Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.396
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Bioessays ; 46(9): e2400056, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39072829

RESUMO

X chromosome centromeric drive may explain the prevalence of polycystic ovary syndrome and contribute to oocyte aneuploidy, menopause, and other conditions. The mammalian X chromosome may be vulnerable to meiotic drive because of X inactivation in the female germline. The human X pericentromeric region contains genes potentially involved in meiotic mechanisms, including multiple SPIN1 and ZXDC paralogs. This is consistent with a multigenic drive system comprising differential modification of the active and inactive X chromosome centromeres in female primordial germ cells and preferential segregation of the previously inactivated X chromosome centromere to the polar body at meiosis I. The drive mechanism may explain differences in X chromosome regulation in the female germlines of the human and mouse and, based on the functions encoded by the genes in the region, the transmission of X pericentromeric genetic or epigenetic variants to progeny could contribute to preeclampsia, autism, and differences in sexual differentiation.


Assuntos
Centrômero , Cromossomos Humanos X , Meiose , Síndrome do Ovário Policístico , Animais , Feminino , Humanos , Camundongos , Centrômero/genética , Cromossomos Humanos X/genética , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/patologia , Prevalência , Inativação do Cromossomo X/genética
2.
Trends Genet ; 38(5): 468-482, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35094873

RESUMO

Identifying etiological risk factors is significant for preventing and treating patients with polycystic ovary syndrome (PCOS). Through genetic variation, Mendelian randomization (MR) assesses causal associations between PCOS risk and related exposure factors. This emerging technology has provided evidence of causal associations of anti-Müllerian hormone (AMH) levels, sex hormone-binding globulin (SHBG) levels, menopause age, adiposity, insulin resistance (IR), depression, breast cancer, ovarian cancer, obsessive-compulsive disorder (OCD), and forced vital capacity (FVC) with PCOS, while lacking associations of type 2 diabetes mellitus (T2DM), coronary heart disease (CHD), stroke, anxiety disorder (AD), schizophrenia (SCZ), bipolar disorder (BIP), and offspring birth weight with PCOS. In this review, we briefly introduce the concept and methodology of MR in terms of the opportunities and challenges in this field based on recent results obtained from MR analyses involving PCOS.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Síndrome do Ovário Policístico , Hormônio Antimülleriano/genética , Diabetes Mellitus Tipo 2/genética , Feminino , Humanos , Resistência à Insulina/genética , Análise da Randomização Mendeliana , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/genética
3.
Am J Pathol ; 194(6): 894-911, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38403164

RESUMO

Polycystic ovary syndrome (PCOS) is a highly heterogeneous and genetically complex endocrine disorder. Although the etiology remains mostly elusive, growing evidence suggests that abnormal changes of DNA methylation correlate well with systemic and tissue-specific dysfunctions in PCOS. Herein, a dehydroepiandrosterone-induced PCOS-like mouse model which has a similar metabolic and reproductive phenotype as human patients with PCOS was generated. It was used to experimentally validate the potential role of aberrant DNA methylation in PCOS in this study. Integrated DNA methylation and transcriptome analysis revealed the potential role of genomic DNA hypomethylation in transcription regulation of PCOS and identified several key candidate genes, including BMP4, Adcy7, Tnfaip3, and Fas, which were regulated by aberrant DNA hypomethylation. Moreover, i.p. injection of S-adenosylmethionine increased the overall DNA methylation level of PCOS-like mice and restored expression of the candidate genes to similar levels as the control, alleviating reproductive and metabolic abnormalities in PCOS-like mice. These findings provide direct evidence showing the importance of normal DNA methylation in epigenetic regulation of PCOS and potential targets for diagnosis and treatment of the disease.


Assuntos
Metilação de DNA , Síndrome do Ovário Policístico , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Metilação de DNA/genética , Animais , Feminino , Camundongos , Modelos Animais de Doenças , Transcrição Gênica , Epigênese Genética , Regulação da Expressão Gênica , Humanos , Camundongos Endogâmicos C57BL
4.
Biol Cell ; 116(7): e2300069, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38679788

RESUMO

Polycystic ovary syndrome or PCOS is an endocrine disorder in women of reproductive age. It is a diversified multi factorial disorder and diagnosis is very complicated because of its overlapping symptoms some of which are irregular menstrual cycle, acne in face, excess level of androgen (AE), insulin resistance, obesity, cardiovascular disease, mood disorder and type 2 diabetes (T2DM). PCOS may be caused by hormonal imbalance, genetic and epigenetic vulnerability, hypothalamic and ovarian troubles. PCOS is essentially hyperandrogenimia with oligo-anovulation. This review explains the abnormal regulation of autophagy related genes and proteins in different cells at various stages which leads to the genesis of PCOS. During nutrient starvation cells face stress condition, which it tries to overcome by activating its macroautophagy mechanism and by degrading the cytoplasmic material. This provides energy to the cell facilitating its survival. Downregulation of autophagy related genes in endometria has been observed in PCOS women. PCOS can be managed by maintaining proper lifestyle and medical treatment. Healthy meals and regular exercise can prevent the excessive weight and also reduce the PCOS complications. Medicines such as metformin, clomiphene, and the oral contraceptive pill can also balance the hormonal level. The imbalance in regulation of autophagy genes has been discussed with correlation to PCOS. The different management strategies for PCOS have also been summarized.


Assuntos
Autofagia , Síndrome do Ovário Policístico , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Humanos , Feminino , Animais
5.
Cell Mol Life Sci ; 81(1): 101, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409361

RESUMO

Abnormal autophagy is one of the vital features in polycystic ovary syndrome (PCOS). However, the underlying molecular mechanisms remain unelucidated. In this study, we aimed to investigate whether Block of Proliferation 1 (BOP1) is involved in the onset of autophagy activation of granulosa cells in PCOS. Firstly, we found that BOP1 expression was significantly down-regulated in the ovaries of PCOS mice, which was associated with the development of PCOS. Next, local injection of lentiviral vectors in the ovary for the overexpression of BOP1 significantly alleviated the phenotypes of elevated androgens, disturbed estrous cycle, and abnormal follicular development in PCOS mice. Subsequently, we found that knockdown of BOP1 activated autophagy of granulosa cells in the in vitro experiments, whereas overexpression of BOP1 inhibited autophagy in both in vivo and in vitro models. Mechanistically, BOP1 knockdown triggered the nucleolus stress response, which caused RPL11 to be released from the nucleolus into the nucleoplasm and inhibited the E3 ubiquitination ligase of MDM2, thereby enhancing the stability of p53. Subsequently, P53 inhibited mTOR, thereby activating autophagy in granulosa cells. In addition, the mRNA level of BOP1 was negatively correlated with antral follicle count (AFC), body-mass index (BMI), serum androgen levels, and anti-Mullerian hormone (AMH) in patients with PCOS. In summary, our study demonstrates that BOP1 downregulation inhibits mTOR phosphorylation through activation of the p53-dependent nucleolus stress response, which subsequently contributes to aberrant autophagy in granulosa cells, revealing that BOP1 may be a key target for probing the mechanisms of PCOS.


Assuntos
Síndrome do Ovário Policístico , Animais , Feminino , Humanos , Camundongos , Células da Granulosa/metabolismo , Folículo Ovariano/metabolismo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
J Cell Mol Med ; 28(14): e18464, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39036884

RESUMO

Polycystic ovarian syndrome (PCOS) is related to pro-apoptotic and pro-inflammatory conditions generated by Endoplasmic reticulum (ER) stress. This study aimed to determine the effect of Astaxanthin (ASX), as carotenoid with potent antioxidant and anti-inflammatory properties, on serum inflammatory markers, apoptotic factors and ER stress-apoptotic genes in peripheral blood mononuclear cells (PBMCs) of women with PCOS. This randomized, double-blind clinical trial included 56 PCOS patients aged 18-40. For 8 weeks, subjects were randomly assigned to one of two groups: either 12 mg ASX (n = 28) or placebo (n = 28). Real-time PCR was used to quantify gene expression associated with ER stress-apoptosis in PCOS women's PBMCs. The levels of TNF-α, IL18, IL6 and CRP were determined by obtaining blood samples from all patients before and after the intervention using Enzyme-linked immunosorbent assay (ELISA). Also, the levels of active caspase-3 and caspase-8 were detected in the PBMC by ELISA kit. Furthermore, we evaluated the efficacy of ASX on disease symptoms. Following the 8-week intervention, ASX supplementation was able to reduce the expression of GRP78 (p = 0.051), CHOP (p = 0.008), XBP1 (p = 0.002), ATF4 (0.038), ATF6 (0.157) and DR5 (0.016) when compared to the placebo. However, this decrease was not statistically significant for ATF6 (p = 0.067) and marginally significant for GRP78 (p = 0.051). The levels of TNF-α (p = 0.009), IL-18 (p = 0.003), IL-6 (p = 0.013) and active caspase-3 (p = 0.012) were also statistically significant lower in the therapy group. However, there was no significant difference in CRP (p = 0.177) and caspase-8 (p = 0.491) levels between the treatment and control groups. In our study, ASX had no significant positive effect on BMI, hirsutism, hair loss and regularity of the menstrual cycle. It appears that ASX may benefit PCOS by changing the ER stress-apoptotic pathway and reducing serum inflammatory markers; however, additional research is required to determine this compound's potential relevance.


Assuntos
Apoptose , Biomarcadores , Suplementos Nutricionais , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Leucócitos Mononucleares , Síndrome do Ovário Policístico , Xantofilas , Humanos , Feminino , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/sangue , Síndrome do Ovário Policístico/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Xantofilas/farmacologia , Xantofilas/administração & dosagem , Xantofilas/uso terapêutico , Adulto , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Biomarcadores/sangue , Adulto Jovem , Adolescente , Método Duplo-Cego , Regulação da Expressão Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/sangue , Interleucina-18/sangue , Interleucina-18/genética , Inflamação/sangue , Inflamação/tratamento farmacológico , Inflamação/genética , Interleucina-6/sangue , Interleucina-6/genética , Caspase 8/genética , Caspase 8/metabolismo
7.
Circulation ; 148(24): 1958-1973, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-37937441

RESUMO

BACKGROUND: Reducing cardiovascular disease burden among women remains challenging. Epidemiologic studies have indicated that polycystic ovary syndrome (PCOS), the most common endocrine disease in women of reproductive age, is associated with an increased prevalence and extent of coronary artery disease. However, the mechanism through which PCOS affects cardiac health in women remains unclear. METHODS: Prenatal anti-Müllerian hormone treatment or peripubertal letrozole infusion was used to establish mouse models of PCOS. RNA sequencing was performed to determine global transcriptomic changes in the hearts of PCOS mice. Flow cytometry and immunofluorescence staining were performed to detect myocardial macrophage accumulation in multiple PCOS models. Parabiosis models, cell-tracking experiments, and in vivo gene silencing approaches were used to explore the mechanisms underlying increased macrophage infiltration in PCOS mouse hearts. Permanent coronary ligation was performed to establish myocardial infarction (MI). Histologic analysis and small-animal imaging modalities (eg, magnetic resonance imaging and echocardiography) were performed to evaluate the effects of PCOS on injury after MI. Women with PCOS and control participants (n=200) were recruited to confirm findings observed in animal models. RESULTS: Transcriptomic profiling and immunostaining revealed that hearts from PCOS mice were characterized by increased macrophage accumulation. Parabiosis studies revealed that monocyte-derived macrophages were significantly increased in the hearts of PCOS mice because of enhanced circulating Ly6C+ monocyte supply. Compared with control mice, PCOS mice showed a significant increase in splenic Ly6C+ monocyte output, associated with elevated hematopoietic progenitors in the spleen and sympathetic tone. Plasma norepinephrine (a sympathetic neurotransmitter) levels and spleen size were consistently increased in women with PCOS when compared with those in control participants, and norepinephrine levels were significantly correlated with circulating CD14++CD16- monocyte counts. Compared with animals without PCOS, PCOS animals showed significantly exacerbated atherosclerotic plaque development and post-MI cardiac remodeling. Conditional Vcam1 silencing in PCOS mice significantly suppressed cardiac inflammation and improved cardiac injury after MI. CONCLUSIONS: Our data documented previously unrecognized mechanisms through which PCOS could affect cardiovascular health in women. PCOS may promote myocardial macrophage accumulation and post-MI cardiac remodeling because of augmented splenic myelopoiesis.


Assuntos
Traumatismos Cardíacos , Infarto do Miocárdio , Síndrome do Ovário Policístico , Gravidez , Feminino , Humanos , Camundongos , Animais , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/diagnóstico , Remodelação Ventricular , Infarto do Miocárdio/complicações , Inflamação/complicações , Norepinefrina
8.
BMC Genomics ; 25(1): 208, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408933

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is a complex multifactorial disorder with a substantial genetic component. However, the clinical manifestations of PCOS are heterogeneous with notable differences between lean and obese women, implying a different pathophysiology manifesting in differential body mass index (BMI). We performed a meta-analysis of genome-wide association study (GWAS) data from six well-characterised cohorts, using a case-control study design stratified by BMI, aiming to identify genetic variants associated with lean and overweight/obese PCOS subtypes. RESULTS: The study comprised 254,588 women (5,937 cases and 248,651 controls) from individual studies performed in Australia, Estonia, Finland, the Netherlands and United States of America, and separated according to three BMI stratifications (lean, overweight and obese). Genome-wide association analyses were performed for each stratification within each cohort, with the data for each BMI group meta-analysed using METAL software. Almost half of the total study population (47%, n = 119,584) were of lean BMI (≤ 25 kg/m2). Two genome-wide significant loci were identified for lean PCOS, led by rs12000707 within DENND1A (P = 1.55 × 10-12) and rs2228260 within XBP1 (P = 3.68 × 10-8). One additional locus, LINC02905, was highlighted as significantly associated with lean PCOS through gene-based analyses (P = 1.76 × 10-6). There were no significant loci observed for the overweight or obese sub-strata when analysed separately, however, when these strata were combined, an association signal led by rs569675099 within DENND1A reached genome-wide significance (P = 3.22 × 10-9) and a gene-based association was identified with ERBB4 (P = 1.59 × 10-6). Nineteen of 28 signals identified in previous GWAS, were replicated with consistent allelic effect in the lean stratum. There were less replicated signals in the overweight and obese groups, and only 4 SNPs were replicated in each of the three BMI strata. CONCLUSIONS: Genetic variation at the XBP1, LINC02905 and ERBB4 loci were associated with PCOS within unique BMI strata, while DENND1A demonstrated associations across multiple strata, providing evidence of both distinct and shared genetic features between lean and overweight/obese PCOS-affected women. This study demonstrated that PCOS-affected women with contrasting body weight are not only phenotypically distinct but also show variation in genetic architecture; lean PCOS women typically display elevated gonadotrophin ratios, lower insulin resistance, higher androgen levels, including adrenal androgens, and more favourable lipid profiles. Overall, these findings add to the growing body of evidence supporting a genetic basis for PCOS as well as differences in genetic patterns relevant to PCOS BMI-subtype.


Assuntos
Estudo de Associação Genômica Ampla , Síndrome do Ovário Policístico , Feminino , Humanos , Índice de Massa Corporal , Sobrepeso/genética , Estudos de Casos e Controles , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/complicações , Obesidade/genética
9.
Cancer Sci ; 115(9): 2908-2922, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38979884

RESUMO

The relationship among polycystic ovary syndrome (PCOS), endometrial cancer (EC), and glycometabolism remains unclear. We explored shared genes between PCOS and EC, using bioinformatics to unveil their pathogenic connection and influence on EC prognosis. Gene Expression Omnibus datasets GSE226146 (PCOS) and GSE196033 (EC) were used. A protein-protein interaction (PPI) network was constructed to identify the central genes. Candidate markers were screened using dataset GSE54250. Differences in marker expression were confirmed in mouse PCOS and human EC tissues using RT-PCR and immunohistochemistry. The effect of PGD on EC proliferation and migration was explored using Ki-67 and Transwell assays. PGD's impact on the glycometabolic pathway within carbon metabolism was assessed by quantifying glucose content and lactic acid production. R software identified 31 common genes in GSE226146 and GSE196033. Gene Ontology functional classification revealed enrichment in the "purine nucleoside triphosphate metabolism process," with key Kyoto Encyclopedia of Genes and Genomes pathways related to "carbon metabolism." The PPI network identified 15 hub genes. HK2, NDUFS8, PHGDH, PGD, and SMAD3 were confirmed as candidate markers. The RT-PCR analysis validated distinct HK2 and PGD expression patterns in mouse PCOS ovarian tissue and human EC tissue, as well as in normal and EC cells. Transfection experiments with Ishikawa cells further confirmed PGD's influence on cell proliferation and migration. Suppression of PGD expression impeded glycometabolism within the carbon metabolism of EC cells, suggesting PGD as a significant PCOS risk factor impacting EC proliferation and migration through modulation of single carbon metabolism. These findings highlight PGD's pivotal role in EC onset and prognosis.


Assuntos
Movimento Celular , Proliferação de Células , Neoplasias do Endométrio , Síndrome do Ovário Policístico , Feminino , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Humanos , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Proliferação de Células/genética , Animais , Camundongos , Movimento Celular/genética , Mapas de Interação de Proteínas , Linhagem Celular Tumoral , Glucose/metabolismo , Regulação Neoplásica da Expressão Gênica , Biologia Computacional/métodos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Hexoquinase
10.
Funct Integr Genomics ; 24(1): 6, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189995

RESUMO

The aim of this study was to explore the role of forkhead box transcription Factor O1 (FoxO1) in chronic inflammation in polycystic ovary syndrome (PCOS). A PCOS rat model was constructed as an in vivo model by letrozole induction, and granulosa cells (GCs) from PCOS rats were isolated and cultured as an in vitro cellular model. FoxO1 was knocked down by shRNA and siRNA in the PCOS rat model and GCs model, respectively. H&E staining was conducted to evaluate the effect of FoxO1 inhibition on ovarian pathology and dysfunction in PCOS rats. The levels of inflammatory cytokines in the ovaries and uterus of PCOS rats and in GCs were assessed by ELISA. Flow cytometry was used to evaluate the changes in the contents of neutrophils and macrophages in the peripheral blood and spleen of PCOS rats. CCK-8 assays and Annexin V-FITC/PI staining were performed to evaluate the proliferation and apoptosis of GCs. The expression of genes and proteins related to the TLR4/NF-κB/NLRP3 pathway in GCs was determined by RT-qPCR and Western blotting. The results indicated that FoxO1 was highly expressed in PCOS rat model. Inhibition of FoxO1 significantly mitigated the pathological changes and dysfunction in the ovaries of PCOS rats while also suppressing inflammation and fibrosis in the ovaries and uterus. Moreover, knocking down FoxO1 facilitated the restoration of the normal ratio of neutrophils and macrophages in the peripheral blood and spleen of PCOS rats and promoted M2 polarization of macrophages. Additionally, inhibition of FoxO1 promoted the proliferation of GCs and inhibited the inflammatory response in GCs. Furthermore, FoxO1 knockdown inhibited the activation of the NF-κB pathway and the formation of the NLRP3 inflammasome in GCs. In conclusion, inhibition of FoxO1 can alleviate PCOS by inhibiting the TLR4/NF-κB/NLRP3 pathway to reduce inflammation and the immune response.


Assuntos
Proteína Forkhead Box O1 , Síndrome do Ovário Policístico , Animais , Feminino , Ratos , Imunidade , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Síndrome do Ovário Policístico/genética , Receptor 4 Toll-Like , Proteína Forkhead Box O1/genética , Técnicas de Silenciamento de Genes
11.
Funct Integr Genomics ; 24(5): 171, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39317806

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disease in women of childbearing age, making it imperative to explore more biomarkers for PCOS. Furthermore, previous studies have reported that cyclin dependent kinase inhibitor 1 C (CDKN1C) might be associated with PCOS progression. However, the molecular mechanism of CDKN1C involved in PCOS is poorly defined. METHODS: CDKN1C and Yin-Yang-1 (YY1) expression levels were determined using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot assay. Cell viability, proliferation, cell cycle progression, and cell apoptosis were analyzed using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays. Caspase 3 activity was examined using a commercial kit. Binding between YY1 and CDKN1C promoter was predicted by JASPAR and verified using Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays. RESULTS: CDKN1C and YY1 were highly expressed in PCOS granulosa cells (GCs). Furthermore, CDKN1C silencing could promote cell proliferation and cell cycle process and repress cell apoptosis in human ovarian granulosa cell line KGN cells. For mechanistic analysis, YY1 is directly bound to the promoter of CDKN1C and transcriptional-regulated CDKN1C expression. CONCLUSION: YY1-activated CDKN1C might block KGN cell proliferation and induce cell apoptosis, providing a possible therapeutic target for PCOS treatment.


Assuntos
Apoptose , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p57 , Células da Granulosa , Síndrome do Ovário Policístico , Ativação Transcricional , Regulação para Cima , Fator de Transcrição YY1 , Fator de Transcrição YY1/metabolismo , Fator de Transcrição YY1/genética , Humanos , Feminino , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/patologia , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Adulto , Regiões Promotoras Genéticas
12.
Biochem Biophys Res Commun ; 715: 150005, 2024 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-38678785

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS), a prevalent endocrine disorder among women of reproductive age, is characterized by disturbances in hormone levels and ovarian dysfunction. Ferroptosis, a unique form of regulated cell death characterized by iron-dependent lipid peroxidation. Emerging evidence indicates that ferroptosis may have a significant role in the pathogenesis of PCOS, highlighting the importance of studying this mechanism to better understand the disorder and potentially develop novel therapeutic interventions. METHODS: To create an in vivo PCOS model, mice were injected with dehydroepiandrosterone (DHEA) and the success of the model was confirmed through further assessments. Ferroptosis levels were evaluated through detecting ferroptosis-related indicators. Ferroptosis-related genes were found through bioinformatic analysis and identified by experiments. An in vitro PCOS model was also established using DHEA treated KGN cells. The molecular binding relationship was confirmed using a chromatin immunoprecipitation (ChIP) assay. RESULTS: In PCOS model, various ferroptosis-related indicators such as MDA, Fe2+, and lipid ROS showed an increase, while GSH, GPX4, and TFR1 exhibited a decrease. These findings indicate an elevated level of ferroptosis in the PCOS model. The ferroptosis-related gene FADS2 was identified and validated. FADS2 and PPAR-α were shown to be highly expressed in ovarian tissue and primary granulosa cells (GCs) of PCOS mice. Furthermore, the overexpression of both FADS2 and PPAR-α in KGN cells effectively suppressed the DHEA-induced increase in ferroptosis-related indicators (MDA, Fe2+, and lipid ROS) and the decrease in GSH, GPX4, and TFR1 levels. The ferroptosis agonist erastin reversed the suppressive effect, suggesting the involvement of ferroptosis in this process. Additionally, the FADS2 inhibitor SC26196 was found to inhibit the effect of PPAR-α on ferroptosis. Moreover, the binding of PPAR-α to the FADS2 promoter region was predicted and confirmed. This indicates the regulatory relationship between PPAR-α and FADS2 in the context of ferroptosis. CONCLUSIONS: Our study indicates that PPAR-α may have an inhibitory effect on DHEA-induced ferroptosis in GCs by enhancing the expression of FADS2. This discovery provides valuable insights into the pathophysiology and potential therapeutic targets for PCOS.


Assuntos
Ácidos Graxos Dessaturases , Ferroptose , Células da Granulosa , PPAR alfa , Síndrome do Ovário Policístico , Regulação para Cima , Animais , Feminino , Camundongos , Desidroepiandrosterona/farmacologia , Modelos Animais de Doenças , Ferroptose/efeitos dos fármacos , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Síndrome do Ovário Policístico/genética , PPAR alfa/metabolismo , PPAR alfa/genética , Regulação para Cima/efeitos dos fármacos , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo
13.
BMC Med ; 22(1): 229, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853264

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder affecting women of reproductive ages. Our previous study has implicated a possible link between RNA editing and PCOS, yet the actual role of RNA editing, its association with clinical features, and the underlying mechanisms remain unclear. METHODS: Ten RNA-Seq datasets containing 269 samples of multiple tissue types, including granulosa cells, T helper cells, placenta, oocyte, endometrial stromal cells, endometrium, and adipose tissues, were retrieved from public databases. Peripheral blood samples were collected from twelve PCOS and ten controls and subjected to RNA-Seq. Transcriptome-wide RNA-Seq data analysis was conducted to identify differential RNA editing (DRE) between PCOS and controls. The functional significance of DRE was evaluated by luciferase reporter assays and overexpression in human HEK293T cells. Dehydroepiandrosterone and lipopolysaccharide were used to stimulate human KGN granulosa cells to evaluate gene expression. RESULTS: RNA editing dysregulations across multiple tissues were found to be associated with PCOS in public datasets. Peripheral blood transcriptome analysis revealed 798 DRE events associated with PCOS. Through weighted gene co-expression network analysis, our results revealed a set of hub DRE events in PCOS blood. A DRE event in the eukaryotic translation initiation factor 2-alpha kinase 2 (EIF2AK2:chr2:37,100,559) was associated with PCOS clinical features such as luteinizing hormone (LH) and the ratio of LH over follicle-stimulating hormone. Luciferase assays, overexpression, and knockout of RNA editing enzyme adenosine deaminase RNA specific (ADAR) showed that the ADAR-mediated editing cis-regulated EIF2AK2 expression. EIAF2AK2 showed a higher expression after dehydroepiandrosterone and lipopolysaccharide stimulation, triggering changes in the downstrean MAPK pathway. CONCLUSIONS: Our study presented the first evidence of cross-tissue RNA editing dysregulation in PCOS and its clinical associations. The dysregulation of RNA editing mediated by ADAR and the disrupted target EIF2AK2 may contribute to PCOS development via the MPAK pathway, underlining such epigenetic mechanisms in the disease.


Assuntos
Síndrome do Ovário Policístico , Edição de RNA , eIF-2 Quinase , Humanos , Síndrome do Ovário Policístico/genética , Feminino , Edição de RNA/genética , eIF-2 Quinase/genética , Adulto , Células HEK293 , Perfilação da Expressão Gênica , Relevância Clínica
14.
Biol Reprod ; 110(4): 782-797, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38224314

RESUMO

Defining features of polycystic ovary syndrome (PCOS) include elevated expression of steroidogenic genes, theca cell androgen biosynthesis, and peripheral levels of androgens. In previous studies, we identified vascular cell adhesion molecule 1 (VCAM1) as a selective androgen target gene in specific NR2F2/SF1 (+/+) theca cells. By deleting NR2F2 and VCAM1 selectively in CYP17A1 theca cells in mice, we documented that NR2F2 and VCAM1 impact distinct and sometimes opposing theca cell functions that alter ovarian follicular development in vivo: including major changes in ovarian morphology, steroidogenesis, gene expression profiles, immunolocalization images (NR5A1, CYP11A1, NOTCH1, CYP17A1, INSL3, VCAM1, NR2F2) as well as granulosa cell functions. We propose that theca cells impact follicle integrity by regulating androgen production and action, as well as granulosa cell differentiation/luteinization in response to androgens and gonadotropins that may underlie PCOS.


Assuntos
Fator II de Transcrição COUP , Síndrome do Ovário Policístico , Células Tecais , Molécula 1 de Adesão de Célula Vascular , Animais , Feminino , Camundongos , Androgênios/metabolismo , Fator II de Transcrição COUP/genética , Fator II de Transcrição COUP/metabolismo , Células da Granulosa/metabolismo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Células Tecais/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
15.
Hum Reprod ; 39(6): 1167-1175, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38600622

RESUMO

Polycystic ovary syndrome (PCOS) affects 6-20% of reproductive-aged women. It is associated with increased risks of metabolic syndrome, Type 2 diabetes, cardiovascular diseases, mood disorders, endometrial cancer and non-alcoholic fatty liver disease. Although various susceptibility loci have been identified through genetic studies, they account for ∼10% of PCOS heritability. Therefore, the etiology of PCOS remains unclear. This review explores the role of epigenetic changes and modifications in circadian clock genes as potential contributors to PCOS pathogenesis. Epigenetic alterations, such as DNA methylation, histone modifications, and non-coding RNA changes, have been described in diseases related to PCOS, such as diabetes, cardiovascular diseases, and obesity. Furthermore, several animal models have illustrated a link between prenatal exposure to androgens or anti-Müllerian hormone and PCOS-like phenotypes in subsequent generations, illustrating an epigenetic programming in PCOS. In humans, epigenetic changes have been reported in peripheral blood mononuclear cells (PBMC), adipose tissue, granulosa cells (GC), and liver from women with PCOS. The genome of women with PCOS is globally hypomethylated compared to healthy controls. However, specific hypomethylated or hypermethylated genes have been reported in the different tissues of these women. They are mainly involved in hormonal regulation and inflammatory pathways, as well as lipid and glucose metabolism. Additionally, sleep disorders are present in women with PCOS and disruptions in clock genes' expression patterns have been observed in their PBMC or GCs. While epigenetic changes hold promise as diagnostic biomarkers, the current challenge lies in distinguishing whether these changes are causes or consequences of PCOS. Targeting epigenetic modifications potentially opens avenues for precision medicine in PCOS, including lifestyle interventions and drug therapies. However, data are still lacking in large cohorts of well-characterized PCOS phenotypes. In conclusion, understanding the interplay between genetics, epigenetics, and circadian rhythms may provide valuable insights for early diagnosis and therapeutic strategies in PCOS in the future.


Assuntos
Relógios Circadianos , Metilação de DNA , Epigênese Genética , Síndrome do Ovário Policístico , Humanos , Síndrome do Ovário Policístico/genética , Feminino , Relógios Circadianos/genética , Animais
16.
Reprod Biol Endocrinol ; 22(1): 103, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143547

RESUMO

DNA damage is a key factor affecting gametogenesis and embryo development. The integrity and stability of DNA are fundamental to a woman's successful conception, embryonic development, pregnancy and the production of healthy offspring. Aging, reactive oxygen species, radiation therapy, and chemotherapy often induce oocyte DNA damage, diminished ovarian reserve, and infertility in women. With the increase of infertility population, there is an increasing need to study the relationship between infertility related diseases and DNA damage and repair. Researchers have tried various methods to reduce DNA damage in oocytes and enhance their DNA repair capabilities in an attempt to protect oocytes. In this review, we summarize recent advances in the DNA damage response mechanisms in infertility diseases such as PCOS, endometriosis, diminished ovarian reserve and hydrosalpinx, which has important implications for fertility preservation.


Assuntos
Dano ao DNA , Reparo do DNA , Infertilidade Feminina , Feminino , Humanos , Infertilidade Feminina/genética , Infertilidade Feminina/terapia , Oócitos , Síndrome do Ovário Policístico/genética , Endometriose/genética , Reserva Ovariana/fisiologia , Preservação da Fertilidade/métodos
17.
Reprod Biol Endocrinol ; 22(1): 46, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637876

RESUMO

BACKGROUND: Metformin is an insulin sensitizer that is widely used for the treatment of insulin resistance in polycystic ovary syndrome patients. However, metformin can cause gastrointestinal side effects. PURPOSE: This study showed that the effects of quercetin are comparable to those of metformin. Therefore, this study aimed to systematically evaluate the efficacy of quercetin in treating PCOS. METHODS: The present systematic search of the Chinese National Knowledge Infrastructure (CNKI), Wanfang Data Information Site, Chinese Scientific Journals Database (VIP), SinoMed, Web of Science, and PubMed databases was performed from inception until February 2024. The methodological quality was then assessed by SYRCLE's risk of bias tool, and the data were analyzed by RevMan 5.3 software. RESULTS: Ten studies were included in the meta-analysis. Compared with those in the model group, quercetin in the PCOS group had significant effects on reducing fasting insulin serum (FIS) levels (P = 0.0004), fasting blood glucose (FBG) levels (P = 0.01), HOMA-IR levels (P < 0.00001), cholesterol levels (P < 0.0001), triglyceride levels (P = 0.001), testosterone (T) levels (P < 0.00001), luteinizing hormone (LH) levels (P = 0.0003), the luteinizing hormone/follicle stimulating hormone (LH/FSH) ratio (P = 0.01), vascular endothelial growth factor (VEGF) levels (P < 0.00001), malondialdehyde (MDA) levels (P = 0.03), superoxide dismutase (SOD) levels (P = 0.01) and GLUT4 mRNA expression (P < 0.00001). CONCLUSION: This meta-analysis suggested that quercetin has positive effects on PCOS treatment. Quercetin can systematically reduce insulin, blood glucose, cholesterol, and triglyceride levels in metabolic pathways. In the endocrine pathway, quercetin can regulate the function of the pituitary-ovarian axis, reduce testosterone and luteinizing hormone (LH) levels, and lower the ratio of LH to follicle-stimulating hormone (FSH). Quercetin can regulate the expression of the GLUT4 gene and has antioxidative effects at the molecular level.


Assuntos
Resistência à Insulina , Metformina , Síndrome do Ovário Policístico , Feminino , Animais , Humanos , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Quercetina/farmacologia , Quercetina/uso terapêutico , Glicemia , Fator A de Crescimento do Endotélio Vascular , Hormônio Luteinizante , Insulina , Hormônio Foliculoestimulante , Metformina/uso terapêutico , Testosterona , Colesterol , Triglicerídeos
18.
Reprod Biol Endocrinol ; 22(1): 6, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167474

RESUMO

BACKGROUND: A fine-tuned pro-inflammatory and anti-inflammatory balance in the follicular unit is essential for cumulus expansion and successful ovulation. While the long pentraxin 3 (PTX3) gene is required for the expansion of cumulus cells (CCs), ovulation, resumption of meiosis and fertilization, the vitamin D receptor gene (VDR-X2) is required for intra-follicle redox balance. This study was planned to determine the expression pattern of VDR-X2 and PTX3 mRNA in CCs isolated from germinal vesicle (GV), metaphase I (MI), and metaphase II (MII) oocytes of PCOS patients with ovulatory dysfunction. METHODS: The relative expression of CC-PTX3 and CC-VDR-X2 mRNA were evaluated using qRT-PCR in a total of 79 CC samples collected from individual cumulus-oocyte complex of 40 infertile patients (20 PCOS and 20 non-PCOS normal responders) who underwent ovarian stimulation with the GnRH antagonist protocol. RESULTS: Relative PTX3 mRNA expressions of CCMI-control and CCMII-control showed 3- and 9-fold significant upregulation compared to CCGV-control, respectively. The relative PTX3 mRNA expression of CCMII-control increased approximately three fold compared to CCMI-control. Compared to CCGV-pcos, a 3-fold increase was noted in the relative PTX3 mRNA expression of CCMI-pcos and an approximately 4-fold increase in the PTX3 mRNA expression of CCMII-pcos. Relative PTX3 mRNA expression values of CCMII-pcos and CCMI-pcos were similar. A 6-fold upregulation of relative PTX3 mRNA and a 4-fold upregulation of VDR-X2 mRNA were detected in CCMII-control compared to CCMII-pcos. CC-VDR-X2 expression patterns of the PCOS and control groups overlapped with the CC-PTX3 pattern. Fertilization rates of the PCOS group exhibiting failed transcript expression were similar to normal responders. CONCLUSION: The fact that relative CC-PTX3 and CC-VDR mRNA expression does not increase during the transition from MI to MII stage in PCOS as in normal responders suggests that PTX3 and VDR expression may be defective in cumulus cells of PCOS patients with ovulatory dysfunction.


Assuntos
Síndrome do Ovário Policístico , Feminino , Humanos , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Células do Cúmulo/metabolismo , Receptores de Calcitriol/genética , Oócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
Hum Genomics ; 17(1): 100, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957681

RESUMO

BACKGROUND: Accumulating observational studies have identified associations between type 1 diabetes (T1D) and polycystic ovary syndrome (PCOS). Still, the evidence about the causal effect of this association is uncertain. METHODS: We performed a two-sample Mendelian randomization (MR) analysis to test for the causal association between T1D and PCOS using data from a large-scale biopsy-confirmed genome-wide association study (GWAS) in European ancestries. We innovatively divided T1D into nine subgroups to be analyzed separately, including: type1 diabetes wide definition, type1 diabetes early onset, type 1 diabetes with coma, type 1 diabetes with ketoacidosis, type 1 diabetes with neurological complications, type 1 diabetes with ophthalmic complications, type 1 diabetes with peripheral circulatory complications, type 1 diabetes with renal complications, and type 1 diabetes with other specified/multiple/unspecified complications. GWAS data for PCOS were obtained from a large-scale GWAS (10,074 cases and 103,164 controls) for primary analysis and the IEU consortium for replication and meta-analysis. Sensitivity analyses were conducted to evaluate heterogeneity and pleiotropy. RESULTS: Following rigorous instrument selection steps, the number of SNPs finally used for T1D nine subgroups varying from 6 to 36 was retained in MR estimation. However, we did not observe evidence of causal association between type 1 diabetes nine subgroups and PCOS using the IVW analysis, MR-Egger regression, and weighted median approaches, and all P values were > 0.05 with ORs near 1. Subsequent replicates and meta-analyses also yielded consistent results. A number of sensitivity analyses also did not reveal heterogeneity and pleiotropy, including Cochran's Q test, MR-Egger intercept test, MR-PRESSO global test, leave-one-out analysis, and funnel plot analysis. CONCLUSION: This is the first MR study to investigate the causal relationship between type 1 diabetes and PCOS. Our findings failed to find substantial causal effect of type 1 diabetes on risk of PCOS. Further randomized controlled studies and MR studies are necessary.


Assuntos
Diabetes Mellitus Tipo 1 , Síndrome do Ovário Policístico , Feminino , Humanos , Biópsia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Olho , Estudo de Associação Genômica Ampla , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/genética , Análise da Randomização Mendeliana
20.
FASEB J ; 37(7): e22960, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37335566

RESUMO

Anovulation is the main feature of infertile women with polycystic ovary syndrome (PCOS), and there is very limited understanding of the role of plasma exosomes and miRNAs in it. To identify the effect of PCOS patients' plasma exosomes and exosomal miRNAs, we isolated plasma exosomes of PCOS patients and normal women and injected into 8-week-old ICR female mice via tail vein. The changes in estrus cycle, serum hormone levels, and ovarian morphology were observed. KGN cells were cultured and transfected with mimics and inhibitors of differentially expressed exosomal miRNAs (miR-18a-3p, miR-20b-5p, miR-106a-5p, miR-126-3p, and miR-146a-5p) and then tested for steroid hormone synthesis, proliferation, and apoptosis. The results showed that female ICR mice injected with plasma exosomes from PCOS patients presented ovarian oligo-cyclicity. Hormone synthesis and proliferation of granulosa cells were affected by differentially expressed PCOS plasma-derived exosomal miRNAs, of which miR-126-3p having the most evident effect. MiR-126-3p affected the proliferation of granulosa cells by inhibiting PDGFRß and its downstream PI3K-AKT pathway. Our results demonstrated plasma exosomes and contained miRNAs in PCOS patients affect the estrus cycle of mice, hormone secretion, and proliferation of granulosa cells. This study provides a novel understanding about the function of plasma exosomes and exosomal miRNAs in PCOS.


Assuntos
Exossomos , Infertilidade Feminina , MicroRNAs , Síndrome do Ovário Policístico , Animais , Feminino , Humanos , Camundongos , Exossomos/genética , Exossomos/metabolismo , Células da Granulosa/metabolismo , Hormônios/metabolismo , Infertilidade Feminina/metabolismo , Camundongos Endogâmicos ICR , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA