similarity, the Hausdorff Distance (HD), Mean Distance to Agreement (MDA), Dice Similarity Coefficient (DSC), and Jaccard indices. A subfactor analysis was performed per modality (CTOR vs. CBCT) and time (fraction). Point estimates and 95% confidence intervals were assessed via a Linear Mixed Effect model for the contour similarity metrics. RESULTS: No statistically significant differences were observed between the DIR Profile and NIB algorithms. However, statistically significant differences were observed between the shadowed NIB and NIB algorithms for some of the DIR evaluation metrics. The Hausdorff Distance calculation showed the NIB propagated contours vs. shadowed NIB propagated contours against the manual contours were 14.82 mm vs. 8.34 mm for bladder and 15.87 mm vs. 11 mm for rectum, respectively. Similarly, the Mean Distance to Agreement calculation comparing the NIB propagated contours vs. shadowed NIB propagated contours against the manual contours were 2.43 mm vs. 0.98 mm for bladder and 2.57 mm vs. 1.00 mm for rectum, respectively. The Dice Similarity Coefficients comparing the NIB propagated contours and shadowed NIB propagated contours against the manual contours were 0.844 against 0.936 for bladder and 0.772 against 0.907 for rectum, respectively. The Jaccard indices comparing the NIB propagated contours and shadowed NIB propagated contours against the manual contours were 0.749 against 0.884 for bladder and 0.637 against 0.831 for rectum, respectively. The shadowed NIB DIR, which showed the closest agreement with the manual contours performed significantly better than the DIR Profile in all the comparisons. The OAR with the greatest agreement varied substantially across patients and image guided radiation therapy (IGRT) modality. Intra-patient variability of contour metric evaluation was insignificant across all the DIR algorithms. Statistical significance at α = 0.05 was observed for manual vs. deformably propagated contours for bladder for all the metrics except Hausdorff Distance (P = 0.01 for MDA, P = 0.02 for DSC, P = 0.01 for Jaccard), whereas the corresponding values for rectum were: P = 0.03 for HD, P = 0.01 for MDA, P < 0.01 for DSC, P < 0.01 for Jaccard. The performance of the different metrics varied slightly across the fractions of each patient, which indicates that weekly contour propagation models provide a reasonable approximation of the daily contour propagation models. CONCLUSION: The high variance of Hausdorff Distance across all automated methods for bladder indicates widely variable agreement across fractions for all patients. Lower variance across all modalities, methods, and metrics were observed for rectum. The shadowed NIB propagated contours were substantially more similar to the manual contours than the DIR Profile or NIB contours for both the CTOR and CBCT imaging modalities. The relationship of each algorithm to similarity with manual contours is consistent across all observed metrics and organs. Screening of image guidance for substantial differences in bladder and rectal filling compared with the planning CT reference could aid in identifying fractions for which automated DIR would prove insufficient.


Assuntos
Neoplasias da Próstata/radioterapia , Radioterapia de Intensidade Modulada/instrumentação , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Tomografia Computadorizada de Feixe Cônico/instrumentação , Tomografia Computadorizada de Feixe Cônico/métodos , Análise Fatorial , Humanos , Processamento de Imagem Assistida por Computador/métodos , Modelos Lineares , Masculino , Reconhecimento Automatizado de Padrão , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem , Reprodutibilidade dos Testes , Software , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos
8.
Acta Oncol ; 58(10): 1463-1469, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31241377

RESUMO

Background: This study aimed at evaluating spatially varying instantaneous dose rates for different intensity-modulated proton therapy (IMPT) planning strategies and delivery scenarios, and comparing these with FLASH dose rates (>40 Gy/s). Material and methods: In order to quantify dose rates in three-dimensions, we proposed the 'dose-averaged dose rate' (DADR) metric, defined for each voxel as the dose-weighted mean of the instantaneous dose rates of all spots (i.e., pencil beams). This concept was applied to four head-and-neck cases, each planned with clinical (4 fields) and various spot-reduced IMPT techniques: 'standard' (4 fields), 'arc' (120 fields) and 'arc-shoot-through' (120 fields; 229 MeV only). For all plans, different delivery scenarios were simulated: constant beam intensity, variable beam intensity for a clinical Varian ProBeam system, varied per energy layer or per spot, and theoretical spot-wise variable beam intensity (i.e., no monitor/safety limitations). DADR distributions were calculated assuming 2-Gy or 6-Gy fractions. Results: Spot-reduced plans contained 17-52 times fewer spots than clinical plans, with no deterioration of plan quality. For the clinical plans, the mean DADR in normal tissue for 2-Gy fractionation was 1.7 Gy/s (median over all patients) at maximum, whereas in standard spot-reduced plans it was 0.7, 4.4, 7.1, and 12.1 Gy/s, for the constant, energy-layer-wise, spot-wise, and theoretical spot-wise delivery scenarios, respectively. Similar values were observed for arc plans. Arc-shoot-through planning resulted in DADR values of 3.0, 6.0, 14.1, and 24.4 Gy/s, for the abovementioned scenarios. Hypofractionation (3×) generally resulted in higher dose rates, up to 73.2 Gy/s for arc-shoot-through plans. The DADR was inhomogeneously distributed with highest values at beam entrance and at the Bragg peak. Conclusion: FLASH dose rates were not achieved for conventional planning and clinical spot-scanning machines. As such, increased spot-wise beam intensities, spot-reduced planning, hypofractionation and arc-shoot-through plans were required to achieve FLASH compatible dose rates.


Assuntos
Fracionamento da Dose de Radiação , Neoplasias de Cabeça e Pescoço/radioterapia , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada/métodos , Relação Dose-Resposta à Radiação , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Modelagem Computacional Específica para o Paciente , Terapia com Prótons/instrumentação , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/instrumentação
9.
Jpn J Clin Oncol ; 49(11): 1024-1028, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31665340

RESUMO

BACKGROUND: Patterns of cancer incidence and radiotherapy use are similar in Korea and Japan, with differences in radiotherapy infrastructure. METHODS: The authors surveyed the megavoltage machines in 91 radiotherapy centers in Korea and published data in Japan. The number of megavoltage machines per center was used as an indicator of the fragmentation of radiotherapy services using four as the threshold, and the number of megavoltage machines per million people was compared. The practice pattern of intensity-modulated radiation therapy was analyzed. RESULTS: There were 91 centers in Korea and 825 in Japan. The number of megavoltage machines per center was 1.3 in Japan and 2.3 in Korea. Radiotherapy infrastructure showed fragmentation in Korea and hyperfragmentation in Japan. In Japan, 75% of radiotherapy centers operated with one megavoltage machine, whereas in Korea, 47% megavoltage machines per center was 3.2 in Seoul, while that in the non-capital area was 1.8, constituting a mixed pattern of centralization and fragmentation. In Japan, megavoltage machines per center in Tokyo, Kanagawa and Osaka, was 1.5, 1.3 and 1.2, respectively, indicating no concentration in the metropolis. The number of megavoltage machines per million in Korea was 4.0, whereas that in Seoul was 8.7, constituting capital concentration. In Japan, the number of megavoltage machines per million was 8.7, whereas in Tokyo, Kanagawa and Osaka, it was is 9.3, 6.3 and 9.0, showing uniform distribution. intensity-modulated radiation therapy utilization is increasing, accounting for 15% and 23% of radiotherapy patients in Japan and Korea, respectively. CONCLUSIONS: The fragmentation of radiotherapy services in Korea and Japan might affect radiotherapy quality.


Assuntos
Atenção à Saúde/métodos , Neoplasias/radioterapia , Qualidade da Assistência à Saúde , Radioterapia de Intensidade Modulada/instrumentação , Radioterapia de Intensidade Modulada/métodos , Humanos , Japão , Masculino , Neoplasias/epidemiologia , República da Coreia , Inquéritos e Questionários , Tóquio
10.
J Appl Clin Med Phys ; 20(11): 14-26, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31617671

RESUMO

BACKGROUND: This study intends to develop an efficient field-in-field (FiF) planning technique with the Eclipse treatment planning system (TPS) to determine the feasibility of using the Halcyon treatment delivery system for 3D treatment of breast cancer. METHODS: Ten treatment plans were prepared on the Halcyon treatment planning system and compared to the same patients' clinically delivered TrueBeam plans which used flattened 6 MV and 10 MV beams. Patients selected for this study were treated via simple, tangential breast irradiation and did not receive radiotherapy of the supraclavicular or internal mammary lymph nodes. Planning target volumes (PTV) volumes ranged from 519 cc to 1211 cc with a mean target volume of 877 cc. Several planning techniques involving collimator, gantry rotation, and number of FiF segments were investigated as well as the use of the dynamically flattened beam (DFB) - a predefined MLC pattern that is designed to provide a flattened beam profile at 10 cm depth on a standard water phantom. For comparison, the clinically delivered TrueBeam plans remained unaltered except for normalization of the target coverage to more readily compare the two treatment delivery techniques. RESULTS: Using the physician defined PTV, normalized such that 98% of the volume was covered by 95% of the prescribed dose, the Halcyon plans were deemed clinically acceptable and comparable to the TrueBeam plans by the radiation oncologist. Resulting average global maximum doses in the test patients were identical between the TrueBeam and Halcyon plans (108% of Rx) and a mean PTV dose of 102.5% vs 101.6%, respectively. CONCLUSIONS: From this study a practical and efficient planning method for delivering 3D conformal breast radiotherapy using the Halcyon linear accelerator has been developed. When normalized to the clinically desired coverage, hot spots were maintained to acceptable levels and overall plan quality was comparable to plans delivered on conventional C-arm LINACs.


Assuntos
Neoplasias da Mama/radioterapia , Órgãos em Risco/efeitos da radiação , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/instrumentação , Feminino , Humanos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
11.
J Appl Clin Med Phys ; 20(4): 106-114, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30889312

RESUMO

PURPOSE: To characterize the stacked and staggered dual-layer multileaf collimator (MLC) on the HalcyonTM system. METHODS: The novel MLC assembly was reviewed and compared to the widely used MillenniumTM 120-leaf MLC system. We investigated the MLC positioning stability over 70 days using Machine Performance Check (MPC) data. We evaluated the leaf transmission, penumbra, leaf end effect, and leaf edge effect. Leaf transmission through distal, proximal, and both MLC layers was measured with a Farmer chamber, by comparing an open and a closed field. Leaf penumbra was measured using film for three different MLC-defined field sizes. The leaf end effect was measured with sweeping gap fields of varying gap sizes defined by the distal MLC. The leaf edge effect was evaluated using the Electronic Portal Imaging Device (EPID) for the different banks, gantry positions, and collimator angles. Point dose measurements for 10 test plans were compared to dose predictions of two dose calculation model versions. RESULTS: From MPC data, the largest measured MLC positioning accuracy deviation was within 0.1 mm. The proximal MLC exhibited greater deviations compared to the distal MLC. The distal-and-proximal-combination had reduced inter-leaf and intra-leaf transmission compared to delivery with distal-only. The measured leaf transmission was 0.41% for distal-only, 0.40% for proximal-only, and negligible for distal-and-proximal-combination. The leaf end penumbra was wider compared to the leaf edge penumbra. The leaf end effect was measured to be -0.2 mm. The leaf edge effect showed minimal bank, gantry position, and collimator angle dependence. However, a systematic deviation between measurements and treatment planning system handling of the leaf edge effect was observed. The discrepancy between the measured and predicted dose in the 10 test plans improved with the latest version of the dose calculation algorithm. CONCLUSION: The characteristics of the stacked and staggered dual-layer MLC on the HalcyonTM system were presented.


Assuntos
Algoritmos , Neoplasias/radioterapia , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/instrumentação , Humanos , Órgãos em Risco/efeitos da radiação , Radiometria , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
12.
J Appl Clin Med Phys ; 20(11): 121-130, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31593367

RESUMO

INTRODUCTION: Previous studies have shown that the beam arrangement had significant influence on plan quality in intensity modulated radiotherapy (IMRT). This study aimed to evaluate the dosimetric performance of beam arrangement methods by employing equally spaced beams (ESB), beam angle optimization (BAO), and volumetric modulated arc therapy (VMAT) in the planning of five types of head and neck (H&N) cancers treated by IMRT. METHODS: Five plans of different beam arrangement methods were optimized for 119 H&N cancer patients with the prescription of 66-70 Gy for high-risk planning target volume (PTV), 60 Gy for intermediate risk PTV, 54 Gy for low-risk PTV using a simultaneously integrated boost method. The five-beam arrangement methods were: ESB, coplanar BAO (BAOc), noncoplanar BAO (BAOnc), two-arc VMAT (VMAT2), and three-arc VMAT (VMAT3). The H&N cancers included cancers of nasopharynx, oral cavity, larynx, maxillary sinus, and parotid. Although the partial arc VMAT could be used in cases where the PTVs were situated at one side of the head such as the parotid, this arrangement was not included because it was intended to include only the beam arrangements that were applicable to all the types of head and neck cancers in the study. The plans were evaluated using a "figure-of-merit" known as uncomplicated target conformity index (UTCI). In addition, PTV conformation number and homogeneity index, normal tissue integral dose, and organ at risk (OAR) doses were also used. The mean values of these parameters were compared among the five plans. RESULTS: All treatment plans met the preset dose requirements for the target volumes and OARs. For nasopharyngeal cancer, VMAT3 and BAOnc demonstrated significantly higher UTCI. For cancer of oral cavity, most beam arrangement showed similar UTCI except ESB, which was relatively lower. For cancer of larynx, there was no significant difference in UTCI among the five-beam arrangement methods. For cancers of maxillary sinus and parotid gland, the two BAO methods showed marginally higher UTCI among all the five methods. CONCLUSION: Individual methods showed dosimetric advantages on certain aspects, and the UTCI of the BAO treatment plans are marginally greater in the case of maxillary sinus and parotid gland. However, if treatment time was included into consideration, VMAT plans would be recommended for cancers of the nasopharynx, oral cavity, and larynx.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Órgãos em Risco/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/instrumentação , Radioterapia de Intensidade Modulada/métodos , Humanos , Radiometria/métodos , Dosagem Radioterapêutica
13.
J Appl Clin Med Phys ; 20(11): 88-94, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31609090

RESUMO

PURPOSE: We introduce a technique that employs a 2D detector in transmission mode (TM) to verify dose maps at a depth of dmax in Solid Water. TM measurements, when taken at a different surface-to-detector distance (SDD), allow for the area at dmax (in which the dose map is calculated) to be adjusted. METHODS: We considered the detector prototype "MP512" (an array of 512 diode-sensitive volumes, 2 mm spatial resolution). Measurements in transmission mode were taken at SDDs in the range from 0.3 to 24 cm. Dose mode (DM) measurements were made at dmax in Solid Water. We considered radiation fields in the range from 2 × 2 cm2 to 10 × 10 cm2 , produced by 6 MV flattened photon beams; we derived a relationship between DM and TM measurements as a function of SDD and field size. The relationship was used to calculate, from TM measurements at 4 and 24 cm SDD, dose maps at dmax in fields of 1 × 1 cm2 and 4 × 4 cm2 , and in IMRT fields. Calculations were cross-checked (gamma analysis) with the treatment planning system and with measurements (MP512, films, ionization chamber). RESULTS: In the square fields, calculations agreed with measurements to within ±2.36%. In the IMRT fields, using acceptance criteria of 3%/3 mm, 2%/2 mm, 1%/1 mm, calculations had respective gamma passing rates greater than 96.89%, 90.50%, 62.20% (for a 4 cm SSD); and greater than 97.22%, 93.80%, 59.00% (for a 24 cm SSD). Lower rates (1%/1 mm criterion) can be explained by submillimeter misalignments, dose averaging in calculations, noise artifacts in film dosimetry. CONCLUSIONS: It is possible to perform TM measurements at the SSD which produces the best fit between the area at dmax in which the dose map is calculated and the size of the monitored target.


Assuntos
Algoritmos , Dosimetria Fotográfica/instrumentação , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/instrumentação , Humanos , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
14.
J Appl Clin Med Phys ; 20(1): 89-100, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30412346

RESUMO

PURPOSE: To quantify the contribution of penumbra in the improvement of healthy tissue sparing at reduced source-to-axis distance (SAD) for simple spherical target and different prescription isodoses (PI). METHOD: A TPS-independent method was used to estimate three-dimensional (3D) dose distribution for stereotactic treatment of spherical targets of 0.5 cm radius based on single beam two-dimensional (2D) film dosimetry measurements. 1 cm target constitutes the worst case for the conformation with standard Multi-Leaf Collimator (MLC) with 0.5 cm leaf width. The measured 2D transverse dose cross-sections and the profiles in leaf and jaw directions were used to calculate radial dose distribution from isotropic beam arrangement, for both quadratic and circular beam openings, respectively. The results were compared for standard (100 cm) and reduced SAD 70 and 55 cm for different PI. RESULTS: For practical reduction of SAD using quadratic openings, the improvement of healthy tissue sparing (HTS) at distances up to 3 times the PTV radius was at least 6%-12%; gradient indices (GI) were reduced by 3-39% for PI between 40% and 90%. Except for PI of 80% and 90%, quadratic apertures at SAD 70 cm improved the HTS by up to 20% compared to circular openings at 100 cm or were at least equivalent; GI were 3%-33% lower for reduced SAD in the PI range 40%-70%. For PI = 80% and 90% the results depend on the circular collimator model. CONCLUSION: Stereotactic treatments of spherical targets delivered at reduced SAD of 70 or 55 cm using MLC spare healthy tissue around the target at least as good as treatments at SAD 100 cm using circular collimators. The steeper beam penumbra at reduced SAD seems to be as important as perfect target conformity. The authors argue therefore that the beam penumbra width should be addressed in the stereotactic studies.


Assuntos
Neoplasias/radioterapia , Órgãos em Risco/efeitos da radiação , Aceleradores de Partículas/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/instrumentação , Desenho de Equipamento , Humanos , Modelos Biológicos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
15.
J Appl Clin Med Phys ; 20(8): 114-121, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31343831

RESUMO

We sought to validate new couch modeling optimization for tomotherapy planning and delivery. We constructed simplified virtual structures just above a default setting couch through a planning support system (MIM Maestro, version 8.2, MIM Software Inc, Cleveland, OH, USA). Based on ionization chamber measurements, we performed interactive optimization and determined the most appropriate physical density of these virtual structures in a treatment planning system (TPS). To validate this couch optimization, Gamma analysis and these statistical analyses between a three-dimensional diode array QA system (ArcCHECK, Sun Nuclear, Melbourne, FL, USA) results and calculations from ionization chamber measurements were performed at 3%/2 mm criteria with a threshold of 10% in clinical QA plans. Using a virtual model consisting of a center slab density of 4.2 g/cm3 and both side slabs density of 1.9 g/cm3 , we demonstrated close agreement between measured dose and the TPS calculated dose. Agreement was within 1% for all gantry angles at the isocenter and within 2% in off-axis plans. In validation of the couch modeling in a clinical QA plan, the average gamma passing rate improved approximately 0.6%-5.1%. It was statistically significant (P < 0.05) for all treatment sites. We successfully generated an accurate couch model for a TomoTherapy TPS by interactively optimizing the physical density of the couch using a planning support system. This modeling proved to be an efficient way of correcting the dosimetric effects of the treatment couch in tomotherapy planning and delivery.


Assuntos
Modelos Teóricos , Neoplasias/radioterapia , Posicionamento do Paciente , Garantia da Qualidade dos Cuidados de Saúde/normas , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Intensidade Modulada/instrumentação , Algoritmos , Fibra de Carbono/química , Humanos , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
16.
J Appl Clin Med Phys ; 20(10): 13-23, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31478343

RESUMO

A high-resolution diode array has been comprehensively evaluated. It consists of 1013 point diode detectors arranged on the two 7.7 × 7.7 cm2 printed circuit boards (PCBs). The PCBs are aligned face to face in such a way that the active volumes of all diodes are in the same plane. All individual correction factors required for accurate dosimetry have been validated for conventional and flattening filter free (FFF) 6MV beams. That included diode response equalization, linearity, repetition rate dependence, field size dependence, angular dependence at the central axis and off-axis in the transverse, sagittal, and multiple arbitrary planes. In the end-to-end tests the array and radiochromic film dose distributions for SRS-type multiple-target plans were compared. In the equalization test (180° rotation), the average percent dose error between the normal and rotated positions for all diodes was 0.01% ± 0.1% (range -0.3 to 0.4%) and -0.01% ± 0.2% (range -0.9 to 0.9%) for 6 MV and 6MV FFF beams, respectively. For the axial angular response, corrected dose stayed within 2% from the ion chamber for all gantry angles, until the beam direction approached the detector plane. In azimuthal direction, the device agreed with the scintillator within 1% for both energies. For multiple combinations of couch and gantry angles, the average percent errors were -0.00% ± 0.6% (range: -2.1% to 1.6%) and -0.1% ± 0.5% (range -1.6% to 2.1%) for the 6MV and 6MV FFF beams, respectively. The measured output factors were largely within 2% of the scintillator, except for the 5 mm 6MV beam showing a 3.2% deviation. The 2%/1 mm gamma analysis of composite SRS measurements produced the 97.2 ± 1.3% (range 95.8-98.5%) average passing rate against film. Submillimeter (≤0.5 mm) dose profile alignment with film was demonstrated in all cases.


Assuntos
Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Radiometria/instrumentação , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/instrumentação , Humanos , Radiometria/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Silício
17.
J Appl Clin Med Phys ; 20(10): 101-110, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31544350

RESUMO

PURPOSE: To evaluate the quality of patient-specific complicated treatment plans, including commercialized treatment planning systems (TPS) and commissioned beam data, we developed a process of quality assurance (QA) using a Monte Carlo (MC) platform. Specifically, we constructed an interface system that automatically converts treatment plan and dose matrix data in digital imaging and communications in medicine to an MC dose-calculation engine. The clinical feasibility of the system was evaluated. MATERIALS AND METHODS: A dose-calculation engine based on GATE v8.1 was embedded in our QA system and in a parallel computing system to significantly reduce the computation time. The QA system automatically converts parameters in volumetric-modulated arc therapy (VMAT) plans to files for dose calculation using GATE. The system then calculates dose maps. Energies of 6 MV, 10 MV, 6 MV flattening filter free (FFF), and 10 MV FFF from a TrueBeam with HD120 were modeled and commissioned. To evaluate the beam models, percentage depth dose (PDD) values, MC calculation profiles, and measured beam data were compared at various depths (Dmax , 5 cm, 10 cm, and 20 cm), field sizes, and energies. To evaluate the feasibility of the QA system for clinical use, doses measured for clinical VMAT plans using films were compared to dose maps calculated using our MC-based QA system. RESULTS: A LINAC QA system was analyzed by PDD and profile according to the secondary collimator and multileaf collimator (MLC). Values for MC calculations and TPS beam data obtained using CC13 ion chamber (IBA Dosimetry, Germany) were consistent within 1.0%. Clinical validation using a gamma index was performed for VMAT treatment plans using a solid water phantom and arbitrary patient data. The gamma evaluation results (with criteria of 3%/3 mm) were 98.1%, 99.1%, 99.2%, and 97.1% for energies of 6 MV, 10 MV, 6 MV FFF, and 10 MV FFF, respectively. CONCLUSIONS: We constructed an MC-based QA system for evaluating patient treatment plans and evaluated its feasibility in clinical practice. We observed robust agreement between dose calculations from our QA system and measurements for VMAT plans. Our QA system could be useful in other clinical settings, such as small-field SRS procedures or analyses of secondary cancer risk, for which dose calculations using TPS are difficult to verify.


Assuntos
Método de Monte Carlo , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/instrumentação , Simulação por Computador , Estudos de Viabilidade , Humanos , Aceleradores de Partículas/normas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Intensidade Modulada/normas
18.
J Appl Clin Med Phys ; 20(2): 94-106, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30672648

RESUMO

Despite the improvements in the dose calculation models of the commercial treatment planning systems (TPS), their ability to accurately predict patient dose is still limited. One of the limitations is caused by the simplified model of the multileaf collimator (MLC). The aim of this study was to develop a Monte Carlo (MC) method-based independent patient dose validation system with an elaborate MLC model for more accurate dose evaluation. Varian Clinac 2300 IX was simulated using Geant4 toolkits, after which MC commissioning with measurements was performed to validate the simulation model. A DICOM-RT interface was developed to obtain the beam delivery conditions including the hundreds of MLC motions. Finally, the TPS dose distributions were compared with the MC dose distributions for water phantom cases and a patient case. Our results show that the TPS overestimated the absolute abutting leakage dose in the closed MLC field, with about 20% more of the maximum dose than that of the MC calculation. For water phantom cases, the dose distributions inside the target region were almost identical with the dose difference of less than 2%, while the dose near the edge of the target shows difference about 10% between Geant4 and TPS due to geometrical differences in MLC model. For the patient analysis, the Geant4 and TPS doses of all organs were matched well within 1.4% of the prescribed dose. However, for organs located in areas with high ratio of leaf pairs with distances less than 10 mm leaf pair (LP(<10mm) ), the maximum dose of TPS was overestimated by about 3% of the prescribed dose. These dose comparison results demonstrate that our system for calculating the patient dose is quite accurate. Furthermore, if the MLC sequences in treatment plan have a large ratio of LP(short) , more than 3% dose difference in normal tissue could be seen.


Assuntos
Simulação por Computador , Método de Monte Carlo , Neoplasias/radioterapia , Imagens de Fantasmas , Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Humanos , Órgãos em Risco/efeitos da radiação , Radiometria/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/instrumentação
19.
J Appl Clin Med Phys ; 20(2): 84-93, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30680884

RESUMO

Malignancies with a superficial involvement of the scalp/skull present technical challenges for radiation-treatment-planning, such as achieving skin coverage with the prescribed dose and with the desirable conformity, homogeneity, and lower brain dose. We report a radiotherapy treatment technique for a patient diagnosed with diffuse basosquamous cell carcinoma of the scalp and adjacent skull-bone. This study presents the plan's quality parameters, patient's dosimetry, and patient's outcome. The patient was treated using volume-modulated-arc therapy (VMAT) and a double-shell-bolus full-head device (DSBFD) designed for patient immobilization and better skin coverage. A VMAT plan was generated using an Eclipse treatment-planning system for a prescribed dose of 60 Gy in 30 fractions. The treatment plan was analyzed to determine the conformity index (CI), the homogeneity index (HI), the target-coverage, and the dose to the organs-at-risk (OARs). Skin-doses were measured using optically stimulated luminescence (OSL) dosimeters. Clinical follow-up was performed by the radiation oncologist during and after the course of radiotherapy. With regard to planning target volume (PTV) coverage, the V95 was 99%. The measured and calculated dose to the skin was in the range 100-108% of the prescribed dose. The mean brain-PTV dose was 711 cGy. The CI and HI were 1.09 and 1.08, respectively. The mean positioning accuracy for the patient over the course of treatment was within 2 mm. The measured accumulated skin dose and planning dose was agreed within 2%. Clinical examination of the patient 6 months after radiotherapy showed good response to the treatment and a 90% reduction in scarring. The DSBFD technique combined with RapidArc treatment was useful in terms of the target dose distribution and coverage. Daily patient alignment was found very precise, reproducible and less time-consuming.


Assuntos
Neoplasias Ósseas/radioterapia , Carcinoma Basoescamoso/radioterapia , Imobilização/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/instrumentação , Couro Cabeludo/efeitos da radiação , Feminino , Humanos , Pessoa de Meia-Idade , Órgãos em Risco/efeitos da radiação , Prognóstico , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Couro Cabeludo/patologia
20.
J Appl Clin Med Phys ; 20(11): 27-36, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31633882

RESUMO

PURPOSE: To describe and characterize daily machine quality assurance (QA) for an MR-guided radiotherapy (MRgRT) linac system, in addition to reporting a longitudinal assessment of the dosimetric and mechanical stability over a 7-month period of clinical operation. METHODS: Quality assurance procedures were developed to evaluate MR imaging/radiation isocenter, imaging and patient handling system, and linear accelerator stability. A longitudinal assessment was characterized for safety interlocks, laser and imaging isocenter coincidence, imaging and radiation (RT) isocentricity, radiation dose rate and output, couch motion, and MLC positioning. A cylindrical water phantom and an MR-compatible A1SL detector were utilized. MR and RT isocentricity and MLC positional accuracy was quantified through dose measured with a 0.40 cm2  x 0.83 cm2 field at each cardinal angle. The relationship between detector response to MR/RT isocentricity and MLC positioning was established through introducing known errors in phantom position. RESULTS: Correlation was found between detector response and introduced positional error (N = 27) with coefficients of determination of 0.9996 (IEC-X), 0.9967 (IEC-Y), 0.9968 (IEC-Z) in each respective shift direction. The relationship between dose (DoseMR/RT+MLC ) and the vector magnitude of MLC and MR/RT positional error (Errormag ) was calculated to be a nonlinear response and resembled a quadratic function: DoseMR/RT+MLC [%] = -0.0253 Errormag [mm]2  - 0.0195 Errormag [mm]. For the temporal assessment (N = 7 months), safety interlocks were functional. Laser coincidence to MR was within ±2.0 mm (99.6%) and ±1.0 mm (86.8%) over the 7-month assessment. IGRT position-reposition shifts were within ±2.0 mm (99.4%) and ±1.0 mm (92.4%). Output was within ±3% (99.4%). Mean MLC and MR/RT isocenter accuracy was 1.6 mm, averaged across cardinal angles for the 7-month period. CONCLUSIONS: The linac and IGRT accuracy of an MR-guided radiotherapy system has been validated and monitored over seven months for daily QA. Longitudinal assessment demonstrated a drift in dose rate, but temporal assessment of output, MLC position, and isocentricity has been stable.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias/radioterapia , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Radioterapia de Intensidade Modulada/instrumentação , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Estudos Longitudinais , Órgãos em Risco/efeitos da radiação , Aceleradores de Partículas/instrumentação , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA