Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.447
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 132(2): 501-513, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38958282

RESUMO

Neuromodulation in the retina is crucial for effective processing of retinal signal at different levels of illuminance. Intrinsically photosensitive retinal ganglion cells (ipRGCs), the neurons that drive nonimage-forming visual functions, express a variety of neuromodulatory receptors that tune intrinsic excitability as well as synaptic inputs. Past research has examined actions of neuromodulators on light responsiveness of ipRGCs, but less is known about how neuromodulation affects synaptic currents in ipRGCs. To better understand how neuromodulators affect synaptic processing in ipRGC, we examine actions of opioid and dopamine agonists have on inhibitory synaptic currents in ipRGCs. Although µ-opioid receptor (MOR) activation had no effect on γ-aminobutyric acid (GABA) currents, dopamine [via the D1-type dopamine receptor (D1R)]) amplified GABAergic currents in a subset of ipRGCs. Furthermore, this D1R-mediated facilitation of the GABA conductance in ipRGCs was mediated by a cAMP/PKA-dependent mechanism. Taken together, these findings reinforce the idea that dopamine's modulatory role in retinal adaptation affects both nonimage-forming and image-forming visual functions.NEW & NOTEWORTHY Neuromodulators such as dopamine are important regulators of retinal function. Here, we demonstrate that dopamine increases inhibitory inputs to intrinsically photosensitive retinal ganglion cells (ipRGCs), in addition to its previously established effect on intrinsic light responsiveness. This indicates that dopamine, in addition to its ability to intrinsically modulate ipRGC activity, can also affect synaptic inputs to ipRGCs, thereby tuning retina circuits involved in nonimage-forming visual functions.


Assuntos
Dopamina , Receptores de GABA-A , Células Ganglionares da Retina , Animais , Células Ganglionares da Retina/fisiologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Dopamina/metabolismo , Dopamina/farmacologia , Receptores de GABA-A/metabolismo , Camundongos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Receptores Opioides mu/metabolismo , Masculino , Potenciais Pós-Sinápticos Inibidores/fisiologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Feminino , Agonistas de Dopamina/farmacologia
2.
J Neurophysiol ; 132(3): 1056-1073, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39110896

RESUMO

Besides having high potency and efficacy at the µ-opioid (MOR) and other opioid receptor types, fentanyl has some affinity for some adrenergic receptor types, which may underlie its unique pathophysiological differences from typical opioids. To better understand the unique actions of fentanyl, we assessed the extent to which fentanyl alters striatal medium spiny neuron (MSN) activity via opioid receptors or α1-adrenoceptors in dopamine type 1 or type 2 receptor (D1 or D2)-expressing MSNs. In neuronal and mixed-glial cocultures from the striatum, acute fentanyl (100 nM) exposure decreased the frequency of spontaneous action potentials. Overnight exposure of cocultures to 100 nM fentanyl severely reduced the proportion of MSNs with spontaneous action potentials, which was unaffected by coexposure to the opioid receptor antagonist naloxone (10 µM) but fully negated by coadministering the pan-α1-adrenoceptor inverse agonist prazosin (100 nM) and partially reversed by the selective α1A-adrenoceptor antagonist RS 100329 (300 nM). Acute fentanyl (100 nM) exposure modestly reduced the frequency of action potentials and caused firing rate adaptations in D2, but not D1, MSNs. Prolonged (2-5 h) fentanyl (100 nM) application dramatically attenuated firing rates in both D1 and D2 MSNs. To identify possible cellular sites of α1-adrenoceptor action, α1-adrenoceptors were localized in subpopulations of striatal astroglia and neurons by immunocytochemistry and Adra1a mRNA by in situ hybridization in astrocytes. Thus, sustained fentanyl exposure can inhibit striatal MSN activity via a nonopioid receptor-dependent pathway, which may be modulated via complex actions in α1-adrenoceptor-expressing striatal neurons and/or glia.NEW & NOTEWORTHY Acute fentanyl exposure attenuated the activity of striatal medium spiny neurons (MSNs) in vitro and in dopamine D2, but not D1, receptor-expressing MSNs in ex vivo slices. By contrast, sustained fentanyl exposure suppressed the spontaneous activity of MSNs cocultured with glia through a nonopioid receptor-dependent mechanism modulated, in part, by α1-adrenoceptors. Fentanyl exposure can affect striatal function via a nonopioid receptor mechanism of action that appears mediated by α1-adrenoreceptor-expressing striatal neurons and/or astroglia.


Assuntos
Potenciais de Ação , Analgésicos Opioides , Técnicas de Cocultura , Corpo Estriado , Fentanila , Neuroglia , Neurônios , Animais , Fentanila/farmacologia , Neuroglia/efeitos dos fármacos , Neuroglia/fisiologia , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Camundongos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/fisiologia , Analgésicos Opioides/farmacologia , Potenciais de Ação/efeitos dos fármacos , Receptores Opioides/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/efeitos dos fármacos , Masculino , Antagonistas de Entorpecentes/farmacologia , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/antagonistas & inibidores , Células Cultivadas
3.
Neurobiol Learn Mem ; 212: 107937, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735637

RESUMO

Systemic manipulations that enhance dopamine (DA) transmission around the time of fear extinction can strengthen fear extinction and reduce conditioned fear relapse. Prior studies investigating the brain regions where DA augments fear extinction focus on targets of mesolimbic and mesocortical DA systems originating in the ventral tegmental area, given the role of these DA neurons in prediction error. The dorsal striatum (DS), a primary target of the nigrostriatal DA system originating in the substantia nigra (SN), is implicated in behaviors beyond its canonical role in movement, such as reward and punishment, goal-directed action, and stimulus-response associations, but whether DS DA contributes to fear extinction is unknown. We have observed that chemogenetic stimulation of SN DA neurons during fear extinction prevents the return of fear in contexts different from the extinction context, a form of relapse called renewal. This effect of SN DA stimulation is mimicked by a DA D1 receptor (D1R) agonist injected into the DS, thus implicating DS DA in fear extinction. Different DS subregions subserve unique functions of the DS, but it is unclear where in the DS D1R agonist acts during fear extinction to reduce renewal. Furthermore, although fear extinction increases neural activity in DS subregions, whether neural activity in DS subregions is causally involved in fear extinction is unknown. To explore the role of DS subregions in fear extinction, adult, male Long-Evans rats received microinjections of either the D1R agonist SKF38393 or a cocktail consisting of GABAA/GABAB receptor agonists muscimol/baclofen selectively into either dorsomedial (DMS) or dorsolateral (DLS) DS subregions immediately prior to fear extinction, and extinction retention and renewal were subsequently assessed drug-free. While increasing D1R signaling in the DMS during fear extinction did not impact fear extinction retention or renewal, DMS inactivation reduced later renewal. In contrast, DLS inactivation had no effect on fear extinction retention or renewal but increasing D1R signaling in the DLS during extinction reduced fear renewal. These data suggest that DMS and DLS activity during fear extinction can have opposing effects on later fear renewal, with the DMS promoting renewal and the DLS opposing renewal. Mechanisms through which the DS could influence the contextual gating of fear extinction are discussed.


Assuntos
Corpo Estriado , Extinção Psicológica , Medo , Receptores de Dopamina D1 , Animais , Medo/fisiologia , Medo/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Masculino , Ratos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiologia , Corpo Estriado/metabolismo , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/antagonistas & inibidores , Agonistas de Dopamina/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Substância Negra/efeitos dos fármacos , Substância Negra/fisiologia , Ratos Long-Evans , Dopamina/metabolismo , Dopamina/fisiologia
4.
Acta Pharmacol Sin ; 45(8): 1582-1590, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38605179

RESUMO

SCH23390 is a widely used D1 dopamine receptor (D1R) antagonist that also elicits some D1R-independent effects. We previously found that the benzazepine, SKF83959, an analog of SCH23390, produces positive allosteric modulation of the Sigma-1 receptor (Sig1R). SCH23390 does not bind to the orthodoxic site of Sig1R but enhances the binding of 3H (+)-pentazocine to Sig1R. In this study, we investigated whether SCH23390 functions as an allosteric modulator of Sig1R. We detected increased Sig1R dissociation from binding immunoglobulin protein (BiP) and translocation of Sig1R to the plasma membrane in response to SCH23390 in transfected HEK293T and SH-SY5Y cells, respectively. Activation of Sig1R by SCH23390 was further confirmed by inhibition of GSK3ß activity in a time- and dose-dependent manner; this effect was blocked by pretreatment with the Sig1R antagonist, BD1047, and by knockdown of Sig1R. SCH23390 also inhibited GSK3ß in wild-type mice but not in Sig1R knockout mice. Finally, we showed that SCH23390 allosterically modulated the effect of the Sig1R agonist SKF10047 on inhibition of GSK3ß. This positive allosteric effect of SCH23390 was further confirmed via promotion of neuronal protection afforded by SKF10047 in primary cortical neurons challenged with MPP+. These results provide the first evidence that SCH23390 elicits functional allosteric modulation of Sig1R. Our findings not only reveal novel pharmacological effects of SCH23390 but also indicate a potential mechanism for SCH23390-mediated D1R-independent effects. Therefore, attention should be paid to these Sig1R-mediated effects when explaining pharmacological responses to SCH23390.


Assuntos
Benzazepinas , Receptores de Dopamina D1 , Receptores sigma , Receptor Sigma-1 , Receptores sigma/metabolismo , Receptores sigma/antagonistas & inibidores , Humanos , Animais , Benzazepinas/farmacologia , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Células HEK293 , Camundongos , Antagonistas de Dopamina/farmacologia , Masculino , Camundongos Endogâmicos C57BL
5.
Am J Physiol Cell Physiol ; 322(3): C327-C337, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986020

RESUMO

In vivo administration of dopamine (DA) receptor (DR)-related drugs modulate gastric pepsinogen secretion. However, DRs on gastric pepsinogen-secreting chief cells and DA D2 receptor (D2R) on somatostatin-secreting D cells were subsequently acquired. In this study, we aimed to further investigate the local effect of DA on gastric pepsinogen secretion through DRs expressed on chief cells or potential D2Rs expressed on D cells. To elucidate the modulation of DRs in gastric pepsinogen secretion, immunofluorescence staining, ex vivo incubation of gastric mucosa isolated from normal and D2R-/- mice were conducted, accompanied by measurements of pepsinogen or somatostatin levels using biochemical assays or enzyme-linked immunosorbent assays. D1R, D2R, and D5R-immunoreactivity (IR) were observed on chief cells in mouse gastric mucosa. D2R-IR was widely distributed on D cells from the corpus to the antrum. Ex vivo incubation results showed that DA and the D1-like receptor agonist SKF38393 increased pepsinogen secretion, which was blocked by the D1-like receptor antagonist SCH23390. However, D2-like receptor agonist quinpirole also significantly increased pepsinogen secretion, and D2-like receptor antagonist sulpiride blocked the promotion of DA. Besides, D2-like receptors exerted an inhibitory effect on somatostatin secretion, in contrast to their effect on pepsinogen secretion. Furthermore, D2R-/- mice showed much lower basal pepsinogen secretion but significantly increased somatostatin release and an increased number of D cells in gastric mucosa. Only SKF38393, not quinpirole, increased pepsinogen secretion in D2R-/- mice. DA promotes gastric pepsinogen secretion directly through D1-like receptors on chief cells and indirectly through D2R-mediated suppression of somatostatin release.


Assuntos
Celulas Principais Gástricas/efeitos dos fármacos , Agonistas de Dopamina/farmacologia , Pepsinogênio A/metabolismo , Quimpirol/farmacologia , Receptores de Dopamina D2/agonistas , Células Secretoras de Somatostatina/efeitos dos fármacos , Somatostatina/metabolismo , Animais , Celulas Principais Gástricas/metabolismo , Antagonistas de Dopamina/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Via Secretória , Células Secretoras de Somatostatina/metabolismo
6.
Nature ; 537(7620): 357-362, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27602521

RESUMO

The retention of episodic-like memory is enhanced, in humans and animals, when something novel happens shortly before or after encoding. Using an everyday memory task in mice, we sought the neurons mediating this dopamine-dependent novelty effect, previously thought to originate exclusively from the tyrosine-hydroxylase-expressing (TH+) neurons in the ventral tegmental area. Here we report that neuronal firing in the locus coeruleus is especially sensitive to environmental novelty, locus coeruleus TH+ neurons project more profusely than ventral tegmental area TH+ neurons to the hippocampus, optogenetic activation of locus coeruleus TH+ neurons mimics the novelty effect, and this novelty-associated memory enhancement is unaffected by ventral tegmental area inactivation. Surprisingly, two effects of locus coeruleus TH+ photoactivation are sensitive to hippocampal D1/D5 receptor blockade and resistant to adrenoceptor blockade: memory enhancement and long-lasting potentiation of synaptic transmission in CA1 ex vivo. Thus, locus coeruleus TH+ neurons can mediate post-encoding memory enhancement in a manner consistent with possible co-release of dopamine in the hippocampus.


Assuntos
Dopamina/metabolismo , Locus Cerúleo/fisiologia , Consolidação da Memória/fisiologia , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/fisiologia , Técnicas In Vitro , Locus Cerúleo/citologia , Locus Cerúleo/efeitos da radiação , Masculino , Consolidação da Memória/efeitos dos fármacos , Consolidação da Memória/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/efeitos da radiação , Optogenética , Receptores Adrenérgicos/metabolismo , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D5/antagonistas & inibidores , Receptores de Dopamina D5/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/fisiologia
7.
Nutr Neurosci ; 25(1): 137-145, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32050863

RESUMO

Objectives: Inbred mouse strains differ in the pharmacology mediating sugar and fat intake and conditioned flavor preferences (CFP). C57BL/6, BALB/c and SWR inbred mice are differentially sensitive to dopamine (DA) D1, opioid and muscarinic receptor antagonism of sucrose, saccharin or fat intake, and to DA, opioid, muscarinic and N-methyl-D-aspartate (NMDA) receptor antagonism of acquisition of sucrose-CFP. DA D1, opioid and NMDA receptor antagonists differentially alter fat (Intralipid)-CFP in BALB/c and SWR mice. The present study examined whether naltrexone, SCH23390 or MK-801 altered acquisition and expression of Intralipid-CFP in C57BL/6 mice.Methods: In acquisition, groups of male food-restricted C57BL/6 mice received vehicle, naltrexone (1, 5 mg/kg), SCH23390 (50, 200 nmol/kg) or MK-801 (100, 200 µg/kg) before 10 training sessions in which mice alternately consumed two novel-flavored 5% (CS+) and 0.5% (CS-) Intralipid solutions. Six two-bottle CS choice tests followed with both flavors mixed in 0.5% Intralipid without injections. In expression, C57BL/6 mice underwent the 10 training sessions without injections followed by two-bottle CS choice tests 30 min following vehicle, naltrexone (1, 5 mg/kg), SCH23390 (200, 800 nmol/kg) or MK-801 (100, 200 µg/kg).Results: Fat-CFP acquisition in C57BL/6 mice was significantly though marginally reduced following naltrexone, SCH23390 and MK-801. Fat-CFP expression was similarly reduced by naltrexone, SCH23390 and MK-801 in C57BL/6 mice. Discussion: C57BL/6 mice were more sensitive to DA D1, opioid and NMDA antagonists in the expression of fat-CFP relative to sugar-CFP, but were less sensitive to DA D1 and NMDA antagonists in the acquisition of fat-CFP relative to sugar-CFP.


Assuntos
Gorduras na Dieta , Antagonistas de Entorpecentes/farmacologia , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Paladar/fisiologia , Animais , Benzazepinas/farmacologia , Condicionamento Clássico , Maleato de Dizocilpina/farmacologia , Emulsões , Preferências Alimentares/efeitos dos fármacos , Preferências Alimentares/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Naltrexona/farmacologia , Fosfolipídeos , Receptores Opioides , Óleo de Soja , Paladar/efeitos dos fármacos
8.
Learn Mem ; 28(1): 24-29, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33323499

RESUMO

Dopamine plays a critical role in behavioral tasks requiring interval timing (time perception in a seconds-to-minutes range). Although some studies demonstrate the role of dopamine receptors as a controller of the speed of the internal clock, other studies demonstrate their role as a controller of motivation. Both D1 dopamine receptors (D1DRs) and D2 dopamine receptors (D2DRs) within the dorsal striatum may play a role in interval timing because the dorsal striatum contains rich D1DRs and D2DRs. However, relative to D2DRs, the precise role of D1DRs within the dorsal striatum in interval timing is unclear. To address this issue, rats were trained on the peak-interval 20-sec procedure, and D1DR antagonist SCH23390 was infused into the bilateral dorsocentral striatum before behavioral sessions. Our results showed that the D1DR blockade drastically reduced the maximum response rate and increased the time to start responses with no effects on the time to terminate responses. These findings suggest that the D1DRs within the dorsal striatum are required for motivation to respond, but not for modulation of the internal clock speed.


Assuntos
Comportamento Animal/fisiologia , Antagonistas de Dopamina/farmacologia , Motivação/fisiologia , Neostriado/metabolismo , Receptores de Dopamina D1/metabolismo , Percepção do Tempo/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Antagonistas de Dopamina/administração & dosagem , Masculino , Motivação/efeitos dos fármacos , Neostriado/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de Dopamina D1/antagonistas & inibidores , Percepção do Tempo/efeitos dos fármacos
9.
J Neurosci ; 40(44): 8478-8490, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998974

RESUMO

Meso-diencephalic dopaminergic neurons are known to modulate locomotor behaviors through their ascending projections to the basal ganglia, which in turn project to the mesencephalic locomotor region, known to control locomotion in vertebrates. In addition to their ascending projections, dopaminergic neurons were found to increase locomotor movements through direct descending projections to the mesencephalic locomotor region and spinal cord. Intriguingly, fibers expressing tyrosine hydroxylase (TH), the rate-limiting enzyme of dopamine synthesis, were also observed around reticulospinal neurons of lampreys. We now examined the origin and the role of this innervation. Using immunofluorescence and tracing experiments, we found that fibers positive for dopamine innervate reticulospinal neurons in the four reticular nuclei of lampreys. We identified the dopaminergic source using tracer injections in reticular nuclei, which retrogradely labeled dopaminergic neurons in a caudal diencephalic nucleus (posterior tuberculum [PT]). Using voltammetry in brain preparations isolated in vitro, we found that PT stimulation evoked dopamine release in all four reticular nuclei, but not in the spinal cord. In semi-intact preparations where the brain is accessible and the body moves, PT stimulation evoked swimming, and injection of a D1 receptor antagonist within the middle rhombencephalic reticular nucleus was sufficient to decrease reticulospinal activity and PT-evoked swimming. Our study reveals that dopaminergic neurons have access to command neurons that integrate sensory and descending inputs to activate spinal locomotor neurons. As such, our findings strengthen the idea that dopamine can modulate locomotor behavior both via ascending projections to the basal ganglia and through descending projections to brainstem motor circuits.SIGNIFICANCE STATEMENT Meso-diencephalic dopaminergic neurons play a key role in modulating locomotion by releasing dopamine in the basal ganglia, spinal networks, and the mesencephalic locomotor region, a brainstem region that controls locomotion in a graded fashion. Here, we report in lampreys that dopaminergic neurons release dopamine in the four reticular nuclei where reticulospinal neurons are located. Reticulospinal neurons integrate sensory and descending suprareticular inputs to control spinal interneurons and motoneurons. By directly modulating the activity of reticulospinal neurons, meso-diencephalic dopaminergic neurons control the very last instructions sent by the brain to spinal locomotor circuits. Our study reports on a new direct descending dopaminergic projection to reticulospinal neurons that modulates locomotor behavior.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Locomoção/fisiologia , Formação Reticular/fisiologia , Medula Espinal/fisiologia , Animais , Fenômenos Biomecânicos , Antagonistas de Dopamina/farmacologia , Estimulação Elétrica , Fenômenos Eletrofisiológicos , Lampreias , Fibras Nervosas/fisiologia , Receptores de Dopamina D1/antagonistas & inibidores , Natação , Tirosina 3-Mono-Oxigenase/fisiologia
10.
Neurobiol Dis ; 155: 105393, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34000417

RESUMO

Evidence suggests that exaggerated beta range local field potentials (LFP) in basal ganglia-thalamocortical circuits constitute an important biomarker for feedback for deep brain stimulation in Parkinson's disease patients, although the role of this phenomenon in triggering parkinsonian motor symptoms remains unclear. A useful model for probing the causal role of motor circuit LFP synchronization in motor dysfunction is the unilateral dopamine cell-lesioned rat, which shows dramatic motor deficits walking contralaterally to the lesion but can walk steadily ipsilaterally on a circular treadmill. Within hours after 6-OHDA injection, rats show marked deficits in ipsilateral walking with early loss of significant motor cortex (MCx) LFP peaks in the mid-gamma 41-45 Hz range in the lesioned hemisphere; both effects were reversed by dopamine agonist administration. Increases in MCx and substantia nigra pars reticulata (SNpr) coherence and LFP power in the 29-40 Hz range emerged more gradually over 7 days, although without further progression of walking deficits. Twice-daily chronic dopamine antagonist treatment induced rapid onset of catalepsy and also reduced MCx 41-45 Hz LFP activity at 1 h, with increases in MCx and SNpr 29-40 Hz power/coherence emerging over 7 days, as assessed during periods of walking before the morning treatments. Thus, increases in high beta power in these parkinsonian models emerge gradually and are not linearly correlated with motor deficits. Earlier changes in cortical circuits, reflected in the rapid decreases in MCx LFP mid-gamma LFP activity, may contribute to evolving plasticity supporting increased beta range synchronized activity in basal ganglia-thalamocortical circuits after loss of dopamine receptor stimulation.


Assuntos
Ritmo beta/fisiologia , Ritmo Gama/fisiologia , Córtex Motor/fisiopatologia , Transtornos Motores/fisiopatologia , Oxidopamina/toxicidade , Transtornos Parkinsonianos/fisiopatologia , Animais , Ritmo beta/efeitos dos fármacos , Antagonistas dos Receptores de Dopamina D2/administração & dosagem , Teste de Esforço/métodos , Ritmo Gama/efeitos dos fármacos , Masculino , Córtex Motor/efeitos dos fármacos , Transtornos Motores/induzido quimicamente , Transtornos Parkinsonianos/induzido quimicamente , Ratos , Ratos Long-Evans , Receptores de Dopamina D1/antagonistas & inibidores
11.
Amino Acids ; 53(3): 461-470, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33649971

RESUMO

The present study aimed to examine the mediatory role of the dopaminergic system in the food intake induced by intracerebroventricular (ICV) injection of glycine in neonatal 3-h feed-deprived (FD3) meat-type chickens. In the first and second experiments, birds were ICV injected using low and high doses of glycine (50, 100 and 200 nmol) and strychnine (50, 100 and 200 nmol), respectively. In experiments 3-9, the behaviorally subeffective doses of dopamine (10 nmol), 6-OHDA (2.5 nmol), SCH 23,390 (D1 antagonist; 5 nmol), AMI-193 (D2 antagonist; 5 nmol), NGB2904 (D3 antagonist; 6.4 nmol) and L-741,742 (D4 antagonist; 6 nmol) were, respectively, co-administrated with glycine (200 nmol) in FD3 5-day-old chicks to investigate possible interplay of dopamine receptors in glycine-induced feeding behavior. Then, cumulative food intake based on body weight percentage (%BW) was determined at 30, 60 and 120 min after the injection. According to the results, dopamine significantly boosted the hypophagia induced by glycine at all-time intervals (p ≤ 0.001). These results combined with the previous findings suggest an interplay between dopamine and glycine in chicken's brain in which D1 receptor-mediated food intake induced by glycine.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Glicina/farmacologia , Receptores de Dopamina D1/metabolismo , Animais , Animais Recém-Nascidos , Galinhas , Dopamina/administração & dosagem , Dopamina/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Glicina/administração & dosagem , Injeções Intraventriculares , Masculino , Receptores de Dopamina D1/antagonistas & inibidores
12.
Neurochem Res ; 46(8): 2008-2018, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33993443

RESUMO

Cannabidiol (CBD) is a non-psychotomimetic compound with strong potential to decrease the psychostimulant's rewarding effect with unclear receptors. Furthermore, as a part of the reward circuit, the hippocampus plays a crucial role in regulating the reward properties of drugs as determined by conditioned place preference (CPP). In the current research, CPP was used to evaluate the role of intra-CA1 microinjection of D1-like dopamine receptor antagonists in CBD's inhibitory effect on the acquisition and expression phases of methamphetamine (METH). Animals were treated by METH (1 mg/kg; sc) in a five-day schedule to induce CPP. To find out the impact of D1-like dopamine receptor antagonist, SCH23390, in the CA1 on the inhibitory influence of CBD on the acquisition of METH, the rats received intra-CA1 administration of SCH23390 (0.25, 1, and 4 µg/0.5 µl) following ICV treatment of CBD (10 µg/5 µl) over conditioning phase of METH. Furthermore, animals were given SCH23390 in the CA1 ensuing ICV microinjection of CBD (50 µg/5 µl) in the expression phase of METH to rule out the influence of SCH23390 on the suppressive effect of CBD on the expression of METH CPP. Intra-CA1 microinjection of SCH23390 abolished CBD's suppressive impact on both METH-induced CPP phases without any side effect on the locomotion. The current research disclosed that CBD inhibited the rewarding characteristic of METH via D1-like dopamine receptors in the CA1 region of the hippocampus.


Assuntos
Região CA1 Hipocampal/efeitos dos fármacos , Canabidiol/uso terapêutico , Fármacos do Sistema Nervoso Central/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Metanfetamina/farmacologia , Receptores de Dopamina D1/metabolismo , Animais , Benzazepinas/farmacologia , Região CA1 Hipocampal/metabolismo , Antagonistas de Dopamina/farmacologia , Masculino , Ratos Wistar , Receptores de Dopamina D1/antagonistas & inibidores
13.
Neurochem Res ; 46(6): 1487-1501, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33710536

RESUMO

Activation of dopamine (DA) neurons is essential for the transition from sleep to wakefulness and maintenance of awakening, and sufficient to accelerate the emergence from general anesthesia in animals. Dopamine receptors (DR) are involve in arousal mediation. In the present study, we showed that the olfactory tubercle (OT) was active during emergence from isoflurane anesthesia, local injection of dopamine D1 receptor (D1R) agonist chloro-APB (1 mg/mL) and D2 receptor (D2R) agonist quinpirole (1 mg/mL) into OT enhanced behavioural and cortical arousal from isoflurane anesthesia, while D1R antagonist SCH-23390 (1 mg/mL) and D2R antagonist raclopride (2.5 mg/mL) prolonged recovery time. Optogenetic activation of DAergic terminals in OT also promoted behavioural and cortical arousal from isoflurane anesthesia. However, neither D1R/D2R agonists nor D1R/D2R antagonists microinjection had influences on the induction of isoflurane anesthesia. Optogenetic stimulation on DAergic terminals in OT also had no impact on the anesthesia induction. Our results indicated that DA signals in OT accelerated emergence from isoflurane anesthesia. Furthermore, the induction of general anesthesia, different from the emergence process, was not mediated by the OT DAergic pathways.


Assuntos
Anestésicos Inalatórios/farmacologia , Nível de Alerta/fisiologia , Isoflurano/farmacologia , Tubérculo Olfatório/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Nível de Alerta/efeitos dos fármacos , Benzazepinas/farmacologia , Agonistas de Dopamina/farmacologia , Antagonistas dos Receptores de Dopamina D2/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Quimpirol/farmacologia , Racloprida/farmacologia , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D2/agonistas
14.
Behav Pharmacol ; 32(6): 524-532, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34397448

RESUMO

3,4-Methylenedioxypyrovalerone (MDPV), one of several synthetic cathinones, is a popular constituent of illicit 'bath salts'. In preclinical studies utilizing drug discrimination methods with male rodents, MDPV has been characterized as similar to both cocaine and 3,4-methylenedioxymethamphetamine-hydrochloride (MDMA). Whereas few drug discrimination studies have utilized female rats, the current study evaluated the discriminative stimulus effects of MDPV in 12 adult female Sprague-Dawley rats trained to discriminate 0.5 mg/kg MDPV from saline under a fixed ratio 20 schedule of food reinforcement. Stimulus substitution was assessed with MDPV and its enantiomers, other synthetic cathinones [alpha pyrrolidinopentiophenone-hydrochloride(α-PVP), 4-methylmethcathinone (4-MMC)], other dopamine agonists (cocaine, [+)-methamphetamine] and serotonin agonists [MDMA, lysergic acid diethylamide (LSD)] Stimulus antagonism was assessed with the dopamine D1 receptor antagonist, Sch 23390 and the D2 receptor antagonist, haloperidol. Cocaine and (+)-methamphetamine engendered full stimulus generalization to MDPV with minimal effects on response rate. LSD produced partial substitution, whereas MDMA and 4-MMC produced complete substitution, and all these serotonergic compounds produced dose-dependent response suppression. (S)-MDPV and α-PVP engendered full substitution with similar potency to the racemate, while (R)-MDPV failed to substitute up to 5 mg/kg. Both Sch 23390 and haloperidol attenuated the discrimination of low MDPV doses and essentially shifted the dose-response curve to the right but failed to block discrimination of the training dose. These findings are generally consistent with previous reports based exclusively on male rodents. Moreover, they confirm the contribution of dopaminergic mechanisms but do not rule out the possible contribution of other neurotransmitter actions to the interoceptive stimulus effects of MDPV.


Assuntos
Benzodioxóis/farmacologia , Pirrolidinas/farmacologia , Receptores de Dopamina D1 , Receptores de Dopamina D2 , Animais , Benzazepinas/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Cocaína/farmacologia , Antagonistas de Dopamina/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Feminino , Alucinógenos/farmacologia , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/análise , Receptores de Dopamina D2/metabolismo , Fatores Sexuais , Transmissão Sináptica/fisiologia , Catinona Sintética
15.
Biol Pharm Bull ; 44(3): 442-447, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33642553

RESUMO

The dopamine system plays an important role in regulating many brain functions, including the motor function. The blockade of dopamine receptors results in a serious motor dysfunction, such as catalepsy and Parkinsonism. However, the neuronal mechanism underlying the drug-induced motor dysfunction is not well understood. Here, we examine brain-wide activation patterns in Fos-enhanced green fluorescent protein reporter mice that exhibit cataleptic behavior induced by SCH39166, a dopamine D1-like receptor antagonist, and raclopride, a dopamine D2-like receptor antagonist. Support vector classifications showed that the orbital cortex (ORB) and striatum including the caudoputamen (CP) and nucleus accumbens (ACB), prominently contribute to the discrimination between brains of the vehicle-treated and both SCH39166- and raclopride-treated mice. Interregional correlations indicated that the increased functional connectivity of functional networks, including the ORB, CP, and ACB, is the common mechanism underlying SCH39166- and raclopride-induced cataleptic behavior. Moreover, the distinct mechanisms in the SCH39166- and raclopride-induced cataleptic behaviors are the decreased functional connectivity between three areas above and the cortical amygdala, and between three areas above and the anterior cingulate cortex, respectively. Thus, the alterations of functional connectivity in diverse brain regions, including the ORB, provide new insights on the mechanism underlying drug-induced movement disorders.


Assuntos
Benzazepinas/farmacologia , Catalepsia/induzido quimicamente , Corpo Estriado/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Racloprida/farmacologia , Animais , Catalepsia/fisiopatologia , Corpo Estriado/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Córtex Pré-Frontal/fisiologia , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D2/fisiologia
16.
Med Sci Monit ; 27: e933278, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34657931

RESUMO

BACKGROUND Sodium salicylate (SS) induces excitotoxicity of spiral ganglion neurons (SGNs) by inhibiting the response of γ-aminobutyric acid type A receptors (GABAARs). Our previous studies have shown that SS can increase the internalization of GABAARs on SGNs, which involves dopamine D1-like receptors (D1Rs) and related signaling pathways. In this study, we aimed to explore the role of D1Rs and their downstream molecule protein kinase C (PKC) in the process of SS inhibiting GABAARs. MATERIAL AND METHODS The expression of D1Rs and GABARγ2 on rat cochlear SGNs cultured in vitro was tested by immunofluorescence. Then, the SGNs were exposed to SS, D1R agonist (SKF38393), D1R antagonist (SCH23390), clathrin/dynamin-mediated endocytosis inhibitor (dynasore), and PKC inhibitor (Bisindolylmaleimide I). Western blotting and whole-cell patch clamp technique were used to assess the changes of surface and total protein of GABARγ2 and GABA-activated currents. RESULTS Immunofluorescence showed that D1 receptors (DRD1) were expressed on SGNs. Data from western blotting showed that SS promoted the internalization of cell surface GABAARs, and activating D1Rs had the same result. Inhibiting D1Rs and PKC decreased the internalization of GABAARs. Meanwhile, the phosphorylation level of GABAARγ2 S327 affected by PKC was positively correlated with the degree of internalization of GABAARs. Moreover, whole-cell patch clamp recording showed that inhibition of D1Rs or co-inhibition of D1Rs and PKC attenuated the inhibitory effect of SS on GABA-activated currents. CONCLUSIONS D1Rs mediate the GABAAR internalization induced by SS via a PKC-dependent manner and participate in the excitotoxic process of SGNs.


Assuntos
Ototoxicidade/patologia , Proteína Quinase C/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de GABA-A/metabolismo , Salicilato de Sódio/efeitos adversos , Gânglio Espiral da Cóclea/patologia , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Animais , Benzazepinas , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Hidrazonas/farmacologia , Masculino , Modelos Animais , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ototoxicidade/etiologia , Técnicas de Patch-Clamp , Cultura Primária de Células , Ratos , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inibidores , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/efeitos dos fármacos
17.
Addict Biol ; 26(4): e12988, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33496050

RESUMO

Chemical compounds that target dopamine (DA) D1 or D3 receptors have shown promise as potential interventions in animal models of cue-induced relapse. However, undesirable side effects or pharmacodynamic profiles have limited the advancement of new compounds in preclinical studies when administered as independent treatments. In this series of experiments, we explored the effects of coadministration of a D1-receptor partial agonist (SKF 77434) and a D3-receptor antagonist (NGB 2904) in heroin-seeking rats within a "conflict" model of abstinence and cue-induced relapse. Rats were first trained to press a lever to self-administer heroin, and drug delivery was paired contingently with cues (e.g., light and pump noise). Self-initiated abstinence was facilitated by applying electrical current to the flooring in front of the levers. Lastly, a relapse response was provoked by noncontingent presentation of conditioned cues. Prior to provocation, rats received a systemic injection of SKF 77434, NGB 2904, or a combination of both compounds to assess treatment effects on lever pressing. Results indicated that the coadministration of low (i.e., independently ineffective) doses of both compounds was more effective in reducing cue-induced relapse to heroin seeking than either compound alone, with some evidence of drug synergism. Follow-up studies indicated that this reduction was not due to motoric impairment nor enhanced sensitivity to the electrified flooring and that this treatment did not significantly affect motivation for food. Implications for the treatment of opiate use disorder and recommendations for further research are discussed.


Assuntos
Antagonistas de Dopamina/farmacologia , Comportamento de Procura de Droga/efeitos dos fármacos , Heroína/administração & dosagem , Animais , Condicionamento Operante , Sinais (Psicologia) , Extinção Psicológica/efeitos dos fármacos , Masculino , Polifarmacologia , Ratos , Receptores de Dopamina D1/antagonistas & inibidores , Recidiva , Autoadministração
18.
Addict Biol ; 26(2): e12938, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32666571

RESUMO

Our previous studies consistently showed that MDMA-induced locomotor hyperactivity is dramatically increased by coadministration of ethanol (EtOH) in rats, indicating possible potentiation of MDMA abuse liability. Thus, we aimed to identify the brain region(s) and neuropharmacological substrates involved in the pharmacodynamics of this potentiation. We first showed that potentiation of locomotor activity by the combination of ip administration of EtOH (1.5 g/kg) and MDMA (6.6 mg/kg) is delay sensitive and maximal when both drugs are injected simultaneously. Then, we used the 2-deoxyglucose quantitative autoradiography technique to assess the impact of EtOH, MDMA, or their combination on local cerebral metabolic rates for glucose (CMRglcs). We showed a specific metabolic activation in the ventral striatum (VS) under MDMA + EtOH versus MDMA or EtOH alone. We next tested if reversible (tetrodotoxin, TTX) or permanent (6-hydrodoxyopamine, 6-OHDA) lesion of the VS could affect locomotor response to MDMA and MDMA + EtOH. Finally, we blocked dopamine D1 or glutamate NMDA receptors in the VS and measured the effects of MDMA and MDMA + EtOH on locomotor activity. We showed that bilateral reversible inactivation (TTX) or permanent lesion (6-OHDA) of the VS prevented the potentiation by EtOH of MDMA-induced locomotor hyperactivity. Likewise, blockade of D1 or NMDA receptors in the VS also reduced the potentiation of MDMA locomotor activity by EtOH. These data indicate that dopamine D1 and glutamate NMDA receptor-driven mechanisms in the VS play a key role in the pharmacodynamics of EtOH-induced potentiation of the locomotor effects of MDMA.


Assuntos
Etanol/farmacologia , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Estriado Ventral/efeitos dos fármacos , Animais , Combinação de Medicamentos , Sinergismo Farmacológico , Etanol/administração & dosagem , Locomoção/efeitos dos fármacos , Masculino , N-Metil-3,4-Metilenodioxianfetamina/administração & dosagem , Oxidopamina/farmacologia , Ratos , Ratos Long-Evans , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Tetrodotoxina/farmacologia
19.
J Neurochem ; 153(3): 334-345, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31985073

RESUMO

Brain endocannabinoids serve as retrograde neurotransmitters, being synthesized in post-synaptic neurons "on demand" and released to bind pre-synaptic cannabinoid receptors and suppress glutamatergic or GABAergic transmission. The most abundant brain endocannabinoid, 2 arachidonoyl glycerol (2-AG), is primarily synthesized by diacylglycerol lipase-α (DGLα), which is activated by poorly understood mechanisms in response to calcium influx following post-synaptic depolarization and/or the activation of Gq -coupled group 1 metabotropic glutamate receptors. However, the impact of other neurotransmitters and their downstream signaling pathways on synaptic 2-AG signaling has not been intensively studied. Here, we found that DGLα activity in membrane fractions from transfected HEK293T cells was significantly increased by in vitro phosphorylation using cyclic AMP-dependent protein kinase (PKA). Moreover, PKA directly phosphorylated DGLα at Ser798 in vitro. Elevation of cAMP levels in HEK293 cells expressing DGLα increased Ser798 phosphorylation, as detected using a phospho-Ser798-specific antibody, and enhanced DGLα activity; this in situ enhancement of DGLα activity was prevented by mutation of Ser798 to Ala. We investigated the impact of PKA on synaptic 2-AG mobilization in mouse striatal slices by manipulating D1-dopamine receptor (D1R) signaling and assessing depolarization-induced suppression of excitation, a DGLα- and 2-AG-dependent form of short-term synaptic depression. The magnitude of depolarization-enhanced suppression of excitation in direct pathway medium spiny neurons was increased by pre-incubation with a D1R agonist, and this enhancement was blocked by post-synaptic inhibition of PKA. Taken together, these findings provide new molecular insights into the complex mechanisms regulating synaptic endocannabinoid signaling.


Assuntos
Ácidos Araquidônicos/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Lipase Lipoproteica/metabolismo , Receptores de Dopamina D1/metabolismo , Transdução de Sinais/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
20.
Horm Behav ; 125: 104813, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32619442

RESUMO

Stress is known to modulate behavioral responses and rapid decision-making processes, especially under challenging contexts which often occur in social and cooperative interactions. Here, we evaluated the effects of acute stress on cooperative behavior of the Indo-Pacific cleaner wrasse (Labroides dimidiatus) and the implications of pre-treatment with monoaminergic compounds: the selective serotonin reuptake inhibitor - fluoxetine, the 5-HT1A receptor antagonist - WAY-100,635, the D1 receptor agonist - SKF-38393, and the D1 receptor antagonist - SCH-23390. We demonstrated that stress decreased the predisposal to interact and increased cortisol levels in cleaners, which are alleviated by fluoxetine and the dopaminergic D1 antagonist. Overall, our findings highlight the crucial influence of stress on cooperative behavior.


Assuntos
Comportamento Cooperativo , Dopamina/fisiologia , Perciformes/fisiologia , Serotonina/fisiologia , Estresse Fisiológico/fisiologia , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Benzazepinas/farmacologia , Dopamina/metabolismo , Antagonistas de Dopamina/farmacologia , Peixes/fisiologia , Fluoxetina/farmacologia , Perciformes/metabolismo , Piperazinas/farmacologia , Piridinas/farmacologia , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/efeitos dos fármacos , Serotonina/metabolismo , Estresse Fisiológico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA