Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.690
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 592(7854): 469-473, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33762731

RESUMO

Serotonin, or 5-hydroxytryptamine (5-HT), is an important neurotransmitter1,2 that activates the largest subtype family of G-protein-coupled receptors3. Drugs that target 5-HT1A, 5-HT1D, 5-HT1E and other 5-HT receptors are used to treat numerous disorders4. 5-HT receptors have high levels of basal activity and are subject to regulation by lipids, but the structural basis for the lipid regulation and basal activation of these receptors and the pan-agonism of 5-HT remains unclear. Here we report five structures of 5-HT receptor-G-protein complexes: 5-HT1A in the apo state, bound to 5-HT or bound to the antipsychotic drug aripiprazole; 5-HT1D bound to 5-HT; and 5-HT1E in complex with a 5-HT1E- and 5-HT1F-selective agonist, BRL-54443. Notably, the phospholipid phosphatidylinositol 4-phosphate is present at the G-protein-5-HT1A interface, and is able to increase 5-HT1A-mediated G-protein activity. The receptor transmembrane domain is surrounded by cholesterol molecules-particularly in the case of 5-HT1A, in which cholesterol molecules are directly involved in shaping the ligand-binding pocket that determines the specificity for aripiprazol. Within the ligand-binding pocket of apo-5-HT1A are structured water molecules that mimic 5-HT to activate the receptor. Together, our results address a long-standing question of how lipids and water molecules regulate G-protein-coupled receptors, reveal how 5-HT acts as a pan-agonist, and identify the determinants of drug recognition in 5-HT receptors.


Assuntos
Microscopia Crioeletrônica , Ligantes , Lipídeos , Receptores 5-HT1 de Serotonina/metabolismo , Receptores 5-HT1 de Serotonina/ultraestrutura , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Aripiprazol/metabolismo , Aripiprazol/farmacologia , Sítios de Ligação , Colesterol/farmacologia , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/ultraestrutura , Humanos , Modelos Moleculares , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatos de Fosfatidilinositol/farmacologia , Receptor 5-HT1A de Serotonina/química , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/ultraestrutura , Receptores 5-HT1 de Serotonina/química , Agonistas do Receptor 5-HT1 de Serotonina/química , Agonistas do Receptor 5-HT1 de Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Água/química
2.
PLoS Genet ; 16(8): e1009003, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32866139

RESUMO

Sensory systems rely on neuromodulators, such as serotonin, to provide flexibility for information processing as stimuli vary, such as light intensity throughout the day. Serotonergic neurons broadly innervate the optic ganglia of Drosophila melanogaster, a widely used model for studying vision. It remains unclear whether serotonin modulates the physiology of interneurons in the optic ganglia. To address this question, we first mapped the expression patterns of serotonin receptors in the visual system, focusing on a subset of cells with processes in the first optic ganglion, the lamina. Serotonin receptor expression was found in several types of columnar cells in the lamina including 5-HT2B in lamina monopolar cell L2, required for spatiotemporal luminance contrast, and both 5-HT1A and 5-HT1B in T1 cells, whose function is unknown. Subcellular mapping with GFP-tagged 5-HT2B and 5-HT1A constructs indicated that these receptors localize to layer M2 of the medulla, proximal to serotonergic boutons, suggesting that the medulla neuropil is the primary site of serotonergic regulation for these neurons. Exogenous serotonin increased basal intracellular calcium in L2 terminals in layer M2 and modestly decreased the duration of visually induced calcium transients in L2 neurons following repeated dark flashes, but otherwise did not alter the calcium transients. Flies without functional 5-HT2B failed to show an increase in basal calcium in response to serotonin. 5-HT2B mutants also failed to show a change in amplitude in their response to repeated light flashes but other calcium transient parameters were relatively unaffected. While we did not detect serotonin receptor expression in L1 neurons, they, like L2, underwent serotonin-induced changes in basal calcium, presumably via interactions with other cells. These data demonstrate that serotonin modulates the physiology of interneurons involved in early visual processing in Drosophila.


Assuntos
Receptor 5-HT1B de Serotonina/genética , Receptores 5-HT1 de Serotonina/genética , Receptores 5-HT2 de Serotonina/genética , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo , Animais , Ritmo Circadiano/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica/genética , Interneurônios/metabolismo , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Neurotransmissores/genética , Receptores de Serotonina/genética , Serotonina/genética , Percepção Visual/genética
3.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769117

RESUMO

A series of 15 new derivatives of 6-acetyl-7-hydroxy-4-methylcoumarin containing a piperazine group were designed with the help of computational methods and were synthesized to study their affinity for the serotonin 5-HT1A and 5-HT2A receptors. Among them, 6-acetyl-7-{4-[4-(3-bromophenyl)piperazin-1-yl]butoxy}-4-methylchromen-2-one (4) and 6-acetyl-7-{4-[4-(2-chlorophenyl)piperazin-1-yl]butoxy}-4-methylchromen-2-one (7) exhibited excellent activity for 5-HT1A receptors with Ki values 0.78 (0.4-1.4) nM and 0.57 (0.2-1.3) nM, respectively, comparable to the Ki values of 8-OH-DPAT (0.25 (0.097-0.66) nM). The equilibrium dissociation constant values of the tested compounds showed differential intrinsic activities of the agonist and antagonist modes.


Assuntos
Compostos Heterocíclicos , Serotonina , Receptor 5-HT1A de Serotonina , Receptores de Serotonina , Receptores 5-HT1 de Serotonina , Piperazinas/farmacologia , Receptor 5-HT2A de Serotonina
4.
Cephalalgia ; 42(13): 1339-1348, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35833238

RESUMO

BACKGROUND: We aimed to examine the effects of repetitive cortical spreading depression on the responses of nociceptive trigeminal neurons with dural afferents and characterize the role of 5-HT1B/1D and opioid receptors. METHODS: Trigeminocervical complex neurons (n = 53) responsive to nociceptive activation of the dura mater were studied in rats using electrophysiological techniques. RESULTS: A sub-population (n = 32) showed an average inhibition of dural-evoked responses of 65 ± 14% from baseline with cortical spreading depression. This response was reversed by the selective 5-HT1B/1D receptor antagonist, GR127935 (3 mg/kg; n = 6, iv), and a non-selective opioid receptor antagonist, naloxone (1.5 mg/kg; n = 6, iv), five minutes after injection. To determine the role of the nucleus raphe magnus in the trigeminocervical complex inhibitory effect, microinjection of lidocaine (2%, n = 6) or muscimol (100 mM, n = 5) into the nucleus raphe magnus was performed. There was no effect on cortical spreading depression-induced inhibition of neuronal firing in trigeminocervical complex by either. CONCLUSION: The data demonstrate that repetitive cortical spreading depression inhibits a subpopulation of dural nociceptive trigeminocervical neurons, an effect mediated by serotonin and opioid receptors. This inhibition does not involve modulation of nucleus raphe magnus neurons.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Receptores Opioides , Receptores 5-HT1 de Serotonina , Animais , Ratos , Neurônios , Nociceptores , Receptores Opioides/fisiologia , Receptores 5-HT1 de Serotonina/fisiologia
5.
Biochem Biophys Res Commun ; 526(2): 505-511, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32241546

RESUMO

The action of anxiolytic compounds that act on selective serotonin receptors (SSRIs) have been scarcely evaluated. Serotonergic drugs have been shown to be effective in treating anxiety without presenting adverse effects as benzodiazepines. However, the anxiolytic effects take days to occur. This study aimed to evaluate the anxiolytic effect of the synthetic chalcone, 4'-[(2E) -3- (3-nitrophenyl) -1- (phenyl) prop-2-en-1-one] acetamide (PAAMNBA), and its possible mechanism of action in adult zebrafish (Danio rerio). PAAMNBA was synthesized with a yield of 51.3% and its chemical structure was determined by 1H and 13C NMR. Initially, PAAPMNBA was intraperitoneally administered to zebrafish (n = 6/group) at doses of 4, 12, or 40 mg/kg, and the animals were subsequently subjected to acute and open field toxicity tests. PAAMNBA was administered to the other groups (n = 6/group) for analyzing its effect in the light and dark test. The involvement of the serotonergic (5HT) system was also evaluated using 5-HTR 1, 5-HTR 2A/2C, and 5-HTR 3A/3B receptor antagonists, namely, pizotifeo, granizetron, and ciproeptadina, respectively. Molecular coupling was performed using the 5-HT1 receptor. PAAMNBA was found to be non-toxic, reduced the locomotor activity, and had an anxiolytic effect in adult zebrafish. The effect was reduced by pretreatment with pizotifene and was not reversed by treatment with granizetron and cyproeptadine. A previous in vivo molecular coupling study indicated that chalcones interact with the 5-HT1 receptor. The results suggested that the chalcone, PAAPMNBA, has anxiolytic activity, that is mediated by the serotonergic system via the 5-HT1 receptor. The interaction of PAAPMNBA with the 5-HT1 receptor was confirmed by molecular docking studies.


Assuntos
Acetamidas/farmacologia , Ansiolíticos/farmacologia , Chalcona/farmacologia , Serotonina/metabolismo , Acetamidas/química , Animais , Ansiolíticos/química , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Chalcona/análogos & derivados , Descoberta de Drogas , Locomoção/efeitos dos fármacos , Simulação de Acoplamento Molecular , Receptores 5-HT1 de Serotonina/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
6.
Arch Pharm (Weinheim) ; 353(2): e1900218, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31782553

RESUMO

Four 2-(1H-indol-3-yl)ethylthiourea derivatives were prepared by condensation of 2-(1H-indol-3-yl)ethanamine with the corresponding aryl/alkylisothiocyanates in a medium-polarity solvent. Their structures were confirmed by spectral techniques, and the molecular structure of 3 was determined by X-ray crystal analysis. For all derivatives, the binding affinities at the 5-HT2A and 5-HT2C receptors, as well as their functional activities at the 5-HT1A and D2 receptors, were determined. The arylthioureas 1 and 4 were the most active at the 5-HT1A receptor, showing, at the same time, significant selectivity over the studied 5-HT2 and D2 receptor subtypes. The compounds were tested for their pharmacological activities within the central nervous system in relevant mouse models. The involvement of the serotonergic system in the activity of 1 and 4 was indicated. The antinociceptive action of 4 was linked to its anti-inflammatory activity.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Indóis/farmacologia , Tioureia/farmacologia , Anfetamina , Analgésicos/síntese química , Analgésicos/química , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Sítios de Ligação/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Hipercinese/induzido quimicamente , Hipercinese/tratamento farmacológico , Indóis/síntese química , Indóis/química , Masculino , Camundongos , Modelos Moleculares , Estrutura Molecular , Receptores de Dopamina D2/metabolismo , Receptores 5-HT1 de Serotonina/metabolismo , Receptores 5-HT2 de Serotonina/metabolismo , Relação Estrutura-Atividade , Tioureia/síntese química , Tioureia/química
7.
Neurobiol Learn Mem ; 155: 528-542, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29800645

RESUMO

Aerobic exercise (AE) benefits brain health and behavior. Serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) are known to mediate and shape cognitive processes. Both systems share some actions: BDNF is involved in the maturation and function of 5-HT neurons. In turn, 5-HT is involved in neuroplasticity phenomena mediated by BDNF and stimulated by exercise. The aim of this work was to study the long-term effects of AE on BDNF- 5-HT systems and cognitive function in rats at different ages. A lifelong moderate-intensity aerobic training program was designed, in which aerobically exercised (E) and sedentary control (C) rats were studied at middle (8 months) and old age (18 months) by means of biochemical, immunohistochemical and behavioral assays. The levels and expression of BDNF, 5-HT, serotonin transporter (SERT) and 5-HT1A receptor were determined in selected brain areas involved in memory and learning. Immunopositive cells to neuronal nuclear protein (NeuN) in the hippocampus CA1 area were also quantified. The cognitive function was evaluated by the object recognition test (ORT). Results indicate that AE enhanced spatial and non-spatial memory systems, modulated by age. This outcome temporarily correlated with a significant upregulation of cortical, hippocampal and striatal BDNF levels in parallel with an increase in the number of hippocampal CA1-mature neurons. AE also increased brain and raphe 5-HT levels, as well as the expression of SERT and 5-HT1A receptor in the cortex and hippocampus. Old AE rats showed a highly conserved response, indicating a remarkable protective effect of exercise on both systems. In summary, lifelong AE positively affects BDNF-5-HT systems, improves cognitive function and protects the brain against the deleterious effects of sedentary life and aging.


Assuntos
Ansiedade/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/metabolismo , Cognição/fisiologia , Condicionamento Físico Animal , Serotonina/metabolismo , Animais , Comportamento Exploratório , Hipocampo/metabolismo , Masculino , Neurônios/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ratos Wistar , Receptores 5-HT1 de Serotonina/metabolismo , Reconhecimento Psicológico , Comportamento Sedentário , Regulação para Cima
8.
Artigo em Inglês | MEDLINE | ID: mdl-29290056

RESUMO

Endogenous monoamine 5-hydroxytryptamine (5-HT, serotonin) is a phylogenetically ancient neurotransmitter present in vertebrates. The functions of 5-HT in central nervous system are intensively studied; however, the presynaptic effects of 5-HT in frog spinal motoneurons are practically unexplored. We have previously shown that 5-HT decreases the frequency of glycinergic miniature inhibitory postsynaptic potentials (mIPSPs), but does not affect the frequency of GABAergic mIPSPs and increases the frequency of glutamatergic postsynaptic potentials. In the present study, using pharmacological methods and intracellular recordings in motoneurons from an adult frog's isolated spinal cord, we aimed to identify the 5-HT receptor subtype responsible for inhibiting the release of glycine. Аn agonist of 5-HT1A and 5-HT7 receptors, 8-OH-DPAT, and a selective agonist of 5-HT2 receptors, α-Ме-5-НТ, did not show any significant effect on inhibitory transmission, indicating that 5-HT1A, 5-HT2, and 5-HT7 receptors are not involved in the modulation of glycine release in the adult frog spinal cord. An agonist of 5-HT1B/D receptors sumatriptan decreased the frequency (but not the amplitude) of glycinergic mIPSPs similar to 5-HT. An antagonist of 5-HT1,2 receptors, methysergide, abolished the effect of sumatriptan. Together our results suggest that 5-HT inhibits the release of glycine by activation of 5-HT1B/D receptors.


Assuntos
Glicina/metabolismo , Neurônios Motores/metabolismo , Inibição Neural/fisiologia , Terminações Pré-Sinápticas/metabolismo , Receptores 5-HT1 de Serotonina/metabolismo , Medula Espinal/metabolismo , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Metisergida/farmacologia , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Neurônios Motores/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Rana ridibunda , Receptores de Serotonina/metabolismo , Receptores 5-HT2 de Serotonina/metabolismo , Serotonina/metabolismo , Serotoninérgicos/farmacologia , Técnicas de Cultura de Tecidos
9.
J Headache Pain ; 19(1): 40, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29802544

RESUMO

BACKGROUND: Dihydroergotamine (DHE) is an antimigraine drug that produces cranial vasoconstriction and inhibits trigeminal CGRP release; furthermore, it inhibits the vasodepressor sensory CGRPergic outflow, but the receptors involved remain unknown. Prejunctional activation of α2A/2C-adrenergic, serotonin 5-HT1B/1F, or dopamine D2-like receptors results in inhibition of this CGRPergic outflow. Since DHE displays affinity for these receptors, this study investigated the pharmacological profile of DHE-induced inhibition of the vasodepressor sensory CGRPergic outflow. METHODS: Pithed rats were pretreated i.v. with hexamethonium (2 mg/kg·min) followed by continuous infusions of methoxamine (20 µg/kg·min) and DHE (3.1 µg/kg·min). Then, stimulus-response curves (spinal electrical stimulation; T9-T12) or dose-response curves (i.v. injections of α-CGRP) resulted in frequency-dependent or dose-dependent decreases in diastolic blood pressure. RESULTS: DHE inhibited the vasodepressor responses to electrical stimulation (0.56-5.6 Hz), without affecting those to i.v. α-CGRP (0.1-1 µg/kg). This inhibition by DHE (not produced by the methoxamine infusions): (i) was abolished by pretreatment with the combination of the antagonists rauwolscine (α2-adrenoceptor; 310 µg/kg) plus GR127935 (5-HT1B/1D; 31 µg/kg); and (ii) remained unaffected after rauwolscine (310 µg/kg), GR127935 (31 µg/kg) or haloperidol (D2-like; 310 µg/kg) given alone, or after the combination of rauwolscine plus haloperidol or GR127935 plus haloperidol at the aforementioned doses. CONCLUSION: DHE-induced inhibition of the vasodepressor sensory CGRPergic outflow is mainly mediated by prejunctional rauwolscine-sensitive α2-adrenoceptors and GR127935-sensitive 5-HT1B/1D receptors, which correlate with α2A/2C-adrenoceptors and 5-HT1B receptors, respectively. These findings suggest that DHE-induced inhibition of the perivascular sensory CGRPergic outflow may facilitate DHE's vasoconstrictor properties resulting in an increased vascular resistance.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Di-Hidroergotamina/farmacologia , Receptores Adrenérgicos/metabolismo , Receptores 5-HT1 de Serotonina/metabolismo , Agonistas Adrenérgicos/farmacologia , Animais , Pressão Sanguínea/fisiologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Estimulação Elétrica , Masculino , Ratos , Ratos Wistar , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Vasoconstrição , Vasoconstritores/farmacologia
10.
BMC Complement Altern Med ; 16: 212, 2016 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-27411565

RESUMO

BACKGROUND: Osteoarthritis (OA) is an degenerative disease characterized by chronic joint pain. Complementary and alternative treatment such as acupuncture have been utilized to alleviate pain. The objective of this study was to investigate the analgesic mechanisms of electroacupuncture (EA) in the collagenase-induced osteoarthritis (CIOA) rat model. METHODS: Four weeks after inducing CIOA by injecting collagenase solution into the left knee of 5-week-old male Sprague-Dawley rats, 2 Hz and 100 Hz EA on Zusanli (ST 36) was performed. The analgesic effect of EA was evaluated by the tail flick latency (TFL) and paw pressure threshold (PPT) tests. To investigate the analgesic mechanism, serotonergic and muscarinic cholinergic receptor agonists and antagonists were injected 20 min prior to EA and the resultant changes were evaluated by the TFL and PPT tests. RESULTS: EA on Zusanli (ST 36) demonstrated an analgesic effect in the CIOA rat model. The 2 Hz EA treatment showed a significantly greater analgesic effect than the 100 Hz treatment. The analgesic effect of 2 Hz EA was not strengthened by 5-HT1, 5-HT2, 5-HT3, and muscarinic cholinergic receptor agonist pretreatment, was blocked by 5-HT1, 5-HT3, and muscarinic cholinergic receptor antagonist pretreatment, but not blocked by 5-HT2 receptor antagonist pretreatment. CONCLUSIONS: In the CIOA rat model, EA on Zusanli (ST 36) exhibited analgesic effects, and 2 Hz EA resulted in a significantly greater analgesic effect than 100 Hz EA. The analgesic effect of 2 Hz EA was reduced by pretreatment of 5-HT1 receptor, 5-HT3 receptor and muscarinic cholinergic receptor antagonists.


Assuntos
Eletroacupuntura/métodos , Osteoartrite/metabolismo , Manejo da Dor/métodos , Receptores Muscarínicos/metabolismo , Receptores 5-HT1 de Serotonina/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Animais , Colagenases/efeitos adversos , Masculino , Osteoartrite/induzido quimicamente , Ratos , Ratos Sprague-Dawley
11.
Bioorg Med Chem Lett ; 25(19): 4337-41, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26271587

RESUMO

Preclinical experiments and clinical observations suggest the potential effectiveness of selective 5-HT1F receptor agonists in migraine. Identifying compounds with enhanced selectivity is crucial to assess its therapeutic value. Replacement of the indole nucleus in 2 (LY334370) with a monocyclic phenyl ketone moiety generated potent and more selective 5-HT1F receptor agonists. Focused SAR studies around this central phenyl ring demonstrated that the electrostatic and steric interactions of the substituent with both the amide CONH group and the ketone CO group play pivotal roles in affecting the adopted conformation and thus the 5-HT1F receptor selectivity. Computational studies confirmed the observed results and provide a useful tool in the understanding of the conformational requirements for 5-HT1F receptor agonist activity and selectivity. Through this effort, the 2-F-phenyl and N-2-pyridyl series were also identified as potent and selective 5-HT1F receptor agonists.


Assuntos
Benzamidas/farmacologia , Descoberta de Drogas , Piperidinas/farmacologia , Receptores 5-HT1 de Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Benzamidas/síntese química , Benzamidas/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/química , Teoria Quântica , Agonistas do Receptor 5-HT1 de Serotonina/síntese química , Agonistas do Receptor 5-HT1 de Serotonina/química , Relação Estrutura-Atividade
12.
J Clin Psychol ; 71(3): 250-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25327536

RESUMO

OBJECTIVE: Serotonergic (5-HT) functioning has been shown to be inversely associated with intentional self-injurious behaviors. The purpose of this study was to examine the association between three related self-report measures of intentional self-injurious behaviors (suicidal thoughts/behavior, history of nonsuicidal self-injury, history of severe self-harm when angry) and a putative electrophysiological index of 5-HT activity, the loudness dependence of auditory evoked potential (LDAEP). METHOD: Auditory evoked potentials were recorded from 41 men (mean age = 20.69, standard deviation [SD] = 2.98) during the administration of various tone loudness stimuli, followed by completion of the self-report measures. RESULTS: The component slope was associated with all measures of self-injurious behavior in the expected direction. CONCLUSION: The LDAEP has the potential to be used as a noninvasive index of intentional self-harm disposition. Additional studies are needed using other populations, including women and treatment-seeking individuals, to determine if the LDAEP more broadly discriminates risk of self-injuring.


Assuntos
Potenciais Evocados Auditivos/fisiologia , Receptores 5-HT1 de Serotonina/fisiologia , Comportamento Autodestrutivo/fisiopatologia , Ideação Suicida , Adolescente , Adulto , Biomarcadores , Eletroencefalografia , Voluntários Saudáveis , Humanos , Percepção Sonora , Masculino , Estudantes , Inquéritos e Questionários , Universidades , Adulto Jovem
13.
Eur J Neurosci ; 40(3): 2513-26, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24830553

RESUMO

In Drosophila, serotonin (5-HT) regulates aggression, mating behaviour and sleep/wake behaviour through different receptors. Currently, how these various receptors are themselves regulated is still not completely understood. The KCTD12-family of proteins, which have been shown to modify G-protein-coupled receptor (GPCR) signalling in mammals, are one possibility of auxiliary proteins modulating 5-HT receptor signalling. The KCTD12-family was found to be remarkably conserved and present in species from C. elegans to humans. The Drosophila KCTD12 homologue Kctd12-like (Ktl) was highly expressed in both the larval and adult CNS. By performing behavioural assays in male Drosophila, we now reveal that Ktl is required for proper male aggression and mating behaviour. Previously, it was shown that Ktl is in a complex with the Drosophila 5-HT receptor 5-HT7, and we observed that both Ktl and the 5-HT1A receptor are required in insulin-producing cells (IPCs) for proper adult male behaviour, as well as for hyperaggressive activity induced by the mammalian 5-HT1A receptor agonist 8-hydroxy-2-dipropylaminotetralin-hydrobromide. Finally, we show that Ktl expression in the IPCs is necessary to regulate locomotion and normal sleep/wake patterns in Drosophila, but not the 5-HT1A receptor. Similar to what was observed with mammalian KCTD12-family members that interact physically with a GPCR receptor to regulate desensitization, in Drosophila Ktl may function in GPCR 5-HT receptor pathways to regulate their signalling, which is required for proper adult male behaviour.


Assuntos
Agressão/fisiologia , Proteínas de Drosophila/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Encéfalo/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Feminino , Expressão Gênica , Masculino , Atividade Motora , Receptores 5-HT1 de Serotonina/metabolismo , Receptores 5-HT1 de Serotonina/fisiologia , Análise de Sequência de Proteína
14.
J Pharmacol Sci ; 124(3): 394-407, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24599137

RESUMO

Gender differences in psychiatric disorders are considered to be associated with the serotonergic (5-HTergic) system; however the underlying mechanisms have not been clearly elucidated. In this study, possible involvement of the median raphe nucleus (MRN)-hippocampus 5-HTergic system in gender-specific emotional regulation was investigated, focusing on synaptic plasticity in rats. A behavioral study using a contextual fear conditioning (CFC) paradigm showed that the females exhibited low anxiety-like behavior. Extracellular 5-HT levels in the hippocampus were increased by CFC only in the males. Long-term potentiation (LTP) in the hippocampal CA1 field was suppressed after CFC in the males, which was mimicked by the synaptic response to MRN electrical stimulation. In the MRN, 5-HT immunoreactive cells significantly increased in the females compared with those in the males. Pretreatment with the 5-HT1A receptor agonists tandospirone (10 mg/kg, i.p.) and 8-OH DPAT (3 mg/kg, i.p.) significantly suppressed LTP induction in the males. Synaptic responses to CFC and 5-HT1A receptor interventions were not observed in the females. These results suggest that the metaplastic 5-HTergic mechanism via 5-HT1A receptors in the MRN-hippocampus pathway is a key component for gender-specific emotional regulation and may be a cause of psychiatric disorders associated with vulnerability or resistance to emotional stress.


Assuntos
Emoções Manifestas/fisiologia , Hipocampo/fisiologia , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Núcleos da Rafe/patologia , Receptores 5-HT1 de Serotonina/fisiologia , Sinapses/fisiologia , Animais , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Feminino , Hipocampo/metabolismo , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Transtornos Mentais/etiologia , Transtornos Mentais/psicologia , Metaplasia/genética , Ratos , Ratos Wistar , Serotonina/metabolismo , Caracteres Sexuais , Estresse Psicológico/complicações
15.
ACS Chem Neurosci ; 15(2): 357-370, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38150333

RESUMO

The serotonin (5-hydroxytryptamine, 5-HT) 5-HT1 G-protein coupled receptor subtypes (5-HT1A/1B/1D/1E/1F) share a high sequence homology, confounding development of subtype-specific ligands. This study used a 5-HT1 structure-based ligand design approach to develop subtype-selective ligands using a 5-substituted-2-aminotetralin (5-SAT) chemotype, leveraging results from pharmacological, molecular modeling, and mutagenesis studies to delineate molecular determinants for 5-SAT binding and function at 5-HT1 subtypes. 5-SATs demonstrated high affinity (Ki ≤ 25 nM) and at least 50-fold stereoselective preference ([2S] > [2R]) at 5-HT1A, 5-HT1B, and 5-HT1D receptors but essentially nil affinity (Ki > 1 µM) at 5-HT1F receptors. The 5-SATs tested were agonists with varying degrees of potency and efficacy, depending on chemotype substitution and 5-HT1 receptor subtype. Models were built from the 5-HT1A (cryo-EM), 5-HT1B (crystal), and 5-HT1D (cryo-EM) structures, and 5-SATs underwent docking studies with up to 1 µs molecular dynamics simulations. 5-SAT interactions observed at positions 3.33, 5.38, 5.42, 5.43, and 7.39 of 5-HT1 subtypes were confirmed with point mutation experiments. Additional 5-SATs were designed and synthesized to exploit experimental and computational results, yielding a new full efficacy 5-HT1A agonist with 100-fold selectivity over 5-HT1B/1D receptors. The results presented lay the foundation for the development of additional 5-HT1 subtype selective ligands for drug discovery purposes.


Assuntos
Receptor 5-HT1F de Serotonina , Serotonina , Tetra-Hidronaftalenos , Serotonina/metabolismo , Receptores de Serotonina/genética , Agonistas do Receptor de Serotonina/farmacologia , Ligantes , Receptores 5-HT1 de Serotonina , Receptor 5-HT1B de Serotonina
16.
Sci Rep ; 13(1): 22511, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38110471

RESUMO

G protein-coupled receptors (GPCRs), which regulate numerous intracellular signaling cascades that mediate many essential physiological processes, are attractive yet underexploited insecticide targets. RNA interference (RNAi) technology could facilitate the custom design of environmentally safe pesticides that target GPCRs in select target pests yet are not toxic to non-target species. This study investigates the hypothesis that an RNAi yeast insecticide designed to silence mosquito serotonin receptor 1 (5-HTR1) genes can kill mosquitoes without harming non-target arthropods. 5-HTR.426, a Saccharomyces cerevisiae strain that expresses an shRNA targeting a site specifically conserved in mosquito 5-HTR1 genes, was generated. The yeast can be heat-inactivated and delivered to mosquito larvae as ready-to-use tablets or to adult mosquitoes using attractive targeted sugar baits (ATSBs). The results of laboratory and outdoor semi-field trials demonstrated that consumption of 5-HTR.426 yeast results in highly significant mortality rates in Aedes, Anopheles, and Culex mosquito larvae and adults. Yeast consumption resulted in significant 5-HTR1 silencing and severe neural defects in the mosquito brain but was not found to be toxic to non-target arthropods. These results indicate that RNAi insecticide technology can facilitate selective targeting of GPCRs in intended pests without impacting GPCR activity in non-targeted organisms. In future studies, scaled production of yeast expressing the 5-HTR.426 RNAi insecticide could facilitate field trials to further evaluate this promising new mosquito control intervention.


Assuntos
Aedes , Inseticidas , Animais , Interferência de RNA , Saccharomyces cerevisiae/genética , Inseticidas/farmacologia , RNA Interferente Pequeno/genética , Controle de Mosquitos/métodos , Aedes/genética , Larva/genética , Receptores 5-HT1 de Serotonina/genética
17.
Synapse ; 66(12): 1015-23, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22927318

RESUMO

INTRODUCTION: [(18) F]MeFWAY has been developed for imaging the serotonin 1A receptors in the brain. The purpose of this study were to verify the metabolic stability of [(18) F]MeFWAY, to measure the degree of defluorination of [(18) F]MeFWAY in vivo, to investigate methods of inhibition of defluorination of [(18) F]MeFWAY, and to assess the efficacy of [(18) F]MeFWAY in rat brains in vivo. METHODS: MicroPET experiments in rats were conducted to confirm the distribution of radioactivity in the brain. Nondisplaceable binding potential (BP(ND) ) in the hippocampus and frontal cortex were also analyzed. Miconazole and fluconazole were tested for the ability to suppress defluorination of [(18) F]MeFWAY. We conducted a blockade and displacement experiment by treating with WAY-100635. RESULTS: In vitro stability tests showed that MeFWAY was very stable in serum for 6 h, but PET revealed that authentic [(18) F]MeFWAY underwent significant defluorination in vivo. In vitro inhibition study against decreasing parent activity in liver microsomes, miconazole and fluconazole suppressed metabolic elimination of MeFWAY. However, in the PET study, fluconazole showed more potent inhibitory activity than miconazole. In the suppression of metabolizing enzymes using fluconazole, radioactivity in skull was dramatically decreased by 81% (compared with 69% with miconazole) and it was coupled with an increase in brain uptake. Moreover, BP(ND) in hippocampus was 5.53 and 2.66 in frontal cortex. The blockade and displacement study showed the specificity of [(18) F]MeFWAY to 5-HT(1A) receptors. CONCLUSION: In the rat brain, [(18) F]MeFWAY microPET showed skull uptake due to defluorination in vivo. We can effectively overcome this drawback with fluconazole.


Assuntos
Química Encefálica , Piperazinas/farmacocinética , Tomografia por Emissão de Pósitrons , Piridinas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Receptores 5-HT1 de Serotonina/análise , Animais , Encéfalo/diagnóstico por imagem , Estabilidade de Medicamentos , Fluconazol/farmacologia , Radioisótopos de Flúor/farmacocinética , Ligantes , Masculino , Miconazol/farmacologia , Piperazinas/síntese química , Piridinas/síntese química , Compostos Radiofarmacêuticos/síntese química , Ratos , Ratos Sprague-Dawley
18.
J Exp Biol ; 215(Pt 17): 2969-79, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22875766

RESUMO

In this study, we evaluated the serotonin-mediated control of cerebral glycogen levels in the rainbow trout, Oncorhynchus mykiss. Intracerebroventricular (i.c.v.) administration of serotonin (5-HT) to normoglycemic trout (time and dose response) decreased glycogen levels in the brain and increased brain glycogen phosphorylase activity (time response). In hypoglycemic fish (that had been fasted for 5 and 10 days), there was a time-dependent decrease in brain glycogen levels; under these conditions, i.c.v. administration of 5-HT also reduced the brain glycogen content in fish that had been fasted for 5 days. In fish with local cerebral hypoglycemia (induced by 2-DG administration), the glycogen levels decreased and, as above, i.c.v. administration of 5-HT also lowered the glycogen content. In hyperglycemic fish, 5-HT did not affect glycogen levels. Administration of receptor agonists 5-HT1A (8-OH-DPAT), 5-HT1B (anpirtoline and CP93129) or 5-HT2 (α-m-5-HT) decreased the brain glycogen levels. This effect was antagonized by the administration of receptor antagonists 5-HT1A (WAY100135 and NAN190), 5-HT1B (NAS181) and 5-HT2B/C (SB206553). Administration of the receptor agonists (±)-DOI (5-HT2A/2C), m-CPP (5-HT2B/2C), BW723C86 (5-HT2B) and WAY 161503 (5-HT2C) led to decreases in the levels of brain glycogen. We found that 5-HT is involved in the modulation of brain glycogen homeostasis in the rainbow trout, causing a glycogenolytic effect when fish are in a normoglycemic or hypoglycemic state, but not when they are in a hyperglycemic state. 5-HT1A, 5-HT1B, 5HT2B and 5-HT2C-like receptors appeared to be involved in the glycogenolytic action of 5-HT, although the effect mediated by 5-HT1A or 5-HT1B was apparently stronger.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Glicogenólise/efeitos dos fármacos , Oncorhynchus mykiss/metabolismo , Serotonina/farmacologia , Animais , Benzopiranos/administração & dosagem , Benzopiranos/farmacologia , Encéfalo/enzimologia , Glicogênio/metabolismo , Glicogênio Fosforilase Encefálica/metabolismo , Indóis/administração & dosagem , Indóis/farmacologia , Injeções Intraperitoneais , Injeções Intraventriculares , Morfolinas/administração & dosagem , Morfolinas/farmacologia , Piperazinas/administração & dosagem , Piperazinas/farmacologia , Pirazinas/administração & dosagem , Pirazinas/farmacologia , Piridinas/administração & dosagem , Piridinas/farmacologia , Quinoxalinas/administração & dosagem , Quinoxalinas/farmacologia , Receptores 5-HT1 de Serotonina/metabolismo , Serotonina/administração & dosagem , Agonistas do Receptor 5-HT1 de Serotonina/administração & dosagem , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT1 de Serotonina/administração & dosagem , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Tiofenos/administração & dosagem , Tiofenos/farmacologia , Fatores de Tempo
19.
Br J Anaesth ; 109(2): 245-52, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22628394

RESUMO

BACKGROUND: Although acupuncture analgesia is well documented, its mechanisms have not been thoroughly clarified. We previously showed that electroacupuncture (EA) activates supraspinal serotonin- and norepinephrine-containing neurones that project to the spinal cord. This study investigates the involvement of spinal alpha(2)-adrenoceptors (α2-ARs) and 5-hydroxytryptamine (serotonin) receptors (5-HTRs) in EA effects on an inflammatory pain rat model. METHODS: Inflammatory hyperalgesia was induced by injecting complete Freund's adjuvant (CFA, 0.08 ml) into the plantar surface of one hind paw and assessed by paw withdrawal latency (PWL) to a noxious thermal stimulus. The selective α2a-AR antagonist BRL-44408, α2b-AR antagonist imiloxan hydrochloride, 5-HT2B receptor (5-HT2BR) antagonist SB204741, 5-HT3R antagonist LY278584, or 5-HT1AR antagonists NAN-190 hydrobromide, or WAY-100635 were intrathecally administered 20 min before EA or sham EA, which was given 2 h post-CFA at acupoint GB30. RESULTS: EA significantly increased PWL compared with sham [7.20 (0.46) vs 5.20 (0.43) s]. Pretreatment with α2a-AR [5.35 (0.45) s] or 5-HT1AR [5.22 (0.38) s] antagonists blocked EA-produced anti-hyperalgesia; α2b-AR, 5-HT2BR, and 5-HT3R antagonist pretreatment did not. Sham plus these antagonists did not significantly change PWL compared with sham plus vehicle, indicating that the antagonists had little effect on PWL. Immunohistochemical staining demonstrated that α2a-ARs are on primary afferents and 5-HT1ARs are localized in N-methyl-d-aspartic acid (NMDA) subunit NR1-containing neurones in the spinal dorsal horn. CONCLUSIONS: The data show that α2a-ARs and 5-HT1ARs are involved in the EA inhibition of inflammatory pain and that the NMDA receptors are involved in EA action.


Assuntos
Eletroacupuntura/métodos , Hiperalgesia/prevenção & controle , Receptores Adrenérgicos alfa 2/fisiologia , Receptores 5-HT1 de Serotonina/fisiologia , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Modelos Animais de Doenças , Adjuvante de Freund , Temperatura Alta , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Masculino , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Receptores Adrenérgicos alfa 2/metabolismo , Receptores 5-HT1 de Serotonina/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Medula Espinal/metabolismo
20.
Behav Brain Res ; 427: 113865, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35367298

RESUMO

Pharmacological activation of the serotonin (5-HT) 1B and 5-HT1A receptors has been shown to induce OCD-like perseverative circling and locomotor stereotypy in rodents. Although, several studies have examined how activation of these receptors facilitates these motor-associated OCD-like behaviors, it is not known how acute 5-HT1B and 5-HT1A activation impacts behavioral inflexibility, a common trait related to OCD. The current study examined how acute 5-HT1B/1A receptor agonist RU24969 treatment at 0.01, 0.1, and 1.0 mg/kg impacted behavioral flexibility in both female and male C57BL/6J mice. Behavioral flexibility was tested using a spatial reversal learning task, with probabilistic reward contingencies. In addition, locomotor activity and anxiety-like behaviors were also measured. RU24969 at 0.1 and 1.0 mg/kg impaired behavioral flexibility in both female and male C57BL/6J mice. RU24969 treatment at 1.0 mg/kg reduced locomotor activity in male mice, although RU24969 treatment did not significantly reduce locomotor activity in female mice. In the open field, 1.0 mg/kg elevated anxiety-like behavior in male mice only. Overall, these results demonstrate that acute 5-HT1B and 5-HT1A receptor activation leads to impairments in behavioral flexibility, a common trait associated with OCD.


Assuntos
Receptor 5-HT1A de Serotonina , Serotonina , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor 5-HT1B de Serotonina , Receptores 5-HT1 de Serotonina , Serotonina/farmacologia , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA