Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 750
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 4): 118915, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615792

RESUMO

Surface particulates collected from the workshop floors of three major e-waste recycling sites (Taizhou, Qingyuan, and Guiyu) in China were analyzed for tetrabromobisphenol A/S (TBBPA/S) and their derivatives to investigate the environmental pollution caused by e-waste recycling activities. Mean concentrations of total TBBPA/S analogs in surface particulates were 31,471-116,059 ng/g dry weight (dw). TBBPA, TBBPA-BGE, and TBBPA-BDBPE were the most frequently detected in particulates with average concentration ranges of 17,929-78,406, 5601-15,842, and 5929-21,383 ng/g dw, respectively. Meanwhile, TBBPA, TBBPA-BGE, and TBBPA-BDBPE were the most abundant TBBPA/S analogs, accounting for around 96% of the total. The composition profiles of TBBPA/S analogs differed significantly among three e-waste sites. Similarly, principal component analysis uncovered different pollution patterns among different sites. The discrepancy in the profiles of TBBPA/S analogs largely relied on the e-waste types recycled in different areas. E-waste recycling led to the release of TBBPA/S analogs, and TBBPA/S analogs produced differentiation during migration from source (surface particulates) to nearby soil. More researches are necessary to find a definite relationship between pollution status and e-waste types and study differentiation behavior of TBBPA/S analogs in migration and diffusion from source to environmental medium.


Assuntos
Resíduo Eletrônico , Monitoramento Ambiental , Bifenil Polibromatos , Reciclagem , Bifenil Polibromatos/análise , China , Resíduo Eletrônico/análise , Material Particulado/análise
2.
Environ Res ; 250: 118537, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38408627

RESUMO

E-waste recycling is an increasingly important activity that contributes to reducing the burden of end-of-life electronic and electrical apparatus and allows for the EU's transition to a circular economy. This study investigated the exposure levels of selected persistent organic pollutants (POPs) in workers from e-waste recycling facilities across Europe. The concentrations of seven polychlorinated biphenyls (PCBs) and eight polybrominated diphenyl ethers (PBDEs) congeners were measured by GC-MS. Workers were categorized into five groups based on the type of e-waste handled and two control groups. Generalized linear models were used to assess the determinants of exposure levels among workers. POPs levels were also assessed in dust and silicone wristbands (SWB) and compared with serum. Four PCB congeners (CB 118, 138, 153, and 180) were frequently detected in serum regardless of worker's category. With the exception of CB 118, all tested PCBs were significantly higher in workers compared to the control group. Controls working in the same company as occupationally exposed (Within control group), also displayed higher levels of serum CB 180 than non-industrial controls with no known exposures to these chemicals (Outwith controls) (p < 0.05). BDE 209 was the most prevalent POP in settled dust (16 µg/g) and SWB (220 ng/WB). Spearman correlation revealed moderate to strong positive correlations between SWB and dust. Increased age and the number of years smoked cigarettes were key determinants for workers exposure. Estimated daily intake through dust ingestion revealed that ΣPCB was higher for both the 50th (0.03 ng/kg bw/day) and 95th (0.09 ng/kg bw/day) percentile exposure scenarios compared to values reported for the general population. This study is one of the first to address the occupational exposure to PCBs and PBDEs in Europe among e-waste workers through biomonitoring combined with analysis of settled dust and SWB. Our findings suggest that e-waste workers may face elevated PCB exposure and that appropriate exposure assessments are needed to establish effective mitigation strategies.


Assuntos
Poeira , Resíduo Eletrônico , Éteres Difenil Halogenados , Exposição Ocupacional , Bifenilos Policlorados , Reciclagem , Humanos , Poeira/análise , Exposição Ocupacional/análise , Europa (Continente) , Resíduo Eletrônico/análise , Éteres Difenil Halogenados/sangue , Éteres Difenil Halogenados/análise , Adulto , Masculino , Pessoa de Meia-Idade , Bifenilos Policlorados/sangue , Bifenilos Policlorados/análise , Feminino , Poluentes Orgânicos Persistentes/sangue , Silicones , Monitoramento Ambiental/métodos
3.
J Environ Manage ; 351: 119779, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086120

RESUMO

With an exponential increase in consumers' need for electronic products, the world is facing an ever-increasing economic and environmental threat of electronic waste (e-waste). To minimize their adverse effects, e-waste recycling is one of the pivotal factors that can help in minimizing the environmental pollution andto increase recovery of valuable materials. For instance, Printed Circuit Boards (PCBs), while they have several valuable elements, they are hazardous too; and therefore, they form a large chunk of e-waste being generated today. Thus, in recycling PCBs, Electronic Components (ECs) are segregated at first, and separately processed for recovering key elements that could be re-used. However, in the current recycling process, especially in developing nations, humans manually screen ECs, which goes on to affect their health. It also causes losses of valuable materials. Therefore, automated solutions need to be adopted for both to classify and to segregate ECs from waste PCBs. The study proposes a robust EC identification system based on computer vision and deep learning algorithms (YOLOv3) to automate sorting process which would help in further processing. The study uses a publicly available dataset, and a PCB dataset which reflect challenging recycling environments like lighting conditions, cast shadows, orientations, viewpoints, and different cameras/resolutions. The outcome of YOLOv3 detection model based on training of both datasets presents satisfactory classification accuracy and capability of real-time competent identification, which in turn, could help in automatically segregating ECs, while leading towards effective e-waste recycling.


Assuntos
Resíduo Eletrônico , Reciclagem , Humanos , Computadores , Resíduo Eletrônico/análise , Eletrônica , Algoritmos
4.
Environ Geochem Health ; 46(8): 287, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970741

RESUMO

The aim of the study was an assessment of the pollution level and identification of the antimony sources in soils in areas subjected to industrial anthropopressure from: transport, metallurgy and electrical waste recycling. The combination of soil magnetometry, chemical analyzes using atomic spectrometry (ICP-OES and ICP-MS), Sb fractionation analysis, statistical analysis (Pearson's correlation matrix, factor analysis) as well as Geoaccumulation Index, Pollution Load Index, and Sb/As factor allowed not only the assessment of soil contamination degree, but also comprehensive identification of different Sb sources. The results indicate that the soil in the vicinity of the studied objects was characterized by high values of magnetic susceptibility and thus, high contents of potentially toxic elements. The most polluted area was in the vicinity of electrical waste processing plants. Research has shown that the impact of road traffic and wearing off brake blocks, i.e. traffic anthropopression in general, has little effect on the surrounding soil in terms of antimony content. Large amounts of Pb, Zn, As and Cd were found in the soil collected in the vicinity of the heap after the processing of zinc-lead ores, the average antimony (11.31 mg kg-1) content was lower in the vicinity of the heap than in the area around the electrical and electronic waste processing plant, but still very high. Antimony in the studied soils was demobilized and associated mainly with the residual fraction.


Assuntos
Antimônio , Monitoramento Ambiental , Poluentes do Solo , Solo , Antimônio/análise , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Solo/química , Espectrofotometria Atômica/métodos , Resíduo Eletrônico/análise , Resíduos Industriais/análise
5.
J Chem Inf Model ; 63(8): 2305-2320, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37036888

RESUMO

The principal objective in the treatment of e-waste is to capture the bromine released from the brominated flame retardants (BFRs) added to the polymeric constituents of printed circuits boards (PCBs) and to produce pure bromine-free hydrocarbons. Metal oxides such as calcium hydroxide (Ca(OH)2) have been shown to exhibit high debromination capacity when added to BFRs in e-waste and capturing the released HBr. Tetrabromobisphenol A (TBBA) is the most commonly utilized model compound as a representative for BFRs. Our coauthors had previously studied the pyrolytic and oxidative decomposition of the TBBA:Ca(OH)2 mixture at four different heating rates, 5, 10, 15, and 20 °C/min, using a thermogravimetric (TGA) analyzer and reported the mass loss data between room temperature and 800 °C. However, in the current work, we applied different machine learning (ML) and chemometric techniques involving regression models to predict the TGA data at different heating rates. The motivation of this work was to reproduce the TGA data with high accuracy in order to eliminate the physical need of the instrument itself, so that this could save significant experimental time involving sample preparation and subsequently minimizing human errors. The novelty of our work lies in the application of ML techniques to predict the TGA data from e-waste pyrolysis since this has not been conducted previously. The significance of our work lies in the fact that e-waste is ever increasing, and predicting the mass loss curves faster will enable better compositional analysis of the e-waste samples in the industry. Three ML models were employed in our work, namely Linear, random forest (RF), and support vector regression (SVR), out of which the RF method exhibited the highest coefficient of determination (R2) of 0.999 and least error of prediction as estimated by the root mean squared error (RMSEP) at all 4 heating rates for both pyrolysis and oxidation conditions. An 80:20 split was used for calibration and validation data sets. Furthermore, for showing versatility and robustness of the best-predicting RF model, it was also trained using all the data points in the lower heating rates of 5 and 10 °C/min and predicted on all the data points for the higher heating rates of 15 and 20 °C/min to again obtain a high R2 of 0.999. The excellent performance of the RF model showed that ML techniques can be used to eliminate the physical use of TGA equipment, thus saving experimental time and potential human errors, and can further be applied in other real-time e-waste recycling scenarios.


Assuntos
Resíduo Eletrônico , Retardadores de Chama , Hidrocarbonetos Bromados , Bifenil Polibromatos , Humanos , Bromo , Resíduo Eletrônico/análise , Retardadores de Chama/análise , Hidrocarbonetos Bromados/análise , Bifenil Polibromatos/análise , Aprendizado de Máquina
6.
Environ Sci Technol ; 57(9): 3496-3504, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36794988

RESUMO

Bromine is an important resource that is widely used in medical, automotive, and electronic industries. Waste electronic products containing brominated flame retardants can cause serious secondary pollution, which is why catalytic cracking, adsorption, fixation, separation, and purification have gained significant attention. However, the bromine resources have not been effectively reutilized. The application of advanced pyrolysis technology could help solve this problem via converting bromine pollution into bromine resources. Coupled debromination and bromide reutilization during pyrolysis is an important field of research in the future. This prospective paper presents new insights in terms of the reorganization of different elements and adjustment of bromine phase transition. Furthermore, we proposed some research directions for efficient and environmentally friendly debromination and reutilization of bromine: 1) precise synergistic pyrolysis should be further explored for efficient debromination, such as using persistent free radicals in biomass, polymer hydrogen supply, and metal catalysis, 2) rematching of Br elements and nonmetal elements (C/H/O) will be a promising direction for synthesizing functionalized adsorption materials, 3) oriented control of the bromide migration path should be further studied to obtain different forms of bromine resources, and 4) advanced pyrolysis equipment should be well developed.


Assuntos
Resíduo Eletrônico , Retardadores de Chama , Bromo , Brometos , Pirólise , Estudos Prospectivos , Resíduo Eletrônico/análise
7.
Environ Sci Technol ; 57(22): 8256-8268, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37212265

RESUMO

Due to the dispersed distribution of e-waste and crude disassembly in traditional recycling, valuable metals are not traceable during their life cycle. Meanwhile, incomplete separation between metals and nonmetals reduces the economic value of disassembled parts, which leads to higher environmental costs for metal refining. Therefore, this study proposes a precise disassembly of e-waste to finely classify and recover metals in an environmentally friendly way. First, the macroscopic material flow of e-waste in China (source, flow, scrap, and recycling gap) was measured based on data collected by the government and 109 formal recycling enterprises. The sustainable recycling balance time points for e-waste recycling and scrap volumes were forecast by introducing an additional recycling efficiency. By 2030, the total scrap volume of e-waste is predicted to reach 133.06 million units. For precise disassembly, the main metals and their percentages from these typical e-wastes were measured based on material flow analysis combined with experimental methods. After precise disassembly, the proportion of reusable metals increases significantly. The CO2 emission of precise disassembly with the smelting process was the lowest compared with crude disassembly with smelting and ore metallurgy. The greenhouse gas for secondary metals Fe, Cu, and Al was 830.32, 1151.62, and 716.6 kg CO2/t metal, respectively. The precise disassembly of e-waste is meaningful for building a future resource sustainable society and for carbon emission reduction.


Assuntos
Resíduo Eletrônico , Resíduo Eletrônico/análise , Dióxido de Carbono , Metais , Meio Ambiente , China , Reciclagem/métodos
8.
Environ Sci Technol ; 57(49): 20941-20950, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38032848

RESUMO

Bromine removal is significant in the recycling of waste printed circuit boards (WPCBs). This study found that the critical factors limiting the debromination efficiency of conventional pyrolysis are the formation of coke impeding mass transfer and conversion of bromine into less volatile species, such as coking-Br and copper bromide. According to frontier molecular orbital analysis and thermodynamic equilibrium analysis, C-O bonds of resin are sites prone to electrophilic reactions and copper bromide in residue may undergo hydrolysis; therefore, introducing H2O during pyrolysis was a feasible method for thorough debromination. Through pyrolysis in a water vapor atmosphere, the diffusion limitation of debromination was overcome, and resin was converted into light components; thereby, rapid and deep removal of bromine was achieved. The result indicated that 99.7% of bromine was removed, and the residue could be used as a clean secondary resource. According to life-cycle assessment, pyrolysis of WPCBs in water vapor could be expected to reduce 77 Kt of CO2 emission and increase financial benefits by 60 million dollars, annually.


Assuntos
Resíduo Eletrônico , Vapor , Cobre , Bromo/química , Brometos , Pirólise , Reciclagem/métodos , Resíduo Eletrônico/análise
9.
Environ Sci Technol ; 57(43): 16153-16165, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37861439

RESUMO

China's enterprises of waste electrical and electronic equipment (WEEE) recycling suffer from low profitability that is highly dependent on government subsidies. This low economic gain impedes the sustainable growth of China's WEEE-recycling sector and also adds to the government's financial burden. Prior life-cycle studies have approved the carbon reduction potentials or net carbon credit of recycling WEEE. However, policymakers fail to know whether the revenue from selling carbon credits can offset the government's financial subsidy. We performed life-cycle and cost-benefit analyses for a case recycling enterprise that processes six categories of household appliances. The results show that the reduction potentials of greenhouse gases range from 930-3450 kgCO2e by recycling per ton of household appliances and materials substitution. The recycling enterprise would gain extra revenue ranging from 32 to 160 RMB per ton of appliance if the carbon credits were sold at China's current carbon price, i.e., 45-60 RMB tCO2e-1. Recycling waste refrigerators exhibits the highest carbon revenue, offsetting 6-17% of the government's financial subsidy. Microcomputers, by contrast, indicate the lowest carbon revenue, equivalent to 1-3% of its highest government subsidy. For each household appliance category, when the carbon price reaches 270-600 RMB tCO2e-1, selling carbon credits can fully offset the government's financial subsidy. Constrained by the processing capacity of the case enterprise, optimizations for appliance-recycling composition contribute a 15-25% profit growth to the current economic gains. Interpreting the specific profit depends on the predefined scenarios of carbon price and the substitution rate of the regenerated materials for the virginal ones. Our findings show that raising the profitability of WEEE recycling enterprises through the carbon trading policy contributes to the sustainable growth of China's WEEE-recycling sector while alleviating the government's financial burden.


Assuntos
Resíduo Eletrônico , Gerenciamento de Resíduos , Reutilização de Equipamento , Resíduo Eletrônico/análise , Eletrônica , China , Reciclagem/métodos , Financiamento Governamental
10.
Environ Res ; 217: 114926, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36435494

RESUMO

Ho Chi Minh (HCM) City is the most important urban region of Vietnam, Southeast Asia. In recent times, the quantity of electronic waste (e-waste) has been growing by several thousand tonnes every year. In this research, some of the existing and developing technologies being employed for the recycling of e-waste have been reviewed. Accordingly, the paper has been divided into three sections namely, e-waste treatment technologies in Ho Chi Minh City, the effect of heavy metals on human health and the extraction of metals from e-waste using pyrolysis, hydrometallurgy, bioleaching, mechanical, and air classifier methods, respectively. The extraction of precious metals and heavy metals such as Cd, Cr, Pb, Hg, Cu, Se, and Zn from e-waste can be hazardous to human health. For example, lead causes hazards to the central and peripheral nervous systems, blood system and kidneys; copper causes liver damage; chronic exposure to cadmium ends up causing lung cancer and kidney damage, and mercury can cause brain damage. Thus, this study examines the key findings of many research and review articles published in the field of e-waste management and the health impacts of metal pollution.


Assuntos
Resíduo Eletrônico , Mercúrio , Metais Pesados , Humanos , Resíduo Eletrônico/análise , Vietnã , Metais Pesados/análise , Cobre , Cádmio , Reciclagem , China
11.
Environ Res ; 238(Pt 1): 117126, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37716383

RESUMO

Given the rise in both usage and disposal of dangerous electronics, there is a catastrophic rise in assemblage of electronic waste (e-waste). E-waste including various plastic resins are among the most frequently discarded materials in electronic gadgets. In current digital era, managing e-waste has become universal concern. From the viewpoint of persisting lacuna of e-waste managing methods, the current study is designed to fabricate an eco-friendly e-waste treatment with native soil bacteria employing an enrichment culture method. In the presence of e-waste, indigenous soil microbes were stimulated to degrade e-waste. Microbial cultures were isolated using enrichment medium containing acrylonitrile-butadiene styrene (ABS) as the primary carbon source. Priestia aryabhattai MGP1 was found to be the most dominant e-polymer degrading bacterial isolate, as it was reported to degrade ABS plastic in disposed-off television casings. Furthermore, to increase degradation potential of MGP1, Response Surface Methodology (RSM) was adopted which resulted in optimized conditions (pH 7, shaking-speed 120 rpm, and temperature 30 °C), for maximum degradation (18.88%) after 2 months. The structural changes induced by microbial treatment were demonstrated by comparing the findings of Field emission scanning electron microscopy (FESEM) images and Fourier Transform Infrared (FTIR) spectra confirming the disappearance of ≡ C─H peaks along with C-H, C=C and C ≡N bond destabilization following degradation. Energy-dispersive X-ray (EDX) analyzers of the native and decomposed e-polymer samples revealed a considerable loss in elemental weight % of oxygen by 8.4% and silica by 0.5%. Magnesium, aluminium and chlorine which were previously present in the untreated sample, were also removed after treatment by the bacterial action. When seeds of Vigna radiata were screened using treated soil in the presence of both e-waste and the chosen potent bacterial strain, it was also discovered that there was reduced toxicity in terms of improved germination and growth metrics as a phytotoxicity criterion.


Assuntos
Acrilonitrila , Resíduo Eletrônico , Estireno , Plásticos , Acrilonitrila/química , Butadienos/química , Biodegradação Ambiental , Solo , Resíduo Eletrônico/análise , Polímeros , Bactérias
12.
Environ Res ; 238(Pt 1): 117172, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37729961

RESUMO

As alternatives for legacy brominated flame retardants, novel brominated flame retardants (NBFRs) have a wide array of applications in the electronic and electrical fields. The shift of recycling modes of electronic and electrical waste (e-waste) from informal recycling family workshop to formal recycling facilities might come with the change the chemical landscape emitted including NBFRs, however, little information is known about this topic. This study investigated the occurrence characteristics, distribution, and exposure profiles of eight common NBFRs and their derivatives in an e-waste recycling industrial park in central China and illustrated the differences in various functional zones in the recycling park. The highest level of ΣNBFRs in dust samples was found in e-waste storage area at median concentration of 27,400 ng/g, followed by e-waste dismantling workshops (23,300 ng/g), workshop outdoor area (7770 ng/g), and residential area outdoor (536 ng/g). In the e-waste dismantling associated dust samples, tetrabromobisphenol A bis(2,3-dibromopropyl ether) (TBBPA-BDBPE), tetrabromobisphenol A (TBBPA) and 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ) were the predominant components. This paper presented the first evidence regarding the occurrence characteristic and distribution of tetrabromobisphenol S (TBBPS), tetrabromobisphenol A bismethyl ether (TBBPA-BME) and tetrabromobisphenol S bis(2,3-dibromopropyl ether) (TBBPS-BDBPE) in the e-waste associated dust samples. By comparing with previous studies performed in China, this paper also noticed the significant decrease of TBBPA concentrations in the dust probably due to the shift of e-wastes sources and recycling modes. We further assessed the risk of occupational workers exposure to NBFRs. The median EDI (estimated daily intake) value of ΣNBFRs among e-waste dismantling workers was 9.71 ng/kg BW/d with the maximum EDI value being 19.6 ng/kg BW/d, hundreds of times higher than those exposed by general population. The study raises great concern for the health risk of occupational exposure to NBFRs in the e-waste recycling industrial park.


Assuntos
Resíduo Eletrônico , Retardadores de Chama , Humanos , Poeira/análise , Retardadores de Chama/análise , Resíduo Eletrônico/análise , Reciclagem , Etil-Éteres , Éteres Difenil Halogenados/análise , Monitoramento Ambiental
13.
Environ Res ; 216(Pt 4): 114768, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370811

RESUMO

Electrical and Electronic Equipment (EEE) residues and their management have been widely identified as potential sources of plasticizers and flame retardants to the environment, especially in non-formal e-waste facilities. This study evaluates the distribution, partitioning and environmental and human impact of organophosphate esters (OPEs), legacy polychlorinated biphenyls (PCBs), polybromodiphenyl ethers (PBDEs) and organochlorine pesticides (OCPs) in the e-waste recycling area of Baihe Tang village, in the Qingyuan county, Guangdong province, China. A plastic debris lump accumulated in a small pond during years was identified as the main source of pollution with ∑pollutants of 8400 µg/g dw, being OPEs the main contaminants detected, followed by PBDEs. This lump produced the contamination of water, sediments, soils and hen eggs in the surrounding area at high concentrations. Plastic-water and water-sediment partitioning coefficients explained the migration of OPEs to the water body and accumulation in sediments, with a strong dependence according to the KOW. Triphenyl phosphate (TPhP), tricresyl phosphate (TCPs) and high chlorination degree PCBs produced a risk in soils and sediments, considering the lowest predicted no effect concentration, while the presence of PCBs and PBDEs in free range hen eggs exceeded the acceptable daily intake. OCPs were detected at low concentrations in all samples. The presence of organic contaminants in e-waste facilities worldwide is discussed to highlight the need for a strict control of EEE management to minimize environmental and human risks.


Assuntos
Resíduo Eletrônico , Poluentes Ambientais , Retardadores de Chama , Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Animais , Feminino , Humanos , Retardadores de Chama/análise , Poluentes Ambientais/análise , Resíduo Eletrônico/análise , Éteres Difenil Halogenados/análise , Bifenilos Policlorados/análise , Galinhas , Hidrocarbonetos Clorados/análise , Solo , Plásticos , Água , China , Monitoramento Ambiental
14.
Bioprocess Biosyst Eng ; 46(8): 1121-1131, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36097089

RESUMO

The more modern electronics are, the smaller and complex printed circuit boards are. Thus, these materials are continually changed (physicochemically), increasing the copper concentrations in smartphones. In this sense, it is challenging to set standardized recycling processes to improve metal recovery. In addition, biohydrometallurgy is a clean and cheap process to obtain critical metals from low-grade sources and waste electronic equipment. Therefore, the aim of this work was to characterize, physicochemically, 21 PCBs from smartphones manufactured from 2010 to 2015, and then to recover the copper by Acidithiobacillus ferrooxidans (biohydrometallurgy). The PCBs were comminuted and separated into Magnetic (M), Nonmagnetic (NM) and without magnetic separation (MIX) samples. It was identified 217.8; 560.3 and 401.3 mg Cu/g of PCBs for M, NM and MIX samples, respectively. Regarding biohydrometallurgy, the culture media iron-supplemented (NM + Fe and MIX + Fe) increased the copper content by 2.6 and 7.2%, respectively, and the magnetic separation step was insignificant.


Assuntos
Cobre , Resíduo Eletrônico , Cobre/química , Smartphone , Resíduo Eletrônico/análise , Metais/química , Reciclagem
15.
Arch Environ Contam Toxicol ; 84(4): 453-465, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37129623

RESUMO

Pollution from electronic-waste (E-waste) dismantling is of great concern. This study investigated the concentrations of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and polybrominated diphenyl ethers (PBDEs) in 253 cropland soil samples around an abandoned E-waste dismantling site in Taizhou city, Zhejiang province in China, using an analytical method which simultaneously extracted, purified and determined the identity and quantity of the three types of persistent organic pollutants. Meanwhile, their spatial distributions, pollution characteristics, and risk assessments were further analyzed. Total PCBs in the test soils ranged from below method detection limits (ND) to 2985.25 µg kg-1 on a dry weight basis (d.w.), and the spatial distribution indicated a "hot spot" of PCBs pollution in the study area. The PAHs were detected in all samples with total concentrations ranging from 4.99 to 2723.06 µg kg-1 d.w. The distribution of PBDEs showed the pollution characteristics of "family-run workshops", with a total content range of ND ~ 899.34 µg kg-1 d.w., of which BDE209 was typically the dominant congener, accounting for 74.05% of the total PBDEs content in the test soils, with the highest content reaching 857.72 µg kg-1 d.w. Results showed that the ecological and lifetime carcinogenic risks of PCBs and PAHs were low in the study area, but the health risk caused by oral ingestion and dermal contact accounted for the highest proportion of the total exposure risks, while inhalation could be ignored. PBDEs in soils of the study area were a potential chronic non-carcinogenic risk, particularly for children. Therefore, in order to protect human health and environment, it is necessary to regulate the management of E-waste dismantling sites and pollution control.


Assuntos
Resíduo Eletrônico , Bifenilos Policlorados , Criança , Humanos , Bifenilos Policlorados/análise , Monitoramento Ambiental , Resíduo Eletrônico/análise , Éteres Difenil Halogenados/análise , Fazendas , China , Solo , Medição de Risco
16.
J Environ Manage ; 328: 116900, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36512948

RESUMO

Electronic waste (e-waste) is the world's fastest-growing type of waste, with lighting accounting for 9% of the total. Light-emitting diodes (LEDs) are composed of the most concentrated critical elements (Ag and Au) and recovery of these metals could generate economic benefits and reduce the burdens of environmental pollution; nevertheless, the absence of information about their composition currently presents a challenge in recycling these metals with minimal prospects for recovery. This study assessed the distribution and variation of elemental concentrations of 16 different elements in three generations of LEDs (12 different LED units): sub-mounted-device (SMD #10), chip-on-board (COB #1), and positive-intrinsic-negative (PIN #1). The SMD LEDs contained a considerable amount of Au with a median average concentration of 1204 mg/kg (ranging from 323 - 3687 mg/kg), which was similar to that of COB (1550 mg/kg), but higher than that of PIN LED (175 mg/kg). Based on the total threshold limiting concentration (TTLC), the Cu levels (605,823 mg/kg) in the SMD package exceeded the regulatory limits (2500 mg/kg). Concentrations of the hazardous elements Cr (29 mg/kg), Pb (12 mg/kg), Cd (0.1 mg/kg), and As (1 mg/kg) in the LED packages were within the regulatory limits. To recycle precious metals and other technological metals, a well-organized and dedicated optimized assessment of the value of metals is required especially in accordance with the concept of criticality and recyclability. Two factors, i.e., a high resource index (RI) and technology index (TI), suggest the importance of waste to the economy and has a significant potential for recycling with less processing burdens. Present findings indicated that the COB and a few of the studied SMD LEDs (3020, 4014, 5630, and 7020), exhibit high criticality and recyclability. For the RI and TI index, the contribution of metals such as Cu, Fe, Al, and Au were dominant. These findings can serve as a reference for the development of a viable approach for the recycling and recovery of targeted metals from LED e-waste.


Assuntos
Resíduo Eletrônico , Metais , Reciclagem , Resíduo Eletrônico/análise
17.
J Environ Manage ; 348: 119354, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37864939

RESUMO

The rapid proliferation of electronic waste (e-waste), including waste printed circuit boards (WPCBs), has exerted immense pressure on the environment. The recovery of precious metals from WPCBs not only serves as an effective means of alleviating this environmental burden but also generates economic value. This review focuses on bioleaching, an environmentally friendly method for extracting precious metals from WPCBs. Under various conditions, this method has achieved leaching rates of 30%-73% for Au and 33.8%-90% for Ag. However, there is a relative scarcity of studies on the bioleaching of precious metals from WPCBs. In this paper, we provide an overview of the current status of bioleaching for precious metals from WPCBs and describe the underlying mechanisms. We also briefly outline the influence of various process factors on leaching efficiency. While this review underscores the considerable potential of bioleaching in WPCBs applications, certain limitations hinder the engineering-scale application of the technology. Consequently, this paper describes the current enhanced processes for enhancing leaching efficiency. Overall, this review can serve as a valuable reference for future research endeavors, ultimately promoting the widespread utilization of bioleaching for the recovery of precious metals from WPCBs.


Assuntos
Resíduo Eletrônico , Reciclagem , Metais , Resíduo Eletrônico/análise
18.
J Environ Manage ; 325(Pt A): 116482, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36272288

RESUMO

The management and prevention of environmental risks associated with spent telecommunications printed circuit boards (STPCBs) is a concerning issue worldwide. Recycling might be proposed as a proper method to overcome this issue. Despite knowing that, choosing a sustainable method is challenging because of STPCBs complexity. This problem was overcome by analyzing STPCBs using different analytical methods and metal speciation. Understanding these data is essential in selection strategies to maximize selective recycling of metals and to minimize environmental impact. This research focused on characterizing STPCBs based on their structural, morphological, physiochemical, surface, and thermal properties. The accurate measurement of metal contents, indicating 187,900 mg kg-1 Cu, 22,540 mg kg-1 Pb, 1320 mg kg-1 Ag, and 205 mg kg-1 Au elements, plus other base metals, revealed a remarkable potential value in STPCBs. The results of structural analyses indicated that the powder has a crystalline structure and consists of Cu, Sn and Pb phases as well as different functional groups. In addition, after evaluating the zeta potential of the sample, the isoelectric pH of the sample was observed to be 5.6, which indicates that the powder particles have a negative surface in an environment with a pH higher than this value. Further, the metal speciation via sequential extraction procedure was performed, which showed that a unique harsh recycling strategy is required due to the stable structure of STPCBs. According to the results of this analysis, the global contamination factor (GCF) value was 83.48, which indicates STPCBs have a high degree of contamination. Leaching tests and environmental criteria were also conducted on this waste. The findings suggest that STPCBs needs pretreatments before landfilling to lower the concentration of toxic metals. Also, waste extraction test was the most aggressive procedure to assess mobility. Achieving this information is considered an essential step to choosing the most efficient recycling methods that minimize environmental impact while maximizing selective recycling of metals.


Assuntos
Resíduo Eletrônico , Telecomunicações , Resíduo Eletrônico/análise , Pós , Chumbo/análise , Reciclagem/métodos
19.
J Environ Manage ; 348: 119288, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37864943

RESUMO

The metal resource crisis and the inherent need for a low-carbon circular economy have driven the rapid development of e-waste recycling technology. High-value waste printed circuit boards (WPCBs) are an essential component of e-waste. However, WPCBs are considered hazardous to the ecosystem due to the presence of heavy metals and brominated organic polymers. Therefore, achieving the recycling of metals in WPCBs is not only a strategic requirement for building a green ecological civilization but also an essential guarantee for achieving a safe supply of mineral resources. This review systematically analyzes the hydrometallurgical technology of metals in WPCBs in recent years. Firstly, the different unit operations of pretreatment in the hydrometallurgical process, which contain disassembly, crushing, and pre-enrichment, were analyzed. Secondly, environmentally friendly hydrometallurgical leaching systems and high-value product regeneration technologies used in recent years to recover metals from WPCBs were evaluated. The leaching techniques, including cyanidation, halide, thiourea, and thiosulfate for precious metals, and inorganic acid, organic acid, and other leaching methods for base metals such as copper and nickel in WPCBs, were outlined, and the leaching performance and greenness of each leaching system were summarized and analyzed. Eventually, based on the advantages of each leaching system and the differences in chemical properties of metals in WPCBs, an integrated and multi-gradient green process for the recovery of WPCBs was proposed, which provides a sustainable pathway for the recovery of metals in WPCBs. This paper provides a reference for realizing the gradient hydrometallurgical recovery of metals from WPCBs to promote the recycling metal resources.


Assuntos
Resíduo Eletrônico , Metais Pesados , Ecossistema , Resíduo Eletrônico/análise , Cobre/análise , Níquel , Ácidos
20.
J Environ Manage ; 345: 118550, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37451028

RESUMO

The growing concern over the management of e-wastes has generated an interest in the recovery of resources from these wastes under the concept of urban mining and circular economy. However, in the absence of accurate knowledge of the physico-chemical compositional structure of these wastes makes the recycling process difficult. Thus, the present study conducted a recycling-oriented characterization of waste mobile phones (WMPs) for the identification of secondary materials and estimated their recycling potential. The characterization was performed using ICP-OES and FTIR techniques after dismantling WMPs for the determination of elemental composition and the polymeric fractions respectively. Dismantling of the WMPs revealed that enclosures, batteries, display modules, and PCBs consist of 35.33 wt%, 28.9 wt%, 19.44 wt%, and 16.31 wt% respectively. Of these components, PCBs constitute the highest economic recovery potential with an estimated potential revenue generation of more than 50,000 US $ per ton of waste PCBs. Copper showed the highest recovery potential (234.39 tons/year) with an economic value of approximately 3317 US $/ton of WPCBs followed by Sn (27.37 tons/year) and Ni (24.64 tons/year). Among different precious metals, Au was found to have the highest percentage of economic value (76.22%) followed by Pd (8.16%) and Ag (3.13%). The display modules and enclosures were found to have relatively lower contributions than WPCBs in the overall recycling potential due to lower metal contents and mixed polymeric fractions. The findings in the study indicate that WMPs could serve as a promising new source for sustainable secondary mining of rare and valuable metals. Further, the study will help the policymakers in designing effective e-waste management strategies through the promotion of sustainable recovery of materials.


Assuntos
Telefone Celular , Resíduo Eletrônico , Bifenilos Policlorados , Resíduo Eletrônico/análise , Metais , Cobre , Polímeros , Reciclagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA