Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.146
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 592(7854): 421-427, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33731928

RESUMO

Among primates, humans display a unique trajectory of development that is responsible for the many traits specific to our species. However, the inaccessibility of primary human and chimpanzee tissues has limited our ability to study human evolution. Comparative in vitro approaches using primate-derived induced pluripotent stem cells have begun to reveal species differences on the cellular and molecular levels1,2. In particular, brain organoids have emerged as a promising platform to study primate neural development in vitro3-5, although cross-species comparisons of organoids are complicated by differences in developmental timing and variability of differentiation6,7. Here we develop a new platform to address these limitations by fusing human and chimpanzee induced pluripotent stem cells to generate a panel of tetraploid hybrid stem cells. We applied this approach to study species divergence in cerebral cortical development by differentiating these cells into neural organoids. We found that hybrid organoids provide a controlled system for disentangling cis- and trans-acting gene-expression divergence across cell types and developmental stages, revealing a signature of selection on astrocyte-related genes. In addition, we identified an upregulation of the human somatostatin receptor 2 gene (SSTR2), which regulates neuronal calcium signalling and is associated with neuropsychiatric disorders8,9. We reveal a human-specific response to modulation of SSTR2 function in cortical neurons, underscoring the potential of this platform for elucidating the molecular basis of human evolution.


Assuntos
Fusão Celular , Regulação da Expressão Gênica no Desenvolvimento , Células Híbridas/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Neurogênese/genética , Alelos , Animais , Astrócitos/citologia , Sinalização do Cálcio , Córtex Cerebral/citologia , Feminino , Humanos , Masculino , Neurônios/citologia , Organoides/citologia , Pan troglodytes/genética , Receptores de Somatostatina/genética , Reprodutibilidade dos Testes , Transcrição Gênica
2.
J Neurosci ; 44(27)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38806249

RESUMO

Melanin-concentrating hormone (MCH) acts via its sole receptor MCHR1 in rodents and is an important regulator of homeostatic behaviors like feeding, sleep, and mood to impact overall energy balance. The loss of MCH signaling by MCH or MCHR1 deletion produces hyperactive mice with increased energy expenditure, and these effects are consistently associated with a hyperdopaminergic state. We recently showed that MCH suppresses dopamine release in the nucleus accumbens, which principally receives dopaminergic projections from the ventral tegmental area (VTA), but the mechanisms underlying MCH-regulated dopamine release are not clearly defined. MCHR1 expression is widespread and includes dopaminergic VTA cells. However, as the VTA is a neurochemically diverse structure, we assessed Mchr1 gene expression at glutamatergic, GABAergic, and dopaminergic VTA cells and determined if MCH inhibited the activity of VTA cells and/or their local microcircuit. Mchr1 expression was robust in major VTA cell types, including most dopaminergic (78%) or glutamatergic cells (52%) and some GABAergic cells (38%). Interestingly, MCH directly inhibited dopaminergic and GABAergic cells but did not regulate the activity of glutamatergic cells. Rather, MCH produced a delayed increase in excitatory input to dopamine cells and a corresponding decrease in GABAergic input to glutamatergic VTA cells. Our findings suggested that MCH may acutely suppress dopamine release while disinhibiting local glutamatergic signaling to restore dopamine levels. This indicated that the VTA is a target of MCH action, which may provide bidirectional regulation of energy balance.


Assuntos
Neurônios Dopaminérgicos , Hormônios Hipotalâmicos , Melaninas , Hormônios Hipofisários , Área Tegmentar Ventral , Animais , Masculino , Camundongos , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Ácido Glutâmico/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hormônios Hipotalâmicos/genética , Melaninas/metabolismo , Melaninas/genética , Camundongos Endogâmicos C57BL , Hormônios Hipofisários/metabolismo , Hormônios Hipofisários/genética , Receptores de Somatostatina/metabolismo , Receptores de Somatostatina/genética , Área Tegmentar Ventral/metabolismo
3.
J Biol Chem ; 299(5): 104645, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965619

RESUMO

The Somatostatin receptor 2 (Sstr2) is a heterotrimeric G protein-coupled receptor that is highly expressed in neuroendocrine tumors and is a common pharmacological target for intervention. Unfortunately, not all neuroendocrine tumors express Sstr2, and Sstr2 expression can be downregulated with prolonged agonist use. Sstr2 is rapidly internalized following agonist stimulation and, in the short term, is quantitatively recycled back to the plasma membrane. However, mechanisms controlling steady state expression of Sstr2 in the absence of agonist are less well described. Here, we show that Sstr2 interacts with the Wnt pathway protein Dvl1 in a ligand-independent manner to target Sstr2 for lysosomal degradation. Interaction of Sstr2 with Dvl1 does not affect receptor internalization, recycling, or signaling to adenylyl cyclase but does suppress agonist-stimulated ERK1/2 activation. Importantly, Dvl1-dependent degradation of Sstr2 can be stimulated by overexpression of Wnts and treatment of cells with Wnt pathway inhibitors can boost Sstr2 expression in neuroendocrine tumor cells. Taken together, this study identifies for the first time a mechanism that targets Sstr2 for lysosomal degradation that is independent of Sstr2 agonist and can be potentiated by Wnt ligand. Intervention in this signaling mechanism has the potential to elevate Sstr2 expression in neuroendocrine tumors and enhance Sstr2-directed therapies.


Assuntos
Proteínas Desgrenhadas , Lisossomos , Receptores de Somatostatina , Humanos , Proteínas Desgrenhadas/genética , Proteínas Desgrenhadas/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Lisossomos/metabolismo , Tumores Neuroendócrinos/fisiopatologia , Ligação Proteica , Transporte Proteico , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo
4.
Biochem Biophys Res Commun ; 710: 149917, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38604071

RESUMO

Melanin-concentrating hormone (MCH) receptor 1 (MCHR1), a G protein-coupled receptor, is poised for interaction with its ligands on the plasma membrane. Analyses of MCHR1 knockout mice suggest that this receptor could be a therapeutic target for the treatment of appetite disorders, glucose metabolism, psychiatric disorders, and inflammation. Binding of MCH to MCHR1 initiates calcium signaling, which is subsequently attenuated through receptor internalization. However, the ultimate destiny of the receptor post-internalization remains unexplored. In this study, we report the extracellular secretion of MCHR1 via exosomes. The recruitment of MCHR1 to exosomes occurs subsequent to its internalization, which is induced by stimulation with the ligand MCH. Although a highly glycosylated form of MCHR1, potentially representing a mature form, is selectively recruited to exosomes, the MCHR1 transferred into other cells does not exhibit functionality. The truncation of MCHR1 at the C-terminus not only impairs its response to MCH but also hinders its recruitment to exosomes. These findings imply that functional MCHR1 could be secreted extracellularly via exosomes, a process that may represent a mechanism for the termination of intracellular MCHR1 signaling.


Assuntos
Exossomos , Hormônios Hipotalâmicos , Receptores do Hormônio Hipofisário , Humanos , Camundongos , Animais , Exossomos/metabolismo , Receptores do Hormônio Hipofisário/metabolismo , Transdução de Sinais , Camundongos Knockout , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Melaninas/metabolismo
5.
Gen Comp Endocrinol ; 351: 114478, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38412943

RESUMO

Somatic growth in vertebrates is regulated endocrinologically by the somatotropic axis, headed by the growth hormone (GH) and the insulin growth factor-I (IGF-I). Somatostatin (Sst), a peptide hormone synthesized in the hypothalamus, modulates GH actions through its receptors (Sstr). Four Sstr subtypes (Sstr 1-3 and 5) have been identified in teleosts. However, little is known about whether they have a specific function or tissue expression. The aim of this study was to determine the role of sstr2 and sstr5 in the growth of the medaka (Oryzias latipes). The assessed expression pattern across diverse tissues highlighted greater prevalence of sstr1 and sstr3 in brain, intestine and muscle than in pituitary or liver. The expression of sstr2 was high in all the tissues tested, while sstr5 was predominantly expressed in the pituitary gland. A CRISPR/Cas9 sstr5 mutant with loss of function (sstr5-/-) was produced. Assessment of sstr5-/- indicated no significant difference with the wild type regarding growth parameters such as standard length, body depth, or peduncle depth. Furthermore, the functional loss of sstr5 had no impact on the response to a nutritional challenge. The fact that several sstr subtypes were upregulated in different tissues in sstr5-/- medaka suggests that in the mutant fish, there may be a compensatory effect on the different tissues, predominantly by sstr1 in the liver, brain and pituitary, with sstr2 being upregulated in pituitary and liver, and sstr3 only presenting differential expression in the brain. Analysis of the sstr subtype and the sstr5-/- fish showed that sstr5 was not the only somatostatin receptor responsible for Sst-mediated Gh regulation.


Assuntos
Hormônio do Crescimento Humano , Oryzias , Animais , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Oryzias/genética , Oryzias/metabolismo , Hormônio do Crescimento/genética , Hormônio do Crescimento Humano/metabolismo
6.
Int J Mol Sci ; 25(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38612419

RESUMO

Somatostatin receptor ligands (SRLs) with high affinity for somatostatin receptors 2 and 5 (SSTR2 and SSTR5) are poorly efficacious in NF-PitNETs, expressing high levels of SSTR3. ITF2984 is a pan-SSTR ligand with high affinity for SSTR3, able to induce SSTR3 activation and to exert antitumoral activity in the MENX rat model. The aim of this study was to test ITF2984's antiproliferative and proapoptotic effects in NF-PitNET primary cultured cells derived from surgically removed human tumors and to characterize their SSTR expression profile. We treated cells derived from 23 NF-PitNETs with ITF2984, and a subset of them with octreotide, pasireotide (SRLs with high affinity for SSTR2 or 5, respectively), or cabergoline (DRD2 agonist) and we measured cell proliferation and apoptosis. SSTR3, SSTR2, and SSTR5 expression in tumor tissues was analyzed by qRT-PCR and Western blot. We demonstrated that ITF2984 reduced cell proliferation (-40.8 (17.08)%, p < 0.001 vs. basal, n = 19 NF-PitNETs) and increased cell apoptosis (+41.4 (22.1)%, p < 0.001 vs. basal, n = 17 NF-PitNETs) in all tumors tested, whereas the other drugs were only effective in some tumors. In our model, SSTR3 expression levels did not correlate with ITF2984 antiproliferative nor proapoptotic effects. In conclusion, our data support a possible use of ITF2984 in the pharmacological treatment of NF-PitNET.


Assuntos
Antimitóticos , Tumores Neuroendócrinos , Neoplasias Hipofisárias , Humanos , Tumores Neuroendócrinos/tratamento farmacológico , Octreotida/farmacologia , Octreotida/uso terapêutico , Neoplasias Hipofisárias/tratamento farmacológico , Neoplasias Hipofisárias/genética , Receptores de Somatostatina/genética
7.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732036

RESUMO

Bivalves hold an important role in marine aquaculture and the identification of growth-related genes in bivalves could contribute to a better understanding of the mechanism governing their growth, which may benefit high-yielding bivalve breeding. Somatostatin receptor (SSTR) is a conserved negative regulator of growth in vertebrates. Although SSTR genes have been identified in invertebrates, their involvement in growth regulation remains unclear. Here, we identified seven SSTRs (PySSTRs) in the Yesso scallop, Patinopecten yessoensis, which is an economically important bivalve cultured in East Asia. Among the three PySSTRs (PySSTR-1, -2, and -3) expressed in adult tissues, PySSTR-1 showed significantly lower expression in fast-growing scallops than in slow-growing scallops. Then, the function of this gene in growth regulation was evaluated in dwarf surf clams (Mulinia lateralis), a potential model bivalve cultured in the lab, via RNA interference (RNAi) through feeding the clams Escherichia coli containing plasmids expressing double-stranded RNAs (dsRNAs) targeting MlSSTR-1. Suppressing the expression of MlSSTR-1, the homolog of PySSTR-1 in M. lateralis, resulted in a significant increase in shell length, shell width, shell height, soft tissue weight, and muscle weight by 20%, 22%, 20%, 79%, and 92%, respectively. A transcriptome analysis indicated that the up-regulated genes after MlSSTR-1 expression inhibition were significantly enriched in the fat digestion and absorption pathway and the insulin pathway. In summary, we systemically identified the SSTR genes in P. yessoensis and revealed the growth-inhibitory role of SSTR-1 in bivalves. This study indicates the conserved function of somatostatin signaling in growth regulation, and ingesting dsRNA-expressing bacteria is a useful way to verify gene function in bivalves. SSTR-1 is a candidate target for gene editing in bivalves to promote growth and could be used in the breeding of fast-growing bivalves.


Assuntos
Bivalves , Pectinidae , Receptores de Somatostatina , Animais , Pectinidae/genética , Pectinidae/crescimento & desenvolvimento , Pectinidae/metabolismo , Bivalves/genética , Bivalves/crescimento & desenvolvimento , Bivalves/metabolismo , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Filogenia , Interferência de RNA , Regulação da Expressão Gênica no Desenvolvimento
8.
Medicina (Kaunas) ; 60(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39202532

RESUMO

Background and Objectives: This study explores the complex pathogenesis of pituitary adenomas (PAs), prevalent intracranial tumors in the pituitary gland. Despite their generally benign nature, PAs exhibit a diverse clinical spectrum involving hormone hypersecretion and varying invasiveness, hinting at multifaceted molecular mechanisms and abnormalities in tumorigenesis and gene regulation. Materials and Methods: The investigation focuses on the Ki-67 labeling index, SSTR2 rs2236750, SSTR5 rs34037914, and AIP rs267606574 polymorphisms, alongside serum levels of SSTR2, SSTR5, and AIP, to discern their association with PAs. The Ki-67 labeling index was assessed using immunohistochemical analysis with the monoclonal antibody clone SP6, representing the percentage of tumor cells showing positive staining. Genotyping was performed via real-time polymerase chain reaction, and serum levels were analyzed using ELISA. The study included 128 PA patients and 272 reference group subjects. Results: The results derived from binary logistic regression analysis revealed an intriguing correlation between the SSTR2 rs2236750 AG genotype and approximately a 1.6-fold increased likelihood of PA occurrence. When analyzing SSTR5 rs34037914, statistically significant differences were found between Micro-PA and the reference group (p = 0.022). Additionally, the SSTR5 rs34037914 TT genotype, compared with CC + CT, under the most robust genetic model (selected based on the lowest AIC value), was associated with a 12-fold increased odds of Micro-PA occurrence. However, it is noteworthy that after applying Bonferroni correction, these findings did not retain statistical significance. Conclusions: Consequently, while this study hinted at a potential link between SSTR2 rs2236750 and pituitary adenoma development, as well as a potential link between SSTR5 rs34037914 and Micro-PA development, it underscored the need for further analysis involving a larger cohort to robustly validate these findings.


Assuntos
Adenoma , Antígeno Ki-67 , Neoplasias Hipofisárias , Receptores de Somatostatina , Humanos , Receptores de Somatostatina/genética , Receptores de Somatostatina/análise , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Antígeno Ki-67/análise , Antígeno Ki-67/genética , Adenoma/genética , Adenoma/sangue , Genótipo , Idoso , Peptídeos e Proteínas de Sinalização Intracelular/genética , Variação Genética
9.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769196

RESUMO

Acromegaly is a chronic systemic disease caused in the vast majority of cases by growth hormone (GH)-secreting adenoma, with surgery being the first-line treatment. When a cure is not attained with surgery, first-generation somatostatin receptor ligands (fg-SRLs) are the most common medication prescribed. Predictors of response to fg-SRLs have been studied; however, they cannot fully predict the response to fg-SRL. MicroRNAs are small RNAs, the main role of which is messenger RNA (mRNA) post-transcriptional regulation. This study aimed to identify the microRNAs involved in resistance to treatment with fg-SRLs in acromegaly. Ten patients with acromegaly undergoing treatment with fg-SRLs were selected to undergo miRNA sequencing: five controlled and five uncontrolled with treatment. Bioinformatic analysis was performed to detect differentially expressed miRNAs. Then, the same 10 samples were used for validation by qPCR and an additional 22 samples were analyzed, totaling 32 samples. e We found 59 differentially expressed miRNAs in the first analysis. miR-181a-5p and miR-181b-5p were downregulated, and miR-383-5p was upregulated in the uncontrolled group. Receiver operating characteristic (ROC) curve analysis of miR-383-5p showed an NPV of 84.3% and a PPV of 84.5%. In summary, miR-181a-5p, miR-181b-5p, and miR-383-5p are biomarkers of response to fg-SRLs, and they can be used individually or included in prediction models as tools to guide clinical decisions.


Assuntos
Acromegalia , MicroRNAs , Humanos , Acromegalia/genética , Receptores de Somatostatina/genética , MicroRNAs/genética , MicroRNAs/uso terapêutico
10.
J Neurosci ; 41(17): 3932-3943, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33741721

RESUMO

The Abelson-helper integration site 1 (AHI1) gene encodes for a ciliary transition zone localizing protein that when mutated causes the human ciliopathy, Joubert syndrome. We prepared and examined neuronal cultures derived from male and female embryonic Ahi1+/+ and Ahi1-/- mice (littermates) and found that the distribution of ciliary melanin-concentrating hormone receptor-1 (MchR1) was significantly reduced in Ahi1-/- neurons; however, the total and surface expression of MchR1 on Ahi1-/- neurons was similar to controls (Ahi1+/+). This indicates that a pathway for MchR1 trafficking to the surface plasma membrane is intact, but the process of targeting MchR1 into cilia is impaired in Ahi1-deficient mouse neurons, indicating a role for Ahi1 in localizing MchR1 to the cilium. Mouse Ahi1-/- neurons that fail to accumulate MchR1 in the ciliary membrane have significant decreases in two downstream MchR1 signaling pathways [cAMP and extracellular signal-regulated kinase (Erk)] on MCH stimulation. These results suggest that the ciliary localization of MchR1 is necessary and critical for MchR1 signaling, with Ahi1 participating in regulating MchR1 localization to cilia, and further supporting cilia as critical signaling centers in neurons.SIGNIFICANCE STATEMENT Our work here demonstrates that neuronal primary cilia are powerful and focused signaling centers for the G-protein-coupled receptor (GPCR), melanin-concentrating hormone receptor-1 (MCHR1), with a role for the ciliary transition zone protein, Abelson-helper integration site 1 (AHI1), in mediating ciliary trafficking of MCHR1. Moreover, our manuscript further expands the repertoire of cilia functions on neurons, a cell type that has not received significant attention in the cilia field. Lastly, our work demonstrates the significant influence of ciliary GPCR signaling in the overall signaling of neurons.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Cílios/fisiologia , Neurônios/fisiologia , Receptores de Somatostatina/fisiologia , Transdução de Sinais/fisiologia , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/fisiopatologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Membrana Celular/fisiologia , Cerebelo/anormalidades , Cerebelo/fisiopatologia , AMP Cíclico/metabolismo , Anormalidades do Olho/genética , Anormalidades do Olho/fisiopatologia , Feminino , Doenças Renais Císticas/genética , Doenças Renais Císticas/fisiopatologia , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Knockout , Gravidez , Receptores de Somatostatina/genética , Retina/anormalidades , Retina/fisiopatologia , Transdução de Sinais/genética
11.
BMC Cancer ; 22(1): 740, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35799158

RESUMO

BACKGROUND: Papillary and follicular thyroid carcinomas can be treated surgically and with radioiodine therapy, whereas therapeutic options for advanced stage IV medullary and for anaplastic tumours are limited. Recently, somatostatin receptors (SSTs) and the chemokine receptor CXCR4 have been evaluated for the treatment of thyroid carcinomas, however, with contradictory results. METHODS: The expression of the five SSTs and of CXCR4 was assessed in 90 samples from 56 patients with follicular, papillary, medullary, or anaplastic thyroid carcinoma by means of immunohistochemistry using well-characterised monoclonal antibodies. The stainings were evaluated using the Immunoreactivity Score (IRS) and correlated to clinical data. In order to further substantiate the immunohistochemistry results, in serial sections of a subset of the samples receptor expression was additionally examined at the mRNA level using qRT-PCR. RESULTS: Overall, SST and CXCR4 protein expression was low in all four entities. In single cases, however, very high IRS values for SST2 and CXCR4 were observed. SST2 was the most frequently expressed receptor, found in 38% of cases, followed by SST5 and SST4, found in 14 and 9% of tumours, respectively. SST1 and SST3 could not be detected to any significant extent. CXCR4 was present in 12.5% of medullary and 25% of anaplastic carcinomas. Expression SST3, SST4, SST5 and CXCR4 was positively correlated with expression of the proliferation marker Ki-67. Additionally, a negative interrelationship between SST4 or SST5 expression and patient survival and a positive association between SST3 expression and tumour diameter were observed. qRT-PCR revealed a similar receptor expression pattern to that seen at the protein level. However, probably due to the low overall expression, no correlation was found for the SSTs or the CXCR4 between the IRS and the mRNA values. CONCLUSIONS: SST- or CXCR4-based diagnostics or therapy in thyroid carcinomas should not be considered in general but may be feasible in single cases with high levels of expression of these receptors.


Assuntos
Receptores CXCR4 , Receptores de Somatostatina , Neoplasias da Glândula Tireoide , Anticorpos Monoclonais , Humanos , Radioisótopos do Iodo , RNA Mensageiro/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Neoplasias da Glândula Tireoide/genética
12.
Neurochem Res ; 47(3): 768-780, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34846597

RESUMO

Somatostatin receptor subtype 4 (SSTR4) is expressed in BV2 microglia, suggesting that SSTR4 agonists may impact microglia function. This study assessed the high-affinity SSTR4 agonist SM-I-26 (SMI) (0 nM, 10 nM, 1000 nM) against lipopolysaccharide (LPS)-induced inflammation (0, 10 or 100 ng/ml) over 6 or 24 h in BV2 microglia. Cell viability, nitrite output and mRNA expression changes of genes associated with our target (Sstr4), inflammation (Tnf-α, Il-6, Il-1ß, inos), anti-inflammatory and anti-oxidant actions (Il-10, Catalase), and mediators of Aß binding/phagocytosis (Msr1, Cd33, Trem1, Trem2) were measured. At 6 h SMI showed no effect across all conditions. At 24 h SMI (10 and 1000 nM) upregulated Sstr4 expression under inflammatory and non-inflammatory conditions. At 24 h SMI downregulated expression of the inflammatory cytokines Tnf-α (1000 nM within all LPS concentrations) and Il-6 (10 nM within 0 and 10 ng/ml LPS). At 24 h 10 nM SMI upregulated Il-10, while 1000 nM upregulated Catalase under inflammatory and non-inflammatory conditions. At 24 h Msr1 and Cd33 were upregulated by 1000 nM SMI under non-inflammatory conditions, while Trem1 was downregulated by 10 and 1000 nM SMI under mildly inflammatory and non-inflammatory conditions. These results show that SMI had concentration and time-dependent effects on mRNA expression of genes associated with different states of microglial activation. The SMI reduced Tnf-α and Il-6 inflammatory gene expression, and increased Il-10 anti-inflammatory gene expression, identifies anti-inflammatory actions of SSTR4 agonists extend to microglia.


Assuntos
Lipopolissacarídeos , Microglia , Citocinas/metabolismo , Expressão Gênica , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo
13.
J Reprod Dev ; 68(3): 190-197, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35249910

RESUMO

Reproductive function is suppressed during lactation owing to the suckling-induced suppression of the kisspeptin gene (Kiss1) expression in the arcuate nucleus (ARC) and subsequent suppression of luteinizing hormone (LH) release. Our previous study revealed that somatostatin (SST) neurons mediate suckling-induced suppression of LH release via SST receptor 2 (SSTR2) in ovariectomized lactating rats during early lactation. This study examined whether central SST-SSTR2 signaling mediates the inhibition of ARC Kiss1 expression and LH release in lactating rats during late lactation and whether the inhibition of glutamatergic neurons, stimulators of LH release, is involved in the suppression of LH release mediated by central SST-SSTR2 signaling in lactating rats. A central injection of the SSTR2 antagonist CYN154806 (CYN) significantly increased ARC Kiss1 expression in lactating rats on day 16 of lactation. Dual in situ hybridization revealed that few ARC Kiss1-positive cells co-expressed Sstr2, and some of the ARC Slc17a6 (a glutamatergic neuronal marker)-positive cells co-expressed Sstr2. Furthermore, almost all ARC Kiss1-positive cells co-expressed Grin1, a subunit of N-methyl-D-aspartate (NMDA) receptors. The numbers of Slc17a6/Sstr2 double-labeled and Slc17a6 single-labeled cells were significantly lower in lactating dams than in non-lactating rats whose pups had been removed after parturition. A central injection of an NMDA antagonist reversed the CYN-induced increase in LH release in lactating rats. Overall, these results suggest that central SST-SSTR2 signaling, at least partly, mediates the suppression of ARC Kiss1 expression and LH release by inhibiting ARC glutamatergic interneurons in lactating rats.


Assuntos
Interneurônios , Kisspeptinas , Lactação , Hormônio Luteinizante , Receptores de Somatostatina , Somatostatina , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Feminino , Interneurônios/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Lactação/metabolismo , Hormônio Luteinizante/metabolismo , N-Metilaspartato/metabolismo , Oligopeptídeos/farmacologia , Ratos , Receptores de Somatostatina/antagonistas & inibidores , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Somatostatina/genética , Somatostatina/metabolismo
14.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361790

RESUMO

Somatostatin (SST), cortistatin (CORT), and their receptors (SSTR1-5/sst5TMD4-TMD5) comprise a multifactorial hormonal system involved in the regulation of numerous pathophysiological processes. Certain components of this system are dysregulated and play critical roles in the development/progression of different endocrine-related cancers. However, the presence and therapeutic role of this regulatory system in prostate cancer (PCa) remain poorly explored. Accordingly, we performed functional (proliferation/migration/colonies-formation) and mechanistic (Western-blot/qPCR/microfluidic-based qPCR-array) assays in response to SST and CORT treatments and CORT-silencing (using specific siRNA) in different PCa cell models [androgen-dependent (AD): LNCaP; androgen-independent (AI)/castration-resistant PCa (CRPC): 22Rv1 and PC-3], and/or in the normal-like prostate cell-line RWPE-1. Moreover, the expression of SST/CORT system components was analyzed in PCa samples from two different patient cohorts [internal (n = 69); external (Grasso, n = 88)]. SST and CORT treatment inhibited key functional/aggressiveness parameters only in AI-PCa cells. Mechanistically, antitumor capacity of SST/CORT was associated with the modulation of oncogenic signaling pathways (AKT/JNK), and with the significant down-regulation of critical genes involved in proliferation/migration and PCa-aggressiveness (e.g., MKI67/MMP9/EGF). Interestingly, CORT was highly expressed, while SST was not detected, in all prostate cell-lines analyzed. Consistently, endogenous CORT was overexpressed in PCa samples (compared with benign-prostatic-hyperplasia) and correlated with key clinical (i.e., metastasis) and molecular (i.e., SSTR2/SSTR5 expression) parameters. Remarkably, CORT-silencing drastically enhanced proliferation rate and blunted the antitumor activity of SST-analogues (octreotide/pasireotide) in AI-PCa cells. Altogether, we provide evidence that SST/CORT system and SST-analogues could represent a potential therapeutic option for PCa, especially for CRPC, and that endogenous CORT could act as an autocrine/paracrine regulator of PCa progression.


Assuntos
Neuropeptídeos , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Androgênios , Receptores de Somatostatina/genética , Somatostatina/metabolismo , Neuropeptídeos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células
15.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35955787

RESUMO

Acromegaly is a chronic and systemic disease due to excessive growth hormone and insulin-like growth factor type I caused, in the vast majority of cases, by a GH-secreting pituitary adenoma. About 40% of these tumors have somatic mutations in the stimulatory G protein alpha-subunit 1 gene. The pathogenesis of the remaining tumors, however, is still not fully comprehended. Surgery is the first-line therapy for these tumors, and first-generation somatostatin receptor ligands (fg-SRL) are the most prescribed medications in patients who are not cured by surgery. MicroRNAs are small, non-coding RNAs that control the translation of many mRNAs, and are involved in the post-transcriptional regulation of gene expression. Differentially expressed miRNAs can explain differences in the pathogenesis of acromegaly and tumor resistance. In this review, we focus on the most validated miRNAs, which are mainly involved in acromegaly's tumorigenesis and fg-SRL resistance, as well as in circulating miRNAs in acromegaly.


Assuntos
Acromegalia , Adenoma , Hormônio do Crescimento Humano , MicroRNAs , Acromegalia/genética , Adenoma/metabolismo , Hormônio do Crescimento Humano/uso terapêutico , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , MicroRNAs/genética , MicroRNAs/uso terapêutico , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Somatostatina/genética , Somatostatina/uso terapêutico
16.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163067

RESUMO

Glioblastoma (GBM) is the most malignant and lethal brain tumor. Current standard treatment consists of surgery followed by radiotherapy/chemotherapy; however, this is only a palliative approach with a mean post-operative survival of scarcely ~12-15 months. Thus, the identification of novel therapeutic targets to treat this devastating pathology is urgently needed. In this context, the truncated splicing variant of the somatostatin receptor subtype 5 (sst5TMD4), which is produced by aberrant alternative splicing, has been demonstrated to be overexpressed and associated with increased aggressiveness features in several tumors. However, the presence, functional role, and associated molecular mechanisms of sst5TMD4 in GBM have not been yet explored. Therefore, we performed a comprehensive analysis to characterize the expression and pathophysiological role of sst5TMD4 in human GBM. sst5TMD4 was significantly overexpressed (at mRNA and protein levels) in human GBM tissue compared to non-tumor (control) brain tissue. Remarkably, sst5TMD4 expression was significantly associated with poor overall survival and recurrent tumors in GBM patients. Moreover, in vitro sst5TMD4 overexpression (by specific plasmid) increased, whereas sst5TMD4 silencing (by specific siRNA) decreased, key malignant features (i.e., proliferation and migration capacity) of GBM cells (U-87 MG/U-118 MG models). Furthermore, sst5TMD4 overexpression in GBM cells altered the activity of multiple key signaling pathways associated with tumor aggressiveness/progression (AKT/JAK-STAT/NF-κB/TGF-ß), and its silencing sensitized GBM cells to the antitumor effect of pasireotide (a somatostatin analog). Altogether, these results demonstrate that sst5TMD4 is overexpressed and associated with enhanced malignancy features in human GBMs and reveal its potential utility as a novel diagnostic/prognostic biomarker and putative therapeutic target in GBMs.


Assuntos
Processamento Alternativo , Neoplasias Encefálicas/mortalidade , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/mortalidade , Receptores de Somatostatina/genética , Somatostatina/análogos & derivados , Regulação para Cima , Adulto , Idoso , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Prognóstico , Transdução de Sinais
17.
Genesis ; 59(7-8): e23438, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34124835

RESUMO

Cilia on neurons play critical roles in both the development and function of the central nervous system (CNS). While it remains challenging to elucidate the precise roles for neuronal cilia, it is clear that a subset of G-protein-coupled receptors (GPCRs) preferentially localize to the cilia membrane. Further, ciliary GPCR signaling has been implicated in regulating a variety of behaviors. Melanin concentrating hormone receptor 1 (MCHR1), is a GPCR expressed centrally in rodents known to be enriched in cilia. Here we have used MCHR1 as a model ciliary GPCR to develop a strategy to fluorescently tag receptors expressed from the endogenous locus in vivo. Using CRISPR/Cas9, we inserted the coding sequence of the fluorescent protein mCherry into the N-terminus of Mchr1. Analysis of the fusion protein (mCherry MCHR1) revealed its localization to neuronal cilia in the CNS, across multiple developmental time points and in various regions of the adult brain. Our approach simultaneously produced fortuitous in/dels altering the Mchr1 start codon resulting in a new MCHR1 knockout line. Functional studies using electrophysiology show a significant alteration of synaptic strength in MCHR1 knockout mice. A reduction in strength is also detected in mice homozygous for the mCherry insertion, suggesting that while the strategy is useful for monitoring the receptor, activity could be altered. However, both lines should aid in studies of MCHR1 function and contribute to our understanding of MCHR1 signaling in the brain. Additionally, this approach could be expanded to aid in the study of other ciliary GPCRs.


Assuntos
Melaninas/metabolismo , Neurônios/metabolismo , Receptores de Somatostatina/metabolismo , Alelos , Animais , Cílios/metabolismo , Homozigoto , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Receptores de Somatostatina/genética , Sinapses/metabolismo , Sinapses/fisiologia , Potenciais Sinápticos
18.
J Cell Mol Med ; 25(5): 2484-2492, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33491286

RESUMO

In somatotroph pituitary tumours, somatostatin analogue (SSA) therapy outcomes vary throughout the studies. We performed an analysis of cohort of patients with acromegaly from the Czech registry to identify new prognostic and predictive factors. Clinical data of patients were collected, and complex immunohistochemical assessment of tumour samples was performed (SSTR1-5, dopamine D2 receptor, E-cadherin, AIP). The study included 110 patients. In 31, SSA treatment outcome was evaluated. Sparsely granulated tumours (SGST) differed from the other subtypes in expression of SSTR2A, SSTR3, SSTR5 and E-cadherin and occurred more often in young. No other clinical differences were observed. Trouillas grading system showed association with age, tumour size and SSTR2A expression. Factors significantly associated with SSA treatment outcome included age, IGF1 levels, tumour size and expression of E-cadherin and SSTR2A. In the group of SGST, poor SSA response was observed in younger patients with larger tumours, lower levels of SSTR2A and higher Ki67. We observed no relationship with expression of other proteins including AIP. No predictive value of E-cadherin was observed when tumour subtype was considered. Multiple additional factors apart from SSTR2A expression can predict treatment outcome in patients with acromegaly.


Assuntos
Acromegalia/complicações , Acromegalia/genética , Caderinas/genética , Regulação da Expressão Gênica , Neoplasias Hipofisárias/diagnóstico , Neoplasias Hipofisárias/etiologia , Receptores de Somatostatina/genética , Acromegalia/metabolismo , Adulto , Biomarcadores , Tomada de Decisão Clínica , Terapia Combinada , Gerenciamento Clínico , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neoplasias Hipofisárias/terapia , Prognóstico , Isoformas de Proteínas , Curva ROC , Receptores de Somatostatina/metabolismo , Resultado do Tratamento , Adulto Jovem
19.
J Cell Physiol ; 236(10): 6974-6987, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33682941

RESUMO

Octreotide (OCT) is used to inhibit hormone secretion and growth in somatotroph tumors, although a significant percentage of patients are resistant. It has also been tested in nonfunctioning (NF) tumors but with poor results, with these outcomes having been associated with SSTR2 levels and impaired signaling. We investigated whether OCT inhibitory effects can be improved by TGF-ß1 in functioning and nonfunctioning somatotroph tumor cells. OCT effects on hormone secretion and proliferation were analyzed in the presence of TGF-ß1 in WT and SSTR2-overexpressing secreting GH3 and silent somatotroph tumor cells. The mechanism underlying these effects was assessed by studying SSTR and TGFßR signaling pathways mediators. In addition, we analyzed the effects of OCT/TGF-ß1 treatment on tumor growth and cell proliferation in vivo. The inhibitory effects of OCT on GH- and PRL-secretion and proliferation were improved in the presence of TGF-ß1, as well as by SSTR2 overexpression. The OCT/TGF-ß1 treatment induced downregulation of pERK1/2 and pAkt, upregulation of pSmad3, and inhibition of cyclin D1. In vivo experiments showed that OCT in the presence of TGF-ß1 blocked tumor volume growth, decreased cell proliferation, and increased tumor necrosis. These results indicate that SSTR2 levels and the stimulation of TGF-ß1/TGFßR/Smad2/3 pathway are important for strengthening the antiproliferative and antisecretory effects of OCT.


Assuntos
Antineoplásicos Hormonais/farmacologia , Proliferação de Células/efeitos dos fármacos , Octreotida/farmacologia , Neoplasias Hipofisárias/tratamento farmacológico , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Somatotrofos/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Animais , Linhagem Celular , Feminino , Humanos , Camundongos Nus , Fosforilação , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia , Ratos , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Transdução de Sinais , Somatotrofos/metabolismo , Somatotrofos/patologia , Carga Tumoral/efeitos dos fármacos
20.
Int J Cancer ; 149(5): 1129-1136, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33990938

RESUMO

Aloe-emodin (1,8-dihydroxy-3-[hydroxymethyl]-anthraquinone), AE, is one of the active constituents of a number of plant species used in traditional medicine. We have previously identified, for the first time, AE as a new antitumor agent and shown that its selective in vitro and in vivo killing of neuroblastoma cells was promoted by a cell-specific drug uptake process. However, the molecular mechanism underlying the cell entry of AE has remained elusive as yet. In this report, we show that AE enters tumor cells via two of the five somatostatin receptors: SSTR2 and SSTR5. This observation was suggested by gene silencing, receptor competition, imaging and molecular modeling experiments. Furthermore, SSTR2 was expressed in all surgical neuroblastoma specimens we analyzed by immunohistochemistry. The above findings have strong implications for the clinical adoption of this natural anthraquinone molecule as an antitumor agent.


Assuntos
Aloe/química , Antineoplásicos Fitogênicos/farmacologia , Biomarcadores Tumorais/metabolismo , Emodina/farmacologia , Neoplasias/tratamento farmacológico , Receptores de Somatostatina/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de Somatostatina/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA