Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.423
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(11): 4937-4947, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38446036

RESUMO

Bis(2-ethylhexyl)-tetrabromophthalate (TBPH), a typical novel brominated flame retardant, has been ubiquitously identified in various environmental and biotic media. Consequently, there is an urgent need for precise risk assessment based on a comprehensive understanding of internal exposure and the corresponding toxic effects on specific tissues. In this study, we first investigated the toxicokinetic characteristics of TBPH in different tissues using the classical pseudo-first-order toxicokinetic model. We found that TBPH was prone to accumulate in the liver rather than in the gonad, brain, and muscle of both female and male zebrafish, highlighting a higher internal exposure risk for the liver. Furthermore, long-term exposure to TBPH at environmentally relevant concentrations led to increased visceral fat accumulation, signaling potential abnormal liver function. Hepatic transcriptome analysis predominantly implicated glycolipid metabolism pathways. However, alterations in the profile of associated genes and biochemical indicators revealed gender-specific responses following TBPH exposure. Besides, histopathological observations as well as the inflammatory response in the liver confirmed the development of nonalcoholic fatty liver disease, particularly in male zebrafish. Altogether, our findings highlight a higher internal exposure risk for the liver, enhancing our understanding of the gender-specific metabolic-disrupting potential associated with TBPH exposure.


Assuntos
Retardadores de Chama , Peixe-Zebra , Animais , Masculino , Feminino , Fígado/metabolismo , Metabolismo dos Lipídeos , Retardadores de Chama/toxicidade , Retardadores de Chama/análise
2.
Environ Sci Technol ; 58(9): 4127-4136, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38382014

RESUMO

Tetrabromobisphenol A-bis(2,3-dibromo-2-methylpropyl ether) (TBBPA-DBMPE) has come into use as an alternative to hexabromocyclododecane (HBCD), but it is unclear whether TBBPA-DBMPE has less hazard than HBCD. Here, we compared the bioaccumulation and male reproductive toxicity between TBBPA-DBMPE and HBCD in mice following long-term oral exposure after birth. We found that the concentrations of TBBPA-DBMPE in livers significantly increased with time, exhibiting a bioaccumulation potency not substantially different from HBCD. Lactational exposure to 1000 µg/kg/d TBBPA-DBMPE as well as 50 µg/kg/d HBCD inhibited testis development in suckling pups, and extended exposure up to adulthood resulted in significant molecular and cellular alterations in testes, with slighter effects of 50 µg/kg/d TBBPA-DBMPE. When exposure was extended to 8 month age, severe reproductive impairments including reduced sperm count, increased abnormal sperm, and subfertility occurred in all treated animals, although 50 µg/kg/d TBBPA-DBMPE exerted lower effects than 50 µg/kg/d HBCD. Altogether, all data led us to conclude that TBBPA-DBMPE exerted weaker male reproductive toxicity than HBCD at the same doses but exhibited bioaccumulation potential roughly equivalent to HBCD. Our study fills the data gap regarding the bioaccumulation and toxicity of TBBPA-DBMPE and raises concerns about its use as an alternative to HBCD.


Assuntos
Retardadores de Chama , Hidrocarbonetos Bromados , Bifenil Polibromatos , Masculino , Animais , Camundongos , Retardadores de Chama/toxicidade , Éter , Bioacumulação , Sêmen , Hidrocarbonetos Bromados/toxicidade , Bifenil Polibromatos/toxicidade , Éteres , Etil-Éteres
3.
Environ Sci Technol ; 58(12): 5267-5278, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38478874

RESUMO

Tetrabromobisphenol A (TBBPA), the most extensively utilized brominated flame retardant, has raised growing concerns regarding its environmental and health risks. Neurovascular formation is essential for metabolically supporting neuronal networks. However, previous studies primarily concerned the neuronal injuries of TBBPA, its impact on the neurovascularture, and molecular mechanism, which are yet to be elucidated. In this study, 5, 30, 100, 300 µg/L of TBBPA were administered to Tg (fli1a: eGFP) zebrafish larvae at 2-72 h postfertilization (hpf). The findings revealed that TBBPA impaired cerebral and ocular angiogenesis in zebrafish. Metabolomics analysis showed that TBBPA-treated neuroendothelial cells exhibited disruption of the TCA cycle and the Warburg effect pathway. TBBPA induced a significant reduction in glycolysis and mitochondrial ATP production rates, accompanied by mitochondrial fragmentation and an increase in mitochondrial reactive oxygen species (mitoROS) production in neuroendothelial cells. The supplementation of alpha-ketoglutaric acid, a key metabolite of the TCA cycle, mitigated TBBPA-induced mitochondrial damage, reduced mitoROS production, and restored angiogenesis in zebrafish larvae. Our results suggested that TBBPA exposure impeded neurovascular injury via mitochondrial metabolic perturbation mediated by mitoROS signaling, providing novel insight into the neurovascular toxicity and mode of action of TBBPA.


Assuntos
Retardadores de Chama , Bifenil Polibromatos , Animais , Humanos , Peixe-Zebra , Células Endoteliais/metabolismo , Bifenil Polibromatos/toxicidade , Larva/metabolismo , Retardadores de Chama/toxicidade
4.
Environ Sci Technol ; 58(19): 8251-8263, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38695612

RESUMO

The novel brominated flame retardant, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), has increasingly been detected in environmental and biota samples. However, limited information is available regarding its toxicity, especially at environmentally relevant concentrations. In the present study, adult male zebrafish were exposed to varying concentrations of BTBPE (0, 0.01, 0.1, 1, and 10 µg/L) for 28 days. The results demonstrated underperformance in mating behavior and reproductive success of male zebrafish when paired with unexposed females. Additionally, a decline in sperm quality was confirmed in BTBPE-exposed male zebrafish, characterized by decreased total motility, decreased progressive motility, and increased morphological malformations. To elucidate the underlying mechanism, an integrated proteomic and phosphoproteomic analysis was performed, revealing a predominant impact on mitochondrial functions at the protein level and a universal response across different cellular compartments at the phosphorylation level. Ultrastructural damage, increased expression of apoptosis-inducing factor, and disordered respiratory chain confirmed the involvement of mitochondrial impairment in zebrafish testes. These findings not only provide valuable insights for future evaluations of the potential risks posed by BTBPE and similar chemicals but also underscore the need for further research into the impact of mitochondrial dysfunction on reproductive health.


Assuntos
Reprodução , Peixe-Zebra , Animais , Masculino , Reprodução/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Retardadores de Chama/toxicidade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Feminino
5.
Environ Res ; 252(Pt 2): 118955, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640988

RESUMO

Organophosphate esters (OPEs) are a class of chemicals now widely used as flame retardants and plasticizers after the phase-out of polybrominated diphenyl ethers (PBDEs). However, OPEs carry their own risk of developmental toxicity, which poses concern for recent birth cohorts as they have become ubiquitous in the environment. In this review, we summarize the literature evaluating the association between OPE exposure and maternal, perinatal, and child health outcomes. We included original articles investigating associations of OPE exposure with any health outcome on pregnant women, newborns, children, and adolescents. We found 48 articles on this topic. Of these, five addressed maternal health and pregnancy outcomes, 24 evaluated prenatal OPE exposure and child health, 18 evaluated childhood OPE exposure and child/adolescent health, and one article evaluated both prenatal and childhood OPE exposure. These studies suggest that OPE exposure is possibly associated with a wide range of adverse health outcomes, including pregnancy loss, altered gestational duration and smaller birthweight, maternal and neonatal thyroid dysfunction, child metabolic dysregulation and abnormal growth, impaired neurodevelopment, and changes in immune response. Many of the reported outcomes associated with OPE exposure varied by child sex. Findings also varied substantially by OPE metabolite and exposure time. The OPEs most frequently measured, detected, and found to be associated with health outcomes were triphenyl phosphate (TPHP, metabolized to DPHP) and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP, metabolized to BDCIPP). The extensive range of health outcomes associated with OPEs raises concern about their growing use in consumer products; however, these findings should be interpreted considering the limitations of these epidemiological studies, such as possible exposure misclassification, lack of generalizability, insufficient adjustment for covariates, and failure to consider chemical exposures as a mixture.


Assuntos
Ésteres , Organofosfatos , Humanos , Feminino , Gravidez , Organofosfatos/toxicidade , Criança , Saúde da Criança , Retardadores de Chama/toxicidade , Exposição Materna/efeitos adversos , Adolescente , Recém-Nascido , Poluentes Ambientais/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Saúde Materna , Exposição Ambiental/efeitos adversos , Pré-Escolar
6.
Environ Res ; 240(Pt 1): 117451, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37871788

RESUMO

Organophosphate ester flame retardants and plasticizers (OPEs) are common exposures in modern built environments. Toxicological models report that some OPEs reduce dopamine and serotonin in the brain. Deficiencies in these neurotransmitters are associated with anxiety and depression. We hypothesized that exposure to higher concentrations of OPEs in house dust would be associated with a greater risk of depression and stress in mothers across the prenatal and postpartum periods. We conducted a nested prospective cohort study using data collected on mothers (n = 718) in the CHILD Cohort Study, a longitudinal multi-city Canadian birth cohort (2008-2012). OPEs were measured in house dust sampled at 3-4 months postpartum. Maternal depression and stress were measured at 18 and 36 weeks gestation and 6 months and 1 year postpartum using the Centre for Epidemiologic Studies for Depression Scale (CES-D) and Perceived Stress Scale (PSS). We used linear mixed models to examine the association between a summed Z-Score OPE index and continuous depression and stress scores. In adjusted models, one standard deviation increase in the OPE Z-score index was associated with a 0.07-point (95% CI: 0.01, 0.13) increase in PSS score. OPEs were not associated with log-transformed CES-D (ß: 0.63%, 95% CI: -0.18%, 1.46%). The effect of OPEs on PSS score was strongest at 36 weeks gestation and weakest at 1 year postpartum. We observed small increases in maternal perceived stress levels, but not depression, with increasing OPEs measured in house dust during the prenatal and early postpartum period in this cohort of Canadian women. Given the prevalence of prenatal and postpartum anxiety and the ubiquity of OPE exposures, additional research is warranted to understand if these chemicals affect maternal mental health.


Assuntos
Retardadores de Chama , Gravidez , Humanos , Feminino , Retardadores de Chama/toxicidade , Plastificantes/toxicidade , Estudos de Coortes , Estudos Prospectivos , Poeira , Canadá/epidemiologia , Ésteres , Organofosfatos/toxicidade , Avaliação de Resultados em Cuidados de Saúde
7.
Environ Res ; 240(Pt 2): 117523, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37925128

RESUMO

BACKGROUND: The association of prenatal exposure to organophosphate esters (OPEs) and replacement brominated flame retardants (RBFRs) with respiratory outcomes has not been previously investigated in humans, despite reports that these chemicals can cross the placenta and alter lung development as well as immune functions. METHODS: In a cohort of 342 pregnant women recruited between 2003 and 2006 in the greater Cincinnati, Ohio Metropolitan area, we measured indoor dust OPEs and RBFRs at 20 weeks of gestation and urinary OPEs at 16 and 26 weeks of gestation and at delivery. We performed generalized estimating equations and linear mixed models adjusting for covariates to determine the associations of prenatal OPEs and RBFRs exposures with adverse respiratory outcomes in childhood, reported every six months until age 5 years and with lung function at age 5 years. We used multiple informant modeling to examine time-specific associations between maternal urinary OPEs and the outcomes. RESULTS: Dust concentrations of triphenyl phosphate (TPHP) (RR: 1.40, 95% CI: 1.18-1.66), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (RR: 1.51, 95% CI: 1.23-1.85), and bis(2-ethylhexyl) tetrabromophthalate (RR: 1.57, 95% CI: 1.28-1.94) were associated with higher risk of wheezing during childhood. Dust TPHP concentrations were associated with higher risk of respiratory infections (RR: 1.43, 95% CI: 1.08-1.94), and dust tris-(2-chloroethyl) phosphate concentrations were associated with hay fever/allergies (RR: 1.11, 95% CI: 1.01-1.21). We also found that dust tris-(2-chloroethyl) phosphate loadings were associated with lower lung function. Urinary OPEs mainly at week 16 of gestation tended to be associated with adverse respiratory outcome, while bis(1-chloro-2-propyl) phosphate and diphenyl phosphate at delivery were associated with lower risk of hay fever/allergies. CONCLUSIONS: In-utero exposure to OPEs and RBFRs may be a risk factor for adverse respiratory outcomes in childhood, depending on the timing of exposure.


Assuntos
Retardadores de Chama , Hipersensibilidade , Efeitos Tardios da Exposição Pré-Natal , Rinite Alérgica Sazonal , Gravidez , Humanos , Feminino , Pré-Escolar , Retardadores de Chama/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Fosfatos , Poeira , Organofosfatos/toxicidade
8.
Environ Res ; 252(Pt 4): 119119, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38734290

RESUMO

Hexabromocyclododecane (HBCD), as a monitored chemical of the Chemical Weapons Convention, the Stockholm Convention and the Action Plan for New Pollutants Treatment in China, raises significant concerns on its impact of human health and food security. This study investigated enantiomer-specific biomarkers of HBCD in maize (Zea mays L.). Upon exposure to HBCD enantiomers, the maize root tip cell wall exhibited thinning, uneven cell gaps, and increased deposition on the cell outer wall. Elevated malondialdehyde (MDA) indicated lipid peroxidation, with higher mitochondrial membrane potential (MMP) inhibition in (+)-enantiomer treatments (47.2%-57.9%) than (-)-enantiomers (14.4%-37.4%). The cell death rate significantly increased by 37.7%-108.8% in roots and 16.4%-62.4% in shoots, accompanied by the upregulation of superoxide dismutase isoforms genes. Molecular docking presenting interactions between HBCD and target proteins, suggested that HBCD has an affinity for antioxidant enzyme receptors with higher binding energy for (+)-enantiomers, further confirming their stronger toxic effects. All indicators revealed that oxidative damage to maize seedlings was more severe after treatment with (+)-enantiomers compared to (-)-enantiomers. This study elucidates the biomarkers of phytotoxicity evolution induced by HBCD enantiomers, providing valuable insights for the formulation of more effective policies to safeguard environmental safety and human health in the future.


Assuntos
Biomarcadores , Hidrocarbonetos Bromados , Simulação de Acoplamento Molecular , Zea mays , Zea mays/efeitos dos fármacos , Zea mays/genética , Hidrocarbonetos Bromados/toxicidade , Estereoisomerismo , Retardadores de Chama/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos
9.
Gen Comp Endocrinol ; 350: 114469, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38360373

RESUMO

Tetrabromobisphenol A bis(2-hydroxyethyl) ether (TBBPA-DHEE) is the major TBBPA derivative. It has been detected in different environmental samples. Previous studies show that TBBPA-DHEE caused neurotoxicity in rats. In this study, juvenile zebrafish were exposed to various concentrations of TBBPA-DHEE to ascertain the potential neurotoxicity of TBBPA-DHEE, the chemical, and its possible molecular mechanism of action. Behavioral analysis revealed that TBBPA-DHEE could significantly increase the swimming distance and speed in the 1.5 mg/L group compared to the control. In contrast, the swimming distance and speed were significantly reduced in the 0.05 and 0.3 mg/L groups, affecting learning, memory, and neurodevelopment. Similarly, TBBPA-DHEE exposure caused a concentration-dependent significant increase in the levels of excitatory neurotransmitters, namely, dopamine, norepinephrine, and epinephrine, which could be attributed to the change observed in zebrafish behavior. This demonstrates the neurotoxicity of TBBPA-DHEE on juvenile zebrafish. The concentration-dependent increase in the IBR value revealed by the IBR index reveals the noticeable neurotoxic effect of TBBPA-DHEE. Transcriptomic analysis shows that TBBPA-DHEE exposure activated the PPAR signaling pathways, resulting in a disturbance of fatty acid (FA) metabolism and changes in the transcript levels of genes involved in these pathways, which could lead to lipotoxicity and hepatotoxicity. Our findings demonstrate a distinct endocrine-disrupting response to TBBPA-DHEE exposure, possibly contributing to abnormal behavioral alterations. This study provides novel insights into underlying the mechanisms and effects of TBBPA-DHEE on aquatic organisms, which may be helpful forenvironmental/human health risk assessments of the emerging pollutant.


Assuntos
Retardadores de Chama , Peixe-Zebra , Humanos , Ratos , Animais , Peixe-Zebra/metabolismo , Éteres/análise , Éteres/metabolismo , Análise de Sequência de RNA , Retardadores de Chama/toxicidade , Retardadores de Chama/análise , Retardadores de Chama/metabolismo
10.
Arch Toxicol ; 98(1): 233-250, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37864630

RESUMO

With the widespread use of organophosphate esters (OPEs), the accumulation and toxicity effect of OPEs in biota are attracting more and more concern. In order to clarify the mechanism of toxicity of OPEs to organisms, this study reviewed the OPEs toxicity and systematically identified the mechanism of OPEs toxicity under the framework of adverse outcome pathway (AOP). OPEs were divided into three groups (alkyl-OPEs, aryl-OPEs, and halogenated-OPEs) and biota was divided into aquatic organism and mammals. The results showed that tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP) mainly caused neurotoxicity, reproductive, and hepatotoxicity in different mechanisms. According to the constructed AOP network, the toxicity mechanism of OPEs on aquatic organisms and mammals is different, which is mainly attributed to the different biological metabolic systems of aquatic organisms and mammals. Interestingly, our results indicate that the toxicity effect of the three kinds of OPEs on aquatic organisms is different, while there was no obvious difference in the mechanism of toxicity of OPEs on mammals. This study provides a theoretical basis for OPEs risk assessment in the future.


Assuntos
Rotas de Resultados Adversos , Retardadores de Chama , Animais , Monitoramento Ambiental , Retardadores de Chama/toxicidade , Retardadores de Chama/análise , Organofosfatos/toxicidade , Ésteres/toxicidade , Ésteres/metabolismo , Mamíferos/metabolismo , China
11.
Ecotoxicol Environ Saf ; 273: 116158, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417316

RESUMO

Organophosphorus flame retardants (OPFRs) have been frequently detected with relatively high concentrations in various environmental media and are considered emerging environmental pollutants. However, their biological effect and underlying mechanism is still unclear, and whether chlorinated OPFRs (Cl-OPFRs) cause adverse outcomes with the same molecular initial events or share the same key events (KEs) remains unknown. In this study, in vitro bioassays were conducted to analyze the cytotoxicity, mitochondrial impairment, DNA damage and molecular mechanisms of two Cl-OPFRs. The results showed that these two Cl-OPFRs, which have similar structures, induced severe cellular and molecular damages via different underlying mechanisms. Both tris(2-chloroethyl) phosphate (TCEP) and tris(1-chloro-2-propyl) (TCPP) induced oxidative stress-mediated mitochondrial impairment and DNA damage, as shown by the overproduction of intracellular reactive oxygen species (ROS) and mitochondrial superoxide. Furthermore, the DNA damage caused by TCPP resulted in p53/p21-mediated cell cycle arrest, as evidenced by flow cytometry and real-time PCR. At the cellular and molecular levels, TCPP increased the sub-G1 apoptotic peak and upregulated the p53/Bax apoptosis pathway, possibly resulted in apoptosis associated with its stronger cytotoxicity. Although structurally similar to TCPP, TCEP did not induce mitochondrial impairment and DNA damage by the same KEs. These results provide insight into the toxicity of Cl-OPFRs with similar structures but different mechanisms, which is of great significance for constructing adverse outcome pathways or determining intermediate KEs.


Assuntos
Retardadores de Chama , Compostos Organofosforados , Fosfinas , Compostos Organofosforados/toxicidade , Retardadores de Chama/toxicidade , Proteína Supressora de Tumor p53/genética , Organofosfatos/toxicidade , Dano ao DNA
12.
Ecotoxicol Environ Saf ; 270: 115924, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171103

RESUMO

As a typical organophosphorus flame retardant, tris(2-chloroethyl) phosphate (TCEP) is refractory in aqueous environment. The application of TAP is a promising method for removing pollutants. Herein, the removal of TCEP using TAP was rigorously investigated, and the effects of some key variables were optimized by the one-factor-at-a-time approach. To further evaluate the interactions among variables, the response surface methodology (RSM) based on central composite design was employed. Under optimized conditions (pH 5, [PS]0: [TCEP]0 = 500:1), the maximum removal efficiency (RE) of TCEP reached up to 90.6%. In real-world waters, the RE of TCEP spanned the range of 56%- 65% in river water, pond water, lake water and sanitary sewage. The low-concentration Cl- (0.1 mM) promoted TCEP degradation, but the contrary case occurred when the high-concentration Cl-, NO3-, CO32-, HCO3-, HPO42-, H2PO4-, NH4+ and humic acid were present owing to their prominently quenching effects on SO4•-. Both EPR and scavenger experiments revealed that the main radicals in the TAP system were SO4•- and •OH, in which SO4•- played the most crucial role in TCEP degradation. GC-MS/MS analysis disclosed that two degradation products appeared, sourcing from the replacement, oxidation, hydroxylation and water-molecule elimination reactions. The other two products were inferred from the comprehensive literature. As for acute toxicity to fish, daphnid and green algae, product A displayed the slightly higher toxicity, whereas other three products exhibited the declining toxicity as compared to their parent molecule. These findings offer a theoretical/practical reference for high-efficiency removal of TCEP and its ecotoxicological risk evaluation.


Assuntos
Retardadores de Chama , Fosfinas , Poluentes Químicos da Água , Retardadores de Chama/toxicidade , Espectrometria de Massas em Tandem , Compostos Organofosforados , Organofosfatos/toxicidade , Organofosfatos/química , Oxirredução , Água , Fosfatos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química
13.
Ecotoxicol Environ Saf ; 273: 116142, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38394757

RESUMO

BACKGROUND: The relationship between brominated flame retardants (BFRs) exposure and the human liver was still not well understood. METHODS: A total of 3108 participants (age > 12) from the National Health and Nutrition Examination Survey (NHANES) database spanning from 2005 to 2016 were included as the study population, with nine BFRs exhibiting a detection rate of over 70% serving as the exposure factor. The singular effects and combined effects of BFRs exposure on liver injury, non-alcoholic fatty liver disease (NAFLD), and advanced hepatic fibrosis (AHF) were evaluated separately. Finally, COX regression was employed to explore the hazard ratios associated with individual BFRs. RESULTS: In our analysis of individual exposures, we found significant positive association of PBB153 with alanine aminotransferase (ALT), PBB153 with aspartate aminotransferase (AST), PBDE47, PBDE85, PBDE99, PBDE100, and PBDE154 with alkaline phosphatase (ALP), PBDE28 and PBB153 with gamma-glutamyl transaminase (GGT), PBB153 with the risk of NAFLD and AHF; and significant negative association of PBB153 with ALP, PBDE28, PBDE47, PBDE99, PBDE100, PBDE85, PBDE209, and PBDE154 with albumin (ALB), PBB153 with AST/ALT. The nonlinear analysis results from Restricted Cubic Spline (RCS) further validated these associations (all P<0.05). In the mixed analysis combining Weighted Quantile Sum (WQS) regression and Quantile G-computation (QGC) analysis, BFRs were positively associated with ALT (ß>0, P<0.001), GGT (ß>0, P<0.001), and the risk of NAFLD (OR>1, P=0.007). Conversely, BFRs exhibited significant negative correlations with ALP (ß<0, P<0.001), ALB (ß<0, P<0.001), and AST/ALT (ß<0, P<0.001). Furthermore, the COX regression analysis revealed that PBB153 had the highest hazard ratio among the BFRs. CONCLUSIONS: BFR exposure may increase the risk of liver injury and NAFLD, with no significant association with AHF risk. The impact of BFR exposure on liver health should not be overlooked, especially in individuals residing in impoverished areas.


Assuntos
Retardadores de Chama , Hepatopatia Gordurosa não Alcoólica , Bifenil Polibromatos , Humanos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Retardadores de Chama/toxicidade , Retardadores de Chama/análise , Inquéritos Nutricionais , Fígado , Fosfatase Alcalina , Alanina Transaminase , Cirrose Hepática
14.
Ecotoxicol Environ Saf ; 271: 115960, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219622

RESUMO

Triphenyl phosphate (TPhP) serves as a major organophosphorus flame retardant, and its induced neurodevelopmental toxicity has attracted widespread attention, but the mechanism remains unclear. In this study, we involved zebrafish to explore the new mechanism of TPhP inducing oxidative stress and ferroptosis to promote neurodevelopmental toxicity. The results suggested that TPhP affected the embryonic development, reduced the number of new neurons, and led to abnormal neural behavior in zebrafish larvae. TPhP also induced ROS accumulation, activated the antioxidant defense signal Nrf2 and Keap1, and significantly changed the activities of Acetylcholinesterase (AChE), Adenosine triphosphatase (ATPase) and glutathione S-transferase (GST). In addition, TPhP induced ferroptosis in zebrafish, which was reflected in the increase of Fe2+ content, the abnormal expression of GPX4 protein and genes related to iron metabolism (gpx4a, slc7a11, acsl4b, tfa, slc40a1, fth1b, tfr2, tfr1a, tfr1b and ncoa4). Astaxanthin intervention specifically inhibited ROS levels, and reversed SLC7A11 and GPX4 expression levels and Fe2+ metabolism thus alleviating ferroptosis induced by TPhP. Astaxanthin also partially reversed the activity of AChE, GST and the expression of neurodevelopmental-related genes (gap43, gfap, neurog1 and syn2a), so as to partially rescue the embryonic developmental abnormalities and motor behavior disorders induced by TPhP. More interestingly, the expression of mitochondrial apoptosis-related protein BAX, anti-apoptotic protein BCL-2, Caspase3 and Caspase9 was significantly altered in the TPhP exposed group, which could be also reversed by Astaxanthin intervention. In summary, our results suggested that TPhP exposure can induce oxidative stress and ferroptosis, thereby causing neurodevelopment toxicity to zebrafish, while Astaxanthin can partially reverse oxidative stress and reduce the neurodevelopmental toxicity of zebrafish larvae by activating Nrf2/Keap1/HO-1 signaling pathway.


Assuntos
Ferroptose , Retardadores de Chama , Organofosfatos , Feminino , Animais , Fator 2 Relacionado a NF-E2/genética , Peixe-Zebra , Acetilcolinesterase , Retardadores de Chama/toxicidade , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Espécies Reativas de Oxigênio , Compostos Organofosforados/toxicidade , Estresse Oxidativo , Xantofilas
15.
Ecotoxicol Environ Saf ; 269: 115815, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091675

RESUMO

Flame retardants (FRs) have raised public concerns because of their environmental persistence and negative impacts on human health. Recent evidence has revealed that many FRs exhibit reproductive toxicities and transgenerational impacts, whereas the toxic effects of FRs on germ cells remain barely explored. Here we investigated the multigenerational effects of three flame retardants (TBBPA, TCEP and TCPP) on germ cell development in Caenorhabditis elegans, and examined the germ cell mutagenicity of these FRs by using whole genome sequencing. Parental exposure to three FRs markedly increased germ cell apoptosis, and impeded oogenesis in F1-F6 offspring. In addition, the double-increased mutation frequencies observed in progeny genomes uncover the mutagenic actions of FRs on germ cells. Analysis of mutation spectra revealed that these FRs predominantly induced point mutations at A:T base pairs, whereas both small and large indels were almost unaffected. These results revealed the long-term effects of FRs on development and genomic stability of germ cells, which may pose risks to environmental organisms and human reproductive health. Taken together, our findings suggest that germ cell mutagenicity should be carefully examined for the environmental risk assessment of FRs and other emerging pollutants.


Assuntos
Poluentes Ambientais , Retardadores de Chama , Animais , Humanos , Retardadores de Chama/toxicidade , Retardadores de Chama/análise , Caenorhabditis elegans/genética , Mutagênicos , Poluentes Ambientais/toxicidade , Medição de Risco , Éteres Difenil Halogenados/análise
16.
Ecotoxicol Environ Saf ; 278: 116414, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38714086

RESUMO

BACKGROUND: Organophosphate esters (OPEs) are used extensively as flame retardants and plasticizers. Laboratory studies have shown that OPEs exhibit osteotoxicity by inhibiting osteoblast differentiation; however, little is known about how OPEs exposure is associated with bone health in humans. OBJECTIVES: We conducted a cross-sectional study to investigate the association between OPEs exposure and bone mineral density (BMD) in adults in the United States using data from the 2011-2018 National Health and Nutrition Examination Survey (NHANES). METHODS: Multivariate linear regression models were used to assess the association between concentrations of individual OPE metabolites and BMDs. We also used the Bayesian kernel machine regression (BKMR) and quantile g-computation (qgcomp) models to estimate joint associations between OPE mixture exposure and BMDs. All the analyses were stratified according to gender. RESULTS: A total of 3546 participants (median age, 40 years [IQR, 30-50 years]; 50.11% male) were included in this study. Five urinary OPE metabolites with a detection rate of > 50% were analyzed. After adjusting for the potential confounders, OPE metabolite concentrations were associated with decreased total-body BMD and lumbar spine BMD in males, although some associations only reached significance for bis(1-chloro-2-propyl) phosphate (BCPP), dibutyl phosphate (DBUP), and bis(2-chloroethyl) phosphate (BCEP) (ß = -0.013, 95% CI: -0.026, -0.001 for BCPP and total-body BMD; ß = -0.022, 95% CI: -0.043, -0.0001 for DBUP and lumbar spine BMD; ß=-0.018, 95% CI: -0.034, -0.002 for BCEP and lumbar spine BMD). OPE mixture exposure was also inversely associated with BMD in males, as demonstrated in the BMKR and qgcomp models. CONCLUSIONS: This study provides preliminary evidence that urinary OPE metabolite concentrations are inversely associated with BMD. The results also suggested that males were more vulnerable than females. However, further studies are required to confirm these findings.


Assuntos
Densidade Óssea , Inquéritos Nutricionais , Organofosfatos , Humanos , Adulto , Masculino , Densidade Óssea/efeitos dos fármacos , Feminino , Pessoa de Meia-Idade , Estados Unidos , Estudos Transversais , Organofosfatos/urina , Organofosfatos/toxicidade , Ésteres , Retardadores de Chama/toxicidade , Exposição Ambiental/estatística & dados numéricos , Poluentes Ambientais/urina
17.
Ecotoxicol Environ Saf ; 269: 115756, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056125

RESUMO

Triphenyl phosphate (TPhP), a widely used organophosphate-flame retardant, is ubiquitously found in household environments and may adversely affect human health. Evidence indicates that TPhP exposure causes metabolic dysfunctions in vivo; however, the underlying mechanism of such adverse effects has not been comprehensively investigated. Herein, we utilized two in vitro models including mouse and human preadipocytes to delineate adipogenic mechanisms of TPhP. The results revealed that both mouse and human preadipocytes exposed to TPhP concentration-dependently accumulated more fat through a significant upregulation of epidermal growth factor receptor (EGFR). We demonstrated that TPhP significantly promoted adipogenesis through the activation of EGFR/ERK/AKT signaling pathway as evident by a drastic reduction in adipogenesis of preadipocytes cotreated with inhibitors of EGFR and its major effectors. Furthermore, we confirmed the mechanism of TPhP-induced metabolic dysfunctions in vivo. We observed that male mice perinatally exposed to TPhP had a significant increase in adiposity, hepatic triglycerides, insulin resistance, plasma insulin levels, hypotension, and phosphorylated EGFR in gonadal fat. Interestingly, an administration of a potent and selective EGFR inhibitor significantly ameliorated the adverse metabolic effects caused by TPhP. Our findings uncovered a potential mechanism of TPhP-induced metabolic dysfunctions and provided implications on toxic metabolic effects posed by environmental chemicals.


Assuntos
Retardadores de Chama , Organofosfatos , Proteínas Proto-Oncogênicas c-akt , Animais , Feminino , Humanos , Masculino , Camundongos , Gravidez , Receptores ErbB/metabolismo , Retardadores de Chama/toxicidade , Organofosfatos/toxicidade , Organofosfatos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sistema de Sinalização das MAP Quinases
18.
Ecotoxicol Environ Saf ; 271: 116000, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38266359

RESUMO

The decline in male fertility caused by environmental pollutants has attracted worldwide attention nowadays. Tris(2-chloroisopropyl) phosphate (TCPP) is a chlorine-containing organophosphorus flame retardant applied in many consumer products and has multiple side effects on health. However, whether TCPP impairs spermatogenesis remains unclear. In this study, we found that TCPP reduced the sperm motility and blastocyst formation, inhibited proliferation and induced apoptosis in mice testes and spermatocyte cell line GC-2. Moreover, TCPP induced imbalance of oxidant and anti-oxidant, DNA damage and mitochondrial dysfunction, thus induced abnormal spermatogenesis. In this process, p53 signaling pathway was activated and N-acetylcysteine treatment partially alleviated the side effects of TCPP, including decrease of sperm motility, activation of p53 signaling pathway and DNA damage. Finally, our study verified that TCPP elevated reactive oxygen species (ROS), decreased mitochondrial membrane potential and induced apoptosis in human semen samples. Overall, ROS mediated TCPP-induced germ cell proliferation inhibition and apoptosis, which finally led to the decline of sperm motility.


Assuntos
Retardadores de Chama , Fosfatos , Masculino , Camundongos , Humanos , Animais , Fosfatos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Organofosfatos/toxicidade , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Compostos Organofosforados , Retardadores de Chama/toxicidade , Motilidade dos Espermatozoides , Proteína Supressora de Tumor p53/metabolismo , Estresse Oxidativo , Dano ao DNA
19.
Ecotoxicol Environ Saf ; 279: 116462, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38776784

RESUMO

Tris (2-ethylhexyl) phosphate (TEHP) is a frequently used organophosphorus flame retardant with significant ecotoxicity and widespread human exposure. Recent research indicates that TEHP has reproductive toxicity. However, the precise cell mechanism is not enough understood. Here, by using testicular mesenchymal stromal TM3 cells as a model, we reveal that TEHP induces apoptosis. Then RNA sequencing analysis, immunofluorescence, and western blotting results show that THEP inhibits autophagy flux and enhances endoplasmic reticulum (ER) stress. Moreover, the activation of the ER stress is critical for TEHP-induced cell injury. Interestingly, TEHP-induced ER stress is contributed to autophagic flux inhibition. Furthermore, pharmacological inhibition of autophagy aggravates, and activation of autophagy attenuates TEHP-induced apoptosis. In summary, these findings indicate that TEHP triggers apoptosis in mouse TM3 cells through ER stress activation and autophagy flux inhibition, offering a new perspective on the mechanisms underlying TEHP-induced interstitial cytotoxicity in the mouse testis.


Assuntos
Apoptose , Autofagia , Estresse do Retículo Endoplasmático , Retardadores de Chama , Células Intersticiais do Testículo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Animais , Masculino , Células Intersticiais do Testículo/efeitos dos fármacos , Camundongos , Apoptose/efeitos dos fármacos , Retardadores de Chama/toxicidade , Linhagem Celular
20.
Ecotoxicol Environ Saf ; 279: 116489, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38776781

RESUMO

Combined toxicity is a critical concern during the risk assessment of environmental pollutants. Due to the characteristics of strong hydrophobicity and large specific surface area, microplastics (MPs) and nanoplastics (NPs) have become potential carriers of organic pollutants that may pose a health risk to humans. The co-occurrence of organic pollutants and MPs would cause adverse effects on aquatic organism, while the information about combined toxicity induced by organophosphorus flame retardants and MPs on human cells was limited. This study aimed to reveal the toxicity effects of co-exposure to triphenyl phosphate (TPHP) and polystyrene (PS) particles with micron-size/nano-size on HepG2 cell line. The adsorption behaviors of TPHP on PS particles was observed, with the PS-NP exhibiting a higher adsorption capacity. The reactive oxygen species generation, mitochondrial membrane potential depolarization, lactate dehydrogenase release and cell apoptosis proved that PS-NPs/MPs exacerbated TPHP-induced cytotoxicity. The particle size of PS would affect the toxicity to HepG2 cells that PS-NP (0.07 µm) exhibited more pronounced combined toxicity than PS-MP (1 µm) with equivalent concentrations of TPHP. This study provides fundamental insights into the co-toxicity of TPHP and PS micro/nanoplastics in HepG2 cells, which is crucial for validating the potential risk of combined toxicity in humans.


Assuntos
Apoptose , Retardadores de Chama , Potencial da Membrana Mitocondrial , Microplásticos , Nanopartículas , Poliestirenos , Espécies Reativas de Oxigênio , Humanos , Células Hep G2 , Poliestirenos/toxicidade , Poliestirenos/química , Nanopartículas/toxicidade , Nanopartículas/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Retardadores de Chama/toxicidade , Microplásticos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Tamanho da Partícula , Organofosfatos/toxicidade , Poluentes Químicos da Água/toxicidade , Adsorção , Plásticos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA