Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.460
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(14): 2469-2477.e13, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35803245

RESUMO

Autoantibodies targeting neuronal membrane proteins can cause encephalitis, seizures, and severe behavioral abnormalities. While antibodies for several neuronal targets have been identified, structural details on how they regulate function are unknown. Here we determined cryo-electron microscopy structures of antibodies derived from an encephalitis patient bound to the γ-aminobutyric acid type A (GABAA) receptor. These antibodies induced severe encephalitis by directly inhibiting GABAA function, resulting in nervous-system hyperexcitability. The structures reveal mechanisms of GABAA inhibition and pathology. One antibody directly competes with a neurotransmitter and locks the receptor in a resting-like state. The second antibody targets the subunit interface involved in binding benzodiazepines and antagonizes diazepam potentiation. We identify key residues in these antibodies involved in specificity and affinity and confirm structure-based hypotheses for functional effects using electrophysiology. Together these studies define mechanisms of direct functional antagonism of neurotransmission underlying autoimmune encephalitis in a human patient.


Assuntos
Encefalite , Receptores de GABA-A , Autoanticorpos , Microscopia Crioeletrônica , Doença de Hashimoto , Humanos , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico
2.
Cell ; 178(4): 769-771, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398332

RESUMO

Autism spectrum disorder (ASD) is prevalent, complex, and heterogeneous, and currently there is no cure. Identifying shared mechanisms across the ASD spectrum is of utmost importance for therapeutic intervention. Orefice et al. show that tackling the GABAA receptor pathway in the peripheral somatosensory system in various ASD mouse models rescues core ASD-like phenotypes.


Assuntos
Transtorno do Espectro Autista , Animais , Interneurônios , Camundongos , Fenótipo , Receptores de GABA-A
3.
Cell ; 176(1-2): 1, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30633900

RESUMO

During the postpartum period, the brain's inhibitory GABAA receptors may not recover in time following their reduced numbers during pregnancy. This is likely the cause of postpartum depression prevalent in ∼12% of childbearing women. A new therapy for this condition consists of administering a synthetic neurosteroid during the postpartum period to alleviate the mood disorder. To view this Bench to Bedside, open or download the PDF.


Assuntos
Depressão Pós-Parto/terapia , Pregnanolona/farmacologia , Receptores de GABA-A/metabolismo , beta-Ciclodextrinas/farmacologia , Adulto , Depressão Pós-Parto/metabolismo , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/terapia , Combinação de Medicamentos , Feminino , Humanos , Transtornos do Humor , Neurotransmissores/farmacologia , Período Pós-Parto/metabolismo , Gravidez , Prevalência , Receptores de GABA-A/fisiologia
4.
Cell ; 168(1-2): 86-100.e15, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-27916275

RESUMO

Type 1 diabetes is characterized by the destruction of pancreatic ß cells, and generating new insulin-producing cells from other cell types is a major aim of regenerative medicine. One promising approach is transdifferentiation of developmentally related pancreatic cell types, including glucagon-producing α cells. In a genetic model, loss of the master regulatory transcription factor Arx is sufficient to induce the conversion of α cells to functional ß-like cells. Here, we identify artemisinins as small molecules that functionally repress Arx by causing its translocation to the cytoplasm. We show that the protein gephyrin is the mammalian target of these antimalarial drugs and that the mechanism of action of these molecules depends on the enhancement of GABAA receptor signaling. Our results in zebrafish, rodents, and primary human pancreatic islets identify gephyrin as a druggable target for the regeneration of pancreatic ß cell mass from α cells.


Assuntos
Artemisininas/farmacologia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Modelos Animais de Doenças , Receptores de GABA-A/metabolismo , Transdução de Sinais , Animais , Artemeter , Artemisininas/administração & dosagem , Proteínas de Transporte/metabolismo , Transdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus Tipo 1/patologia , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Camundongos , Estabilidade Proteica/efeitos dos fármacos , Ratos , Análise de Célula Única , Fatores de Transcrição/metabolismo , Peixe-Zebra , Ácido gama-Aminobutírico/metabolismo
5.
Cell ; 166(2): 299-313, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27293187

RESUMO

Patients with autism spectrum disorders (ASDs) commonly experience aberrant tactile sensitivity, yet the neural alterations underlying somatosensory dysfunction and the extent to which tactile deficits contribute to ASD characteristics are unknown. We report that mice harboring mutations in Mecp2, Gabrb3, Shank3, and Fmr1 genes associated with ASDs in humans exhibit altered tactile discrimination and hypersensitivity to gentle touch. Deletion of Mecp2 or Gabrb3 in peripheral somatosensory neurons causes mechanosensory dysfunction through loss of GABAA receptor-mediated presynaptic inhibition of inputs to the CNS. Remarkably, tactile defects resulting from Mecp2 or Gabrb3 deletion in somatosensory neurons during development, but not in adulthood, cause social interaction deficits and anxiety-like behavior. Restoring Mecp2 expression exclusively in the somatosensory neurons of Mecp2-null mice rescues tactile sensitivity, anxiety-like behavior, and social interaction deficits, but not lethality, memory, or motor deficits. Thus, mechanosensory processing defects contribute to anxiety-like behavior and social interaction deficits in ASD mouse models. PAPERCLIP.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Comportamento Animal , Modelos Animais de Doenças , Relações Interpessoais , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Receptores de GABA-A/genética , Células Receptoras Sensoriais , Corno Dorsal da Medula Espinal/metabolismo , Sinapses/metabolismo , Tato
6.
Nature ; 634(8035): 936-943, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39261733

RESUMO

Although fat is a crucial source of energy in diets, excessive intake leads to obesity. Fat absorption in the gut is prevailingly thought to occur organ-autonomously by diffusion1-3. Whether the process is controlled by the brain-to-gut axis, however, remains largely unknown. Here we demonstrate that the dorsal motor nucleus of vagus (DMV) plays a key part in this process. Inactivation of DMV neurons reduces intestinal fat absorption and consequently causes weight loss, whereas activation of the DMV increases fat absorption and weight gain. Notably, the inactivation of a subpopulation of DMV neurons that project to the jejunum shortens the length of microvilli, thereby reducing fat absorption. Moreover, we identify a natural compound, puerarin, that mimics the suppression of the DMV-vagus pathway, which in turn leads to reduced fat absorption. Photoaffinity chemical methods and cryogenic electron microscopy of the structure of a GABAA receptor-puerarin complex reveal that puerarin binds to an allosteric modulatory site. Notably, conditional Gabra1 knockout in the DMV largely abolishes puerarin-induced intestinal fat loss. In summary, we discover that suppression of the DMV-vagus-jejunum axis controls intestinal fat absorption by shortening the length of microvilli and illustrate the therapeutic potential of puerarin binding to GABRA1 in fat loss.


Assuntos
Eixo Encéfalo-Intestino , Gorduras , Absorção Intestinal , Animais , Masculino , Camundongos , Eixo Encéfalo-Intestino/efeitos dos fármacos , Eixo Encéfalo-Intestino/fisiologia , Gorduras/metabolismo , Absorção Intestinal/efeitos dos fármacos , Isoflavonas/metabolismo , Isoflavonas/farmacologia , Jejuno/efeitos dos fármacos , Jejuno/inervação , Jejuno/metabolismo , Camundongos Endogâmicos C57BL , Microvilosidades/efeitos dos fármacos , Microvilosidades/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Obesidade/metabolismo , Receptores de GABA-A/deficiência , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Nervo Vago/metabolismo , Nervo Vago/efeitos dos fármacos , Nervo Vago/fisiologia , Aumento de Peso/efeitos dos fármacos , Redução de Peso/efeitos dos fármacos , Bulbo/citologia , Bulbo/efeitos dos fármacos , Bulbo/metabolismo
7.
Nature ; 622(7981): 195-201, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37730991

RESUMO

Type A γ-aminobutyric acid receptors (GABAARs) are the principal inhibitory receptors in the brain and the target of a wide range of clinical agents, including anaesthetics, sedatives, hypnotics and antidepressants1-3. However, our understanding of GABAAR pharmacology has been hindered by the vast number of pentameric assemblies that can be derived from 19 different subunits4 and the lack of structural knowledge of clinically relevant receptors. Here, we isolate native murine GABAAR assemblies containing the widely expressed α1 subunit and elucidate their structures in complex with drugs used to treat insomnia (zolpidem (ZOL) and flurazepam) and postpartum depression (the neurosteroid allopregnanolone (APG)). Using cryo-electron microscopy (cryo-EM) analysis and single-molecule photobleaching experiments, we uncover three major structural populations in the brain: the canonical α1ß2γ2 receptor containing two α1 subunits, and two assemblies containing one α1 and either an α2 or α3 subunit, in which the single α1-containing receptors feature a more compact arrangement between the transmembrane and extracellular domains. Interestingly, APG is bound at the transmembrane α/ß subunit interface, even when not added to the sample, revealing an important role for endogenous neurosteroids in modulating native GABAARs. Together with structurally engaged lipids, neurosteroids produce global conformational changes throughout the receptor that modify the ion channel pore and the binding sites for GABA and insomnia medications. Our data reveal the major α1-containing GABAAR assemblies, bound with endogenous neurosteroid, thus defining a structural landscape from which subtype-specific drugs can be developed.


Assuntos
Microscopia Crioeletrônica , Neuroesteroides , Receptores de GABA-A , Ácido gama-Aminobutírico , Animais , Camundongos , Sítios de Ligação/efeitos dos fármacos , Depressão Pós-Parto/tratamento farmacológico , Flurazepam/farmacologia , Ácido gama-Aminobutírico/metabolismo , Hipnóticos e Sedativos/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Neuroesteroides/metabolismo , Neuroesteroides/farmacologia , Fotodegradação , Pregnanolona/farmacologia , Conformação Proteica/efeitos dos fármacos , Subunidades Proteicas/química , Subunidades Proteicas/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Receptores de GABA-A/química , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Receptores de GABA-A/ultraestrutura , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Zolpidem/farmacologia
8.
Nat Rev Neurosci ; 24(9): 523-539, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37495761

RESUMO

γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter released at GABAergic synapses, mediating fast-acting phasic inhibition. Emerging lines of evidence unequivocally indicate that a small amount of extracellular GABA - GABA tone - exists in the brain and induces a tonic GABA current that controls neuronal activity on a slow timescale relative to that of phasic inhibition. Surprisingly, studies indicate that glial cells that synthesize GABA, such as astrocytes, release GABA through non-vesicular mechanisms, such as channel-mediated release, and thereby act as the source of GABA tone in the brain. In this Review, we first provide an overview of major advances in our understanding of the cell-specific molecular and cellular mechanisms of GABA synthesis, release and clearance that regulate GABA tone in various brain regions. We next examine the diverse ways in which the tonic GABA current regulates synaptic transmission and synaptic plasticity through extrasynaptic GABAA-receptor-mediated mechanisms. Last, we discuss the physiological mechanisms through which tonic inhibition modulates cognitive function on a slow timescale. In this Review, we emphasize that the cognitive functions of tonic GABA current extend beyond mere inhibition, laying a foundation for future research on the physiological and pathophysiological roles of GABA tone regulation in normal and abnormal psychiatric conditions.


Assuntos
Receptores de GABA-A , Ácido gama-Aminobutírico , Receptores de GABA-A/metabolismo , Neurônios/fisiologia , Encéfalo/metabolismo , Cognição
9.
Nature ; 604(7904): 190-194, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35355020

RESUMO

Type A γ-aminobutyric acid receptors (GABAARs) are pentameric ligand-gated chloride channels that mediate fast inhibitory signalling in neural circuits1,2 and can be modulated by essential medicines including general anaesthetics and benzodiazepines3. Human GABAAR subunits are encoded by 19 paralogous genes that can, in theory, give rise to 495,235 receptor types. However, the principles that govern the formation of pentamers, the permutational landscape of receptors that may emerge from a subunit set and the effect that this has on GABAergic signalling remain largely unknown. Here we use cryogenic electron microscopy to determine the structures of extrasynaptic GABAARs assembled from α4, ß3 and δ subunits, and their counterparts incorporating γ2 instead of δ subunits. In each case, we identified two receptor subtypes with distinct stoichiometries and arrangements, all four differing from those previously observed for synaptic, α1-containing receptors4-7. This, in turn, affects receptor responses to physiological and synthetic modulators by creating or eliminating ligand-binding sites at subunit interfaces. We provide structural and functional evidence that selected GABAAR arrangements can act as coincidence detectors, simultaneously responding to two neurotransmitters: GABA and histamine. Using assembly simulations and single-cell RNA sequencing data8,9, we calculated the upper bounds for receptor diversity in recombinant systems and in vivo. We propose that differential assembly is a pervasive mechanism for regulating the physiology and pharmacology of GABAARs.


Assuntos
Benzodiazepinas , Receptores de GABA-A , Transdução de Sinais , Benzodiazepinas/farmacologia , Sítios de Ligação , Microscopia Crioeletrônica , Histamina/metabolismo , Humanos , Ligantes , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA-Seq , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Receptores de GABA-A/ultraestrutura , Análise de Célula Única , Ácido gama-Aminobutírico/metabolismo
10.
Nature ; 602(7897): 529-533, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35140402

RESUMO

Type A GABA (γ-aminobutyric acid) receptors represent a diverse population in the mammalian brain, forming pentamers from combinations of α-, ß-, γ-, δ-, ε-, ρ-, θ- and π-subunits1. αß, α4ßδ, α6ßδ and α5ßγ receptors favour extrasynaptic localization, and mediate an essential persistent (tonic) inhibitory conductance in many regions of the mammalian brain1,2. Mutations of these receptors in humans are linked to epilepsy and insomnia3,4. Altered extrasynaptic receptor function is implicated in insomnia, stroke and Angelman and Fragile X syndromes1,5, and drugs targeting these receptors are used to treat postpartum depression6. Tonic GABAergic responses are moderated to avoid excessive suppression of neuronal communication, and can exhibit high sensitivity to Zn2+ blockade, in contrast to synapse-preferring α1ßγ, α2ßγ and α3ßγ receptor responses5,7-12. Here, to resolve these distinctive features, we determined structures of the predominantly extrasynaptic αß GABAA receptor class. An inhibited state bound by both the lethal paralysing agent α-cobratoxin13 and Zn2+ was used in comparisons with GABA-Zn2+ and GABA-bound structures. Zn2+ nullifies the GABA response by non-competitively plugging the extracellular end of the pore to block chloride conductance. In the absence of Zn2+, the GABA signalling response initially follows the canonical route until it reaches the pore. In contrast to synaptic GABAA receptors, expansion of the midway pore activation gate is limited and it remains closed, reflecting the intrinsic low efficacy that characterizes the extrasynaptic receptor. Overall, this study explains distinct traits adopted by αß receptors that adapt them to a role in tonic signalling.


Assuntos
Agonistas de Receptores de GABA-A , Antagonistas de Receptores de GABA-A , Receptores de GABA-A , Animais , Proteínas Neurotóxicas de Elapídeos , Agonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Humanos , Mamíferos/metabolismo , Inibição Neural/fisiologia , Neurônios/metabolismo , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Zinco , Ácido gama-Aminobutírico/metabolismo
11.
Development ; 151(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39190555

RESUMO

Terminal selectors are transcription factors that control neuronal identity by regulating expression of key effector molecules, such as neurotransmitter biosynthesis proteins and ion channels. Whether and how terminal selectors control neuronal connectivity is poorly understood. Here, we report that UNC-30 (PITX2/3), the terminal selector of GABA nerve cord motor neurons in Caenorhabditis elegans, is required for neurotransmitter receptor clustering, a hallmark of postsynaptic differentiation. Animals lacking unc-30 or madd-4B, the short isoform of the motor neuron-secreted synapse organizer madd-4 (punctin/ADAMTSL), display severe GABA receptor type A (GABAAR) clustering defects in postsynaptic muscle cells. Mechanistically, UNC-30 acts directly to induce and maintain transcription of madd-4B and GABA biosynthesis genes (e.g. unc-25/GAD, unc-47/VGAT). Hence, UNC-30 controls GABAA receptor clustering in postsynaptic muscle cells and GABA biosynthesis in presynaptic cells, transcriptionally coordinating two crucial processes for GABA neurotransmission. Further, we uncover multiple target genes and a dual role for UNC-30 as both an activator and a repressor of gene transcription. Our findings on UNC-30 function may contribute to our molecular understanding of human conditions, such as Axenfeld-Rieger syndrome, caused by PITX2 and PITX3 gene variants.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Neurônios Motores , Fatores de Transcrição , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Ácido gama-Aminobutírico/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Neurônios Motores/metabolismo , Proteínas do Tecido Nervoso , Neurotransmissores/metabolismo , Receptores de GABA/metabolismo , Receptores de GABA/genética , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Sinapses/metabolismo , Transmissão Sináptica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
12.
PLoS Biol ; 22(1): e3002483, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38295323

RESUMO

Synaptic transmission mediated by GABAA receptors (GABAARs) in adult, principal striatal spiny projection neurons (SPNs) can suppress ongoing spiking, but its effect on synaptic integration at subthreshold membrane potentials is less well characterized, particularly those near the resting down-state. To fill this gap, a combination of molecular, optogenetic, optical, and electrophysiological approaches were used to study SPNs in mouse ex vivo brain slices, and computational tools were used to model somatodendritic synaptic integration. In perforated patch recordings, activation of GABAARs, either by uncaging of GABA or by optogenetic stimulation of GABAergic synapses, evoked currents with a reversal potential near -60 mV in both juvenile and adult SPNs. Transcriptomic analysis and pharmacological work suggested that this relatively positive GABAAR reversal potential was not attributable to NKCC1 expression, but rather to HCO3- permeability. Regardless, from down-state potentials, optogenetic activation of dendritic GABAergic synapses depolarized SPNs. This GABAAR-mediated depolarization summed with trailing ionotropic glutamate receptor (iGluR) stimulation, promoting dendritic spikes and increasing somatic depolarization. Simulations revealed that a diffuse dendritic GABAergic input to SPNs effectively enhanced the response to dendritic iGluR signaling and promoted dendritic spikes. Taken together, our results demonstrate that GABAARs can work in concert with iGluRs to excite adult SPNs when they are in the resting down-state, suggesting that their inhibitory role is limited to brief periods near spike threshold. This state-dependence calls for a reformulation for the role of intrastriatal GABAergic circuits.


Assuntos
Interneurônios , Receptores de GABA-A , Camundongos , Animais , Corpo Estriado/fisiologia , Neostriado , Transmissão Sináptica/fisiologia , Neurônios GABAérgicos/fisiologia
13.
Proc Natl Acad Sci U S A ; 121(31): e2400339121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39047036

RESUMO

The mammalian circadian clock located in the suprachiasmatic nucleus (SCN) produces robust daily rhythms including rest-wake. SCN neurons synthesize and respond to γ-aminobutyric acid (GABA), but its role remains unresolved. We tested the hypothesis that γ2- and δ-subunits of the GABAA receptor in the SCN differ in their regulation of synchrony among circadian cells. We used two approaches: 1) shRNA to knock-down (KD) the expression of either γ2 or δ subunits in the SCN or 2) knock-in mice harboring a point mutation in the M2 domains of the endogenous GABAA γ2 or δ subunits. KD of either γ2 or δ subunits in the SCN increased daytime running and reduced nocturnal running by reducing their circadian amplitude by a third. Similarly, δ subunit knock-in mice showed decreased circadian amplitude, increased duration of daily activity, and decreased total daily activity. Reduction, or mutation of either γ2 or δ subunits halved the synchrony among, and amplitude of, circadian SCN cells as measured by firing rate or expression of the PERIOD2 protein, in vitro. Surprisingly, overexpression of the γ2 subunit rescued these phenotypes following KD or mutation of the δ subunit, and overexpression of the δ subunit rescued deficiencies due to γ2 subunit KD or mutation. We conclude that γ2 and δ GABAA receptor subunits play similar roles in maintaining circadian synchrony in the SCN and amplitude of daily rest-wake rhythms, but that modulation of their relative densities can change the duration and amplitude of daily activities.


Assuntos
Ritmo Circadiano , Receptores de GABA-A , Núcleo Supraquiasmático , Animais , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Ritmo Circadiano/fisiologia , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiologia , Camundongos , Masculino , Vigília/fisiologia , Vigília/genética , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia
14.
Proc Natl Acad Sci U S A ; 121(26): e2315100121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38889143

RESUMO

Synapses containing γ-aminobutyric acid (GABA) constitute the primary centers for inhibitory neurotransmission in our nervous system. It is unclear how these synaptic structures form and align their postsynaptic machineries with presynaptic terminals. Here, we monitored the cellular distribution of several GABAergic postsynaptic proteins in a purely glutamatergic neuronal culture derived from human stem cells, which virtually lacks any vesicular GABA release. We found that several GABAA receptor (GABAAR) subunits, postsynaptic scaffolds, and major cell-adhesion molecules can reliably coaggregate and colocalize at even GABA-deficient subsynaptic domains, but remain physically segregated from glutamatergic counterparts. Genetic deletions of both Gephyrin and a Gephyrin-associated guanosine di- or triphosphate (GDP/GTP) exchange factor Collybistin severely disrupted the coassembly of these postsynaptic compositions and their proper apposition with presynaptic inputs. Gephyrin-GABAAR clusters, developed in the absence of GABA transmission, could be subsequently activated and even potentiated by delayed supply of vesicular GABA. Thus, molecular organization of GABAergic postsynapses can initiate via a GABA-independent but Gephyrin-dependent intrinsic mechanism.


Assuntos
Proteínas de Transporte , Proteínas de Membrana , Terminações Pré-Sinápticas , Receptores de GABA-A , Sinapses , Ácido gama-Aminobutírico , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Ácido gama-Aminobutírico/metabolismo , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética
15.
Proc Natl Acad Sci U S A ; 121(24): e2311570121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38830095

RESUMO

Even a transient period of hearing loss during the developmental critical period can induce long-lasting deficits in temporal and spectral perception. These perceptual deficits correlate with speech perception in humans. In gerbils, these hearing loss-induced perceptual deficits are correlated with a reduction of both ionotropic GABAA and metabotropic GABAB receptor-mediated synaptic inhibition in auditory cortex, but most research on critical period plasticity has focused on GABAA receptors. Therefore, we developed viral vectors to express proteins that would upregulate gerbil postsynaptic inhibitory receptor subunits (GABAA, Gabra1; GABAB, Gabbr1b) in pyramidal neurons, and an enzyme that mediates GABA synthesis (GAD65) presynaptically in parvalbumin-expressing interneurons. A transient period of developmental hearing loss during the auditory critical period significantly impaired perceptual performance on two auditory tasks: amplitude modulation depth detection and spectral modulation depth detection. We then tested the capacity of each vector to restore perceptual performance on these auditory tasks. While both GABA receptor vectors increased the amplitude of cortical inhibitory postsynaptic potentials, only viral expression of postsynaptic GABAB receptors improved perceptual thresholds to control levels. Similarly, presynaptic GAD65 expression improved perceptual performance on spectral modulation detection. These findings suggest that recovering performance on auditory perceptual tasks depends on GABAB receptor-dependent transmission at the auditory cortex parvalbumin to pyramidal synapse and point to potential therapeutic targets for developmental sensory disorders.


Assuntos
Córtex Auditivo , Gerbillinae , Perda Auditiva , Animais , Córtex Auditivo/metabolismo , Córtex Auditivo/fisiopatologia , Perda Auditiva/genética , Perda Auditiva/fisiopatologia , Receptores de GABA-B/metabolismo , Receptores de GABA-B/genética , Glutamato Descarboxilase/metabolismo , Glutamato Descarboxilase/genética , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Parvalbuminas/metabolismo , Parvalbuminas/genética , Percepção Auditiva/fisiologia , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Vetores Genéticos/genética
16.
Proc Natl Acad Sci U S A ; 121(15): e2318041121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568976

RESUMO

Stable matching of neurotransmitters with their receptors is fundamental to synapse function and reliable communication in neural circuits. Presynaptic neurotransmitters regulate the stabilization of postsynaptic transmitter receptors. Whether postsynaptic receptors regulate stabilization of presynaptic transmitters has received less attention. Here, we show that blockade of endogenous postsynaptic acetylcholine receptors (AChR) at the neuromuscular junction destabilizes the cholinergic phenotype in motor neurons and stabilizes an earlier, developmentally transient glutamatergic phenotype. Further, expression of exogenous postsynaptic gamma-aminobutyric acid type A receptors (GABAA receptors) in muscle cells stabilizes an earlier, developmentally transient GABAergic motor neuron phenotype. Both AChR and GABAA receptors are linked to presynaptic neurons through transsynaptic bridges. Knockdown of specific components of these transsynaptic bridges prevents stabilization of the cholinergic or GABAergic phenotypes. Bidirectional communication can enforce a match between transmitter and receptor and ensure the fidelity of synaptic transmission. Our findings suggest a potential role of dysfunctional transmitter receptors in neurological disorders that involve the loss of the presynaptic transmitter.


Assuntos
Receptores Colinérgicos , Sinapses , Sinapses/metabolismo , Receptores Colinérgicos/metabolismo , Transmissão Sináptica/fisiologia , Neurônios Motores/metabolismo , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo , Neurotransmissores/metabolismo , Colinérgicos , Receptores Pré-Sinápticos
17.
Proc Natl Acad Sci U S A ; 121(18): e2314541121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657049

RESUMO

Recent evidence has demonstrated that the transsynaptic nanoscale organization of synaptic proteins plays a crucial role in regulating synaptic strength in excitatory synapses. However, the molecular mechanism underlying this transsynaptic nanostructure in inhibitory synapses still remains unclear and its impact on synapse function in physiological or pathological contexts has not been demonstrated. In this study, we utilized an engineered proteolysis technique to investigate the effects of acute cleavage of neuroligin-2 (NL2) on synaptic transmission. Our results show that the rapid cleavage of NL2 led to impaired synaptic transmission by reducing both neurotransmitter release probability and quantum size. These changes were attributed to the dispersion of RIM1/2 and GABAA receptors and a weakened spatial alignment between them at the subsynaptic scale, as observed through superresolution imaging and model simulations. Importantly, we found that endogenous NL2 undergoes rapid MMP9-dependent cleavage during epileptic activities, which further exacerbates the decrease in inhibitory transmission. Overall, our study demonstrates the significant impact of nanoscale structural reorganization on inhibitory transmission and unveils ongoing modulation of mature GABAergic synapses through active cleavage of NL2 in response to hyperactivity.


Assuntos
Moléculas de Adesão Celular Neuronais , Proteínas do Tecido Nervoso , Sinapses , Transmissão Sináptica , Animais , Camundongos , Moléculas de Adesão Celular Neuronais/metabolismo , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Epilepsia/patologia , Hipocampo/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteólise , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
18.
Proc Natl Acad Sci U S A ; 121(23): e2318641121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38814872

RESUMO

A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function. Normative development of cortex-wide E/I ratio remains unknown. Here, we noninvasively estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale biophysically plausible circuit model to resting-state functional MRI (fMRI) data. We first confirm that our model generates realistic brain dynamics in the Human Connectome Project. Next, we show that the estimated E/I ratio marker is sensitive to the gamma-aminobutyric acid (GABA) agonist benzodiazepine alprazolam during fMRI. Alprazolam-induced E/I changes are spatially consistent with positron emission tomography measurement of benzodiazepine receptor density. We then investigate the relationship between the E/I ratio marker and neurodevelopment. We find that the E/I ratio marker declines heterogeneously across the cerebral cortex during youth, with the greatest reduction occurring in sensorimotor systems relative to association systems. Importantly, among children with the same chronological age, a lower E/I ratio marker (especially in the association cortex) is linked to better cognitive performance. This result is replicated across North American (8.2 to 23.0 y old) and Asian (7.2 to 7.9 y old) cohorts, suggesting that a more mature E/I ratio indexes improved cognition during normative development. Overall, our findings open the door to studying how disrupted E/I trajectories may lead to cognitive dysfunction in psychopathology that emerges during youth.


Assuntos
Córtex Cerebral , Cognição , Imageamento por Ressonância Magnética , Humanos , Cognição/fisiologia , Cognição/efeitos dos fármacos , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Masculino , Imageamento por Ressonância Magnética/métodos , Feminino , Adolescente , Criança , Conectoma/métodos , Alprazolam/farmacologia , Receptores de GABA-A/metabolismo , Adulto Jovem
19.
Proc Natl Acad Sci U S A ; 121(33): e2400420121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39106304

RESUMO

Brain rhythms provide the timing for recruitment of brain activity required for linking together neuronal ensembles engaged in specific tasks. The γ-oscillations (30 to 120 Hz) orchestrate neuronal circuits underlying cognitive processes and working memory. These oscillations are reduced in numerous neurological and psychiatric disorders, including early cognitive decline in Alzheimer's disease (AD). Here, we report on a potent brain-permeable small molecule, DDL-920 that increases γ-oscillations and improves cognition/memory in a mouse model of AD, thus showing promise as a class of therapeutics for AD. We employed anatomical, in vitro and in vivo electrophysiological, and behavioral methods to examine the effects of our lead therapeutic candidate small molecule. As a novel in central nervous system pharmacotherapy, our lead molecule acts as a potent, efficacious, and selective negative allosteric modulator of the γ-aminobutyric acid type A receptors most likely assembled from α1ß2δ subunits. These receptors, identified through anatomical and pharmacological means, underlie the tonic inhibition of parvalbumin (PV) expressing interneurons (PV+INs) critically involved in the generation of γ-oscillations. When orally administered twice daily for 2 wk, DDL-920 restored the cognitive/memory impairments of 3- to 4-mo-old AD model mice as measured by their performance in the Barnes maze. Our approach is unique as it is meant to enhance cognitive performance and working memory in a state-dependent manner by engaging and amplifying the brain's endogenous γ-oscillations through enhancing the function of PV+INs.


Assuntos
Doença de Alzheimer , Cognição , Modelos Animais de Doenças , Ritmo Gama , Animais , Doença de Alzheimer/tratamento farmacológico , Camundongos , Cognição/efeitos dos fármacos , Ritmo Gama/efeitos dos fármacos , Memória/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Camundongos Transgênicos , Humanos , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Alanina/análogos & derivados , Azepinas
20.
EMBO Rep ; 25(3): 1623-1649, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253690

RESUMO

Psychiatric and neurological symptoms, as well as cognitive deficits, represent a prominent phenotype associated with variable forms of autoimmune encephalitis, regardless of the neurotransmitter receptor targeted by autoantibodies. The mechanistic underpinnings of these shared major neuropsychiatric symptoms remain however unclear. Here, we investigate the impacts of patient-derived monoclonal autoantibodies against the glutamatergic NMDAR (NMDAR mAb) and inhibitory GABAaR (GABAaR mAb) signalling in the hippocampal network. Unexpectedly, both excitatory and inhibitory synaptic receptor membrane dynamics, content and transmissions are altered by NMDAR or GABAaR mAb, irrespective of the affinity or antagonistic effect of the autoantibodies. The effect of NMDAR mAb on inhibitory synapses and GABAaR mAb on excitatory synapses requires neuronal activity and involves protein kinase signalling. At the cell level, both autoantibodies increase the excitation/inhibition balance of principal cell inputs. Furthermore, NMDAR or GABAaR mAb leads to hyperactivation of hippocampal networks through distinct alterations of principal cell and interneuron properties. Thus, autoantibodies targeting excitatory NMDAR or inhibitory GABAaR trigger convergent network dysfunctions through a combination of shared and distinct mechanisms.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Encefalite , Doença de Hashimoto , Humanos , Receptores de GABA-A/metabolismo , Autoanticorpos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA