Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34.684
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(24): 5254-5268.e26, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37944513

RESUMO

A fundamental feature of cellular growth is that total protein and RNA amounts increase with cell size to keep concentrations approximately constant. A key component of this is that global transcription rates increase in larger cells. Here, we identify RNA polymerase II (RNAPII) as the limiting factor scaling mRNA transcription with cell size in budding yeast, as transcription is highly sensitive to the dosage of RNAPII but not to other components of the transcriptional machinery. Our experiments support a dynamic equilibrium model where global RNAPII transcription at a given size is set by the mass action recruitment kinetics of unengaged nucleoplasmic RNAPII to the genome. However, this only drives a sub-linear increase in transcription with size, which is then partially compensated for by a decrease in mRNA decay rates as cells enlarge. Thus, limiting RNAPII and feedback on mRNA stability work in concert to scale mRNA amounts with cell size.


Assuntos
Tamanho Celular , RNA Polimerase II , Transcrição Gênica , Retroalimentação , RNA Polimerase II/metabolismo , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Cell ; 185(13): 2210-2212, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35750032

RESUMO

Many approved drugs, including antivirals, are small-molecule inhibitors of disease-causing proteins. Such inhibitors often elicit resistance during treatment. Chaturvedi et al. propose new, feedback-disruptor (FD) antivirals that efficiently cure infected cells from viruses and minimize the chance of resistance, providing a new paradigm to treat viral infections and possibly other diseases.


Assuntos
Antivirais , Viroses , Antivirais/farmacologia , Antivirais/uso terapêutico , Retroalimentação , Humanos , Viroses/tratamento farmacológico
3.
Nat Immunol ; 25(1): 41-53, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036767

RESUMO

Bacille Calmette-Guérin (BCG) vaccination can confer nonspecific protection against heterologous pathogens. However, the underlying mechanisms remain mysterious. We show that mice vaccinated intravenously with BCG exhibited reduced weight loss and/or improved viral clearance when challenged with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 B.1.351) or PR8 influenza. Protection was first evident between 14 and 21 d post-vaccination and lasted ∼3 months. Notably, BCG induced a biphasic innate response and robust antigen-specific type 1 helper T cell (TH1 cell) responses in the lungs. MyD88 signaling was essential for innate and TH1 cell responses, and protection against SARS-CoV-2. Depletion of CD4+ T cells or interferon (IFN)-γ activity before infection obliterated innate activation and protection. Single-cell and spatial transcriptomics revealed CD4-dependent expression of IFN-stimulated genes in lung myeloid and epithelial cells. Notably, BCG also induced protection against weight loss after mouse-adapted SARS-CoV-2 BA.5, SARS-CoV and SHC014 coronavirus infections. Thus, BCG elicits integrated organ immunity, where CD4+ T cells feed back on tissue myeloid and epithelial cells to imprint prolonged and broad innate antiviral resistance.


Assuntos
Imunidade Adaptativa , Vacina BCG , Animais , Camundongos , Humanos , Retroalimentação , Vacinação , Redução de Peso , Antivirais , Imunidade Inata
4.
Cell ; 184(20): 5122-5137.e17, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34534446

RESUMO

Natural goal-directed behaviors often involve complex sequences of many stimulus-triggered components. Understanding how brain circuits organize such behaviors requires mapping the interactions between an animal, its environment, and its nervous system. Here, we use brain-wide neuronal imaging to study the full performance of mating by the C. elegans male. We show that as mating unfolds in a sequence of component behaviors, the brain operates similarly between instances of each component but distinctly between different components. When the full sensory and behavioral context is taken into account, unique roles emerge for each neuron. Functional correlations between neurons are not fixed but change with behavioral dynamics. From individual neurons to circuits, our study shows how diverse brain-wide dynamics emerge from the integration of sensory perception and motor actions in their natural context.


Assuntos
Encéfalo/fisiologia , Caenorhabditis elegans/fisiologia , Sensação/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Mapeamento Encefálico , Copulação/fisiologia , Corte , Bases de Dados como Assunto , Retroalimentação , Feminino , Masculino , Modelos Biológicos , Movimento , Neurônios/fisiologia , Descanso , Processamento de Sinais Assistido por Computador , Sinapses/fisiologia , Vulva/fisiologia
5.
Cell ; 182(6): 1589-1605.e22, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32841600

RESUMO

Hunger and thirst have distinct goals but control similar ingestive behaviors, and little is known about neural processes that are shared between these behavioral states. We identify glutamatergic neurons in the peri-locus coeruleus (periLCVGLUT2 neurons) as a polysynaptic convergence node from separate energy-sensitive and hydration-sensitive cell populations. We develop methods for stable hindbrain calcium imaging in free-moving mice, which show that periLCVGLUT2 neurons are tuned to ingestive behaviors and respond similarly to food or water consumption. PeriLCVGLUT2 neurons are scalably inhibited by palatability and homeostatic need during consumption. Inhibition of periLCVGLUT2 neurons is rewarding and increases consumption by enhancing palatability and prolonging ingestion duration. These properties comprise a double-negative feedback relationship that sustains food or water consumption without affecting food- or water-seeking. PeriLCVGLUT2 neurons are a hub between hunger and thirst that specifically controls motivation for food and water ingestion, which is a factor that contributes to hedonic overeating and obesity.


Assuntos
Regulação do Apetite/fisiologia , Ingestão de Líquidos/fisiologia , Ingestão de Alimentos/fisiologia , Locus Cerúleo/citologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Rombencéfalo/fisiologia , Análise de Célula Única/métodos , Animais , Apetite/fisiologia , Escala de Avaliação Comportamental , Retroalimentação , Comportamento Alimentar/fisiologia , Feminino , Glutamina/metabolismo , Glutamina/fisiologia , Homeostase/fisiologia , Fome/fisiologia , Masculino , Camundongos , Camundongos Knockout , Motivação/fisiologia , Neurônios/efeitos dos fármacos , Proteínas Recombinantes , Recompensa , Rombencéfalo/citologia , Rombencéfalo/diagnóstico por imagem , Paladar/fisiologia , Sede/fisiologia
6.
Cell ; 170(6): 1184-1196.e24, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28886385

RESUMO

The bone morphogenetic protein (BMP) signaling pathway comprises multiple ligands and receptors that interact promiscuously with one another and typically appear in combinations. This feature is often explained in terms of redundancy and regulatory flexibility, but it has remained unclear what signal-processing capabilities it provides. Here, we show that the BMP pathway processes multi-ligand inputs using a specific repertoire of computations, including ratiometric sensing, balance detection, and imbalance detection. These computations operate on the relative levels of different ligands and can arise directly from competitive receptor-ligand interactions. Furthermore, cells can select different computations to perform on the same ligand combination through expression of alternative sets of receptor variants. These results provide a direct signal-processing role for promiscuous receptor-ligand interactions and establish operational principles for quantitatively controlling cells with BMP ligands. Similar principles could apply to other promiscuous signaling pathways.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Retroalimentação , Citometria de Fluxo , Ligantes , Camundongos , Modelos Biológicos , Células NIH 3T3
7.
Annu Rev Neurosci ; 46: 259-280, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-36972612

RESUMO

Radial cell columns are a hallmark feature of cortical architecture in many mammalian species. It has long been held, based on the lack of orientation columns, that such functional units are absent in rodent primary visual cortex (V1). These observations led to the view that rodent visual cortex has a fundamentally different network architecture than that of carnivores and primates. While columns may be lacking in rodent V1, we describe in this review that modular clusters of inputs to layer 1 and projection neurons in the layers below are prominent features of the mouse visual cortex. We propose that modules organize thalamocortical inputs, intracortical processing streams, and transthalamic communications that underlie distinct sensory and sensorimotor functions.


Assuntos
Córtex Visual , Camundongos , Animais , Retroalimentação , Córtex Visual/fisiologia , Interneurônios , Sensação , Vias Visuais/fisiologia , Mamíferos
8.
Cell ; 164(6): 1151-1161, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26967282

RESUMO

Chemical reactions contain an inherent element of randomness, which presents itself as noise that interferes with cellular processes and communication. Here we discuss the ability of the spatial partitioning of molecular systems to filter and, thus, remove noise, while preserving regulated and predictable differences between single living cells. In contrast to active noise filtering by network motifs, cellular compartmentalization is highly effective and easily scales to numerous systems without requiring a substantial usage of cellular energy. We will use passive noise filtering by the eukaryotic cell nucleus as an example of how this increases predictability of transcriptional output, with possible implications for the evolution of complex multicellularity.


Assuntos
Fenômenos Fisiológicos Celulares , Membranas Intracelulares/fisiologia , Processos Estocásticos , Animais , Núcleo Celular/fisiologia , Retroalimentação , Humanos , Análise de Célula Única
9.
Cell ; 165(3): 620-30, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27104979

RESUMO

Scale invariance refers to the maintenance of a constant ratio of developing organ size to body size. Although common, its underlying mechanisms remain poorly understood. Here, we examined scaling in engineered Escherichia coli that can form self-organized core-ring patterns in colonies. We found that the ring width exhibits perfect scale invariance to the colony size. Our analysis revealed a collective space-sensing mechanism, which entails sequential actions of an integral feedback loop and an incoherent feedforward loop. The integral feedback is implemented by the accumulation of a diffusive chemical produced by a colony. This accumulation, combined with nutrient consumption, sets the timing for ring initiation. The incoherent feedforward is implemented by the opposing effects of the domain size on the rate and duration of ring maturation. This mechanism emphasizes a role of timing control in achieving robust pattern scaling and provides a new perspective in examining the phenomenon in natural systems.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Animais , Retroalimentação , Fenômenos Microbiológicos , Modelos Biológicos , Tamanho do Órgão
10.
Cell ; 165(1): 88-99, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27015309

RESUMO

In C. elegans, small RNAs enable transmission of epigenetic responses across multiple generations. While RNAi inheritance mechanisms that enable "memorization" of ancestral responses are being elucidated, the mechanisms that determine the duration of inherited silencing and the ability to forget the inherited epigenetic effects are not known. We now show that exposure to dsRNA activates a feedback loop whereby gene-specific RNAi responses dictate the transgenerational duration of RNAi responses mounted against unrelated genes, elicited separately in previous generations. RNA-sequencing analysis reveals that, aside from silencing of genes with complementary sequences, dsRNA-induced RNAi affects the production of heritable endogenous small RNAs, which regulate the expression of RNAi factors. Manipulating genes in this feedback pathway changes the duration of heritable silencing. Such active control of transgenerational effects could be adaptive, since ancestral responses would be detrimental if the environments of the progeny and the ancestors were different.


Assuntos
Caenorhabditis elegans/genética , Epigênese Genética , Interferência de RNA , RNA de Helmintos/genética , Pequeno RNA não Traduzido/genética , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Retroalimentação , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/metabolismo
11.
Cell ; 167(7): 1853-1866.e17, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984732

RESUMO

Genetic screens help infer gene function in mammalian cells, but it has remained difficult to assay complex phenotypes-such as transcriptional profiles-at scale. Here, we develop Perturb-seq, combining single-cell RNA sequencing (RNA-seq) and clustered regularly interspaced short palindromic repeats (CRISPR)-based perturbations to perform many such assays in a pool. We demonstrate Perturb-seq by analyzing 200,000 cells in immune cells and cell lines, focusing on transcription factors regulating the response of dendritic cells to lipopolysaccharide (LPS). Perturb-seq accurately identifies individual gene targets, gene signatures, and cell states affected by individual perturbations and their genetic interactions. We posit new functions for regulators of differentiation, the anti-viral response, and mitochondrial function during immune activation. By decomposing many high content measurements into the effects of perturbations, their interactions, and diverse cell metadata, Perturb-seq dramatically increases the scope of pooled genomic assays.


Assuntos
Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Ciclo Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Retroalimentação , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Células K562 , Camundongos , Camundongos Transgênicos , Fatores de Transcrição/metabolismo
12.
Cell ; 167(7): 1867-1882.e21, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984733

RESUMO

Functional genomics efforts face tradeoffs between number of perturbations examined and complexity of phenotypes measured. We bridge this gap with Perturb-seq, which combines droplet-based single-cell RNA-seq with a strategy for barcoding CRISPR-mediated perturbations, allowing many perturbations to be profiled in pooled format. We applied Perturb-seq to dissect the mammalian unfolded protein response (UPR) using single and combinatorial CRISPR perturbations. Two genome-scale CRISPR interference (CRISPRi) screens identified genes whose repression perturbs ER homeostasis. Subjecting ∼100 hits to Perturb-seq enabled high-precision functional clustering of genes. Single-cell analyses decoupled the three UPR branches, revealed bifurcated UPR branch activation among cells subject to the same perturbation, and uncovered differential activation of the branches across hits, including an isolated feedback loop between the translocon and IRE1α. These studies provide insight into how the three sensors of ER homeostasis monitor distinct types of stress and highlight the ability of Perturb-seq to dissect complex cellular responses.


Assuntos
Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endorribonucleases , Retroalimentação , Humanos , Modelos Moleculares , Proteínas Serina-Treonina Quinases , RNA Guia de Cinetoplastídeos/metabolismo , Transcrição Gênica , Resposta a Proteínas não Dobradas
13.
Mol Cell ; 83(10): 1677-1692.e8, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37207626

RESUMO

PERIOD (PER) and Casein Kinase 1δ regulate circadian rhythms through a phosphoswitch that controls PER stability and repressive activity in the molecular clock. CK1δ phosphorylation of the familial advanced sleep phase (FASP) serine cluster embedded within the Casein Kinase 1 binding domain (CK1BD) of mammalian PER1/2 inhibits its activity on phosphodegrons to stabilize PER and extend circadian period. Here, we show that the phosphorylated FASP region (pFASP) of PER2 directly interacts with and inhibits CK1δ. Co-crystal structures in conjunction with molecular dynamics simulations reveal how pFASP phosphoserines dock into conserved anion binding sites near the active site of CK1δ. Limiting phosphorylation of the FASP serine cluster reduces product inhibition, decreasing PER2 stability and shortening circadian period in human cells. We found that Drosophila PER also regulates CK1δ via feedback inhibition through the phosphorylated PER-Short domain, revealing a conserved mechanism by which PER phosphorylation near the CK1BD regulates CK1 kinase activity.


Assuntos
Relógios Circadianos , Proteínas Circadianas Period , Animais , Humanos , Fosforilação , Retroalimentação , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Ritmo Circadiano/genética , Drosophila/metabolismo , Serina/metabolismo , Mamíferos/metabolismo
14.
Cell ; 162(2): 328-337, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26165942

RESUMO

Genes encoding proteins in a common regulatory network are frequently located close to one another on the chromosome to facilitate co-regulation or couple gene expression to growth rate. Contrasting with these observations, here, we demonstrate a functional role for the arrangement of Bacillus subtilis sporulation network genes on opposite sides of the chromosome. We show that the arrangement of two sporulation network genes, one located close to the origin and the other close to the terminus, leads to a transient gene dosage imbalance during chromosome replication. This imbalance is detected by the sporulation network to produce cell-cycle coordinated pulses of the sporulation master regulator Spo0A∼P. This pulsed response allows cells to decide between sporulation and continued vegetative growth during each cell cycle spent in starvation. The simplicity of this coordination mechanism suggests that it may be widely applicable in a variety of gene regulatory and stress-response settings. VIDEO ABSTRACT.


Assuntos
Bacillus subtilis/fisiologia , Esporos Bacterianos/fisiologia , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos , Replicação do DNA , Retroalimentação , Dosagem de Genes , Fosforilação , Fatores de Transcrição/metabolismo
15.
Cell ; 162(5): 1155-68, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26317475

RESUMO

Basal forebrain cholinergic neurons constitute a major neuromodulatory system implicated in normal cognition and neurodegenerative dementias. Cholinergic projections densely innervate neocortex, releasing acetylcholine to regulate arousal, attention, and learning. However, their precise behavioral function is poorly understood because identified cholinergic neurons have never been recorded during behavior. To determine which aspects of cognition their activity might support, we recorded cholinergic neurons using optogenetic identification in mice performing an auditory detection task requiring sustained attention. We found that a non-cholinergic basal forebrain population-but not cholinergic neurons-were correlated with trial-to-trial measures of attention. Surprisingly, cholinergic neurons responded to reward and punishment with unusual speed and precision (18 ± 3 ms). Cholinergic responses were scaled by the unexpectedness of reinforcement and were highly similar across neurons and two nuclei innervating distinct cortical areas. These results reveal that the cholinergic system broadcasts a rapid and precisely timed reinforcement signal, supporting fast cortical activation and plasticity.


Assuntos
Neurônios Colinérgicos/fisiologia , Retroalimentação , Animais , Nível de Alerta , Atenção , Comportamento Animal , Neurônios Colinérgicos/citologia , Cognição , Aprendizagem , Camundongos , Plasticidade Neuronal , Prosencéfalo/fisiologia , Recompensa
16.
Cell ; 160(3): 528-41, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25635460

RESUMO

The lateral hypothalamic (LH) projection to the ventral tegmental area (VTA) has been linked to reward processing, but the computations within the LH-VTA loop that give rise to specific aspects of behavior have been difficult to isolate. We show that LH-VTA neurons encode the learned action of seeking a reward, independent of reward availability. In contrast, LH neurons downstream of VTA encode reward-predictive cues and unexpected reward omission. We show that inhibiting the LH-VTA pathway reduces "compulsive" sucrose seeking but not food consumption in hungry mice. We reveal that the LH sends excitatory and inhibitory input onto VTA dopamine (DA) and GABA neurons, and that the GABAergic projection drives feeding-related behavior. Our study overlays information about the type, function, and connectivity of LH neurons and identifies a neural circuit that selectively controls compulsive sugar consumption, without preventing feeding necessary for survival, providing a potential target for therapeutic interventions for compulsive-overeating disorder.


Assuntos
Comportamento Animal , Região Hipotalâmica Lateral/fisiologia , Área Tegmentar Ventral/fisiologia , Animais , Retroalimentação , Região Hipotalâmica Lateral/citologia , Camundongos , Modelos Neurológicos , Vias Neurais , Neurônios/citologia , Recompensa , Sacarose , Ácido gama-Aminobutírico/metabolismo
17.
Cell ; 160(4): 759-770, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25679765

RESUMO

Sensitization of the capsaicin receptor TRPV1 is central to the initiation of pathological forms of pain, and multiple signaling cascades are known to enhance TRPV1 activity under inflammatory conditions. How might detrimental escalation of TRPV1 activity be counteracted? Using a genetic-proteomic approach, we identify the GABAB1 receptor subunit as bona fide inhibitor of TRPV1 sensitization in the context of diverse inflammatory settings. We find that the endogenous GABAB agonist, GABA, is released from nociceptive nerve terminals, suggesting an autocrine feedback mechanism limiting TRPV1 sensitization. The effect of GABAB on TRPV1 is independent of canonical G protein signaling and rather relies on close juxtaposition of the GABAB1 receptor subunit and TRPV1. Activating the GABAB1 receptor subunit does not attenuate normal functioning of the capsaicin receptor but exclusively reverts its sensitized state. Thus, harnessing this mechanism for anti-pain therapy may prevent adverse effects associated with currently available TRPV1 blockers.


Assuntos
Comunicação Autócrina , Neurônios/metabolismo , Dor/metabolismo , Receptores de GABA-B/metabolismo , Canais de Cátion TRPV/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Células Cultivadas , Retroalimentação , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
18.
Nature ; 626(7999): 555-564, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356065

RESUMO

The possibility that the Amazon forest system could soon reach a tipping point, inducing large-scale collapse, has raised global concern1-3. For 65 million years, Amazonian forests remained relatively resilient to climatic variability. Now, the region is increasingly exposed to unprecedented stress from warming temperatures, extreme droughts, deforestation and fires, even in central and remote parts of the system1. Long existing feedbacks between the forest and environmental conditions are being replaced by novel feedbacks that modify ecosystem resilience, increasing the risk of critical transition. Here we analyse existing evidence for five major drivers of water stress on Amazonian forests, as well as potential critical thresholds of those drivers that, if crossed, could trigger local, regional or even biome-wide forest collapse. By combining spatial information on various disturbances, we estimate that by 2050, 10% to 47% of Amazonian forests will be exposed to compounding disturbances that may trigger unexpected ecosystem transitions and potentially exacerbate regional climate change. Using examples of disturbed forests across the Amazon, we identify the three most plausible ecosystem trajectories, involving different feedbacks and environmental conditions. We discuss how the inherent complexity of the Amazon adds uncertainty about future dynamics, but also reveals opportunities for action. Keeping the Amazon forest resilient in the Anthropocene will depend on a combination of local efforts to end deforestation and degradation and to expand restoration, with global efforts to stop greenhouse gas emissions.


Assuntos
Florestas , Aquecimento Global , Árvores , Secas/estatística & dados numéricos , Retroalimentação , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , Árvores/crescimento & desenvolvimento , Incêndios Florestais/estatística & dados numéricos , Incerteza , Recuperação e Remediação Ambiental/tendências
19.
Nat Immunol ; 18(6): 612-621, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28518156

RESUMO

Increased understanding of the biology of interleukin 17 (IL-17) has revealed that this cytokine is a central player in immunity at the sites most exposed to microorganisms. Although it has been strongly associated with immunopathology, IL-17 also has an important role in host defense. The regulation of IL-17 secretion seems to be shared among various cell types, each of which can concomitantly secrete additional products. IL-17 has only modest activity on its own; its impact in immunity arises from its synergistic action with other factors, its self-sustaining feedback loop and, in some cases, its role as a counterpart of interferon-γ (IFN-γ). Together these attributes provide a robust response against microorganisms, but they can equally contribute to immune pathology. Here we focus on a discussion of the role of IL-17 during infection.


Assuntos
Imunidade Adaptativa/imunologia , Artrite Reumatoide/imunologia , Imunidade Inata/imunologia , Infecções/imunologia , Interleucina-17/imunologia , Neoplasias/imunologia , Psoríase/imunologia , Animais , Retroalimentação , Humanos , Interferon gama/imunologia , Camundongos
20.
Nat Immunol ; 18(6): 654-664, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28414311

RESUMO

In obesity, inflammation of white adipose tissue (AT) is associated with diminished generation of beige adipocytes ('beige adipogenesis'), a thermogenic and energy-dissipating function mediated by beige adipocytes that express the uncoupling protein UCP1. Here we delineated an inflammation-driven inhibitory mechanism of beige adipogenesis in obesity that required direct adhesive interactions between macrophages and adipocytes mediated by the integrin α4 and its counter-receptor VCAM-1, respectively; expression of the latter was upregulated in obesity. This adhesive interaction reciprocally and concomitantly modulated inflammatory activation of macrophages and downregulation of UCP1 expression dependent on the kinase Erk in adipocytes. Genetic or pharmacological inactivation of the integrin α4 in mice resulted in elevated expression of UCP1 and beige adipogenesis of subcutaneous AT in obesity. Our findings, established in both mouse systems and human systems, reveal a self-sustained cycle of inflammation-driven impairment of beige adipogenesis in obesity.


Assuntos
Adipócitos Bege , Adipogenia/imunologia , Tecido Adiposo Branco/imunologia , Diferenciação Celular/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Obesidade/imunologia , Células 3T3-L1 , Adipócitos/imunologia , Adipócitos/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Adesão Celular/imunologia , Dieta Hiperlipídica , Regulação para Baixo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Retroalimentação , Feminino , Técnicas de Silenciamento de Genes , Humanos , Immunoblotting , Integrina alfa4/genética , Macrófagos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Monócitos/imunologia , Obesidade/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Gordura Subcutânea , Linfócitos T/imunologia , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA