Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103.540
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(26): 5751-5765.e16, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989313

RESUMO

The hedonic value of salt fundamentally changes depending on the internal state. High concentrations of salt induce innate aversion under sated states, whereas such aversive stimuli transform into appetitive ones under sodium depletion. Neural mechanisms underlying this state-dependent salt valence switch are poorly understood. Using transcriptomics state-to-cell-type mapping and neural manipulations, we show that positive and negative valences of salt are controlled by anatomically distinct neural circuits in the mammalian brain. The hindbrain interoceptive circuit regulates sodium-specific appetitive drive , whereas behavioral tolerance of aversive salts is encoded by a dedicated class of neurons in the forebrain lamina terminalis (LT) expressing prostaglandin E2 (PGE2) receptor, Ptger3. We show that these LT neurons regulate salt tolerance by selectively modulating aversive taste sensitivity, partly through a PGE2-Ptger3 axis. These results reveal the bimodal regulation of appetitive and tolerance signals toward salt, which together dictate the amount of sodium consumption under different internal states.


Assuntos
Vias Neurais , Sódio , Paladar , Animais , Vias Neurais/fisiologia , Paladar/fisiologia , Camundongos , Perfilação da Expressão Gênica
2.
Cell ; 184(20): 5151-5162.e11, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34520724

RESUMO

The heartbeat is initiated by voltage-gated sodium channel NaV1.5, which opens rapidly and triggers the cardiac action potential; however, the structural basis for pore opening remains unknown. Here, we blocked fast inactivation with a mutation and captured the elusive open-state structure. The fast inactivation gate moves away from its receptor, allowing asymmetric opening of pore-lining S6 segments, which bend and rotate at their intracellular ends to dilate the activation gate to ∼10 Å diameter. Molecular dynamics analyses predict physiological rates of Na+ conductance. The open-state pore blocker propafenone binds in a high-affinity pose, and drug-access pathways are revealed through the open activation gate and fenestrations. Comparison with mutagenesis results provides a structural map of arrhythmia mutations that target the activation and fast inactivation gates. These results give atomic-level insights into molecular events that underlie generation of the action potential, open-state drug block, and fast inactivation of cardiac sodium channels, which initiate the heartbeat.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.5/química , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Animais , Arritmias Cardíacas/genética , Microscopia Crioeletrônica , Células HEK293 , Frequência Cardíaca/efeitos dos fármacos , Humanos , Ativação do Canal Iônico , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação/genética , Miocárdio , Canal de Sódio Disparado por Voltagem NAV1.5/isolamento & purificação , Canal de Sódio Disparado por Voltagem NAV1.5/ultraestrutura , Propafenona/farmacologia , Conformação Proteica , Ratos , Sódio/metabolismo , Fatores de Tempo , Água/química
3.
Cell ; 180(1): 25-32, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31923398

RESUMO

The function of central appetite neurons is instructing animals to ingest specific nutrient factors that the body needs. Emerging evidence suggests that individual appetite circuits for major nutrients-water, sodium, and food-operate on unique driving and quenching mechanisms. This review focuses on two aspects of appetite regulation. First, we describe the temporal relationship between appetite neuron activity and consumption behaviors. Second, we summarize ingestion-related satiation signals that differentially quench individual appetite circuits. We further discuss how distinct appetite and satiation systems for each factor may contribute to nutrient homeostasis from the functional and evolutional perspectives.


Assuntos
Apetite/fisiologia , Fome/fisiologia , Sede/fisiologia , Animais , Regulação do Apetite/fisiologia , Encéfalo/fisiologia , Comportamento Alimentar/fisiologia , Homeostase/fisiologia , Humanos , Fenômenos Fisiológicos do Sistema Nervoso , Neurônios/fisiologia , Saciação/fisiologia , Sódio/metabolismo
4.
Cell ; 180(1): 122-134.e10, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31866066

RESUMO

Voltage-gated sodium channel Nav1.5 generates cardiac action potentials and initiates the heartbeat. Here, we report structures of NaV1.5 at 3.2-3.5 Å resolution. NaV1.5 is distinguished from other sodium channels by a unique glycosyl moiety and loss of disulfide-bonding capability at the NaVß subunit-interaction sites. The antiarrhythmic drug flecainide specifically targets the central cavity of the pore. The voltage sensors are partially activated, and the fast-inactivation gate is partially closed. Activation of the voltage sensor of Domain III allows binding of the isoleucine-phenylalanine-methionine (IFM) motif to the inactivation-gate receptor. Asp and Ala, in the selectivity motif DEKA, line the walls of the ion-selectivity filter, whereas Glu and Lys are in positions to accept and release Na+ ions via a charge-delocalization network. Arrhythmia mutation sites undergo large translocations during gating, providing a potential mechanism for pathogenic effects. Our results provide detailed insights into Nav1.5 structure, pharmacology, activation, inactivation, ion selectivity, and arrhythmias.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/ultraestrutura , Animais , Linhagem Celular , Células HEK293 , Coração/fisiologia , Humanos , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp/métodos , Ratos , Sódio/metabolismo , Canais de Sódio/química , Relação Estrutura-Atividade , Canais de Sódio Disparados por Voltagem/metabolismo , Canais de Sódio Disparados por Voltagem/ultraestrutura
5.
Cell ; 178(4): 776-778, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398335

RESUMO

Voltage sensing by ion channels is the key event enabling the generation and propagation of electrical activity in excitable cells. In this issue of Cell, Wisedchaisri et al. provide a structural view of a voltage-gated sodium channel in its resting closed conformation.


Assuntos
Canais Iônicos , Sódio , Conformação Molecular , Canais de Sódio Disparados por Voltagem
6.
Cell ; 178(4): 993-1003.e12, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31353218

RESUMO

Voltage-gated sodium (NaV) channels initiate action potentials in nerve, muscle, and other electrically excitable cells. The structural basis of voltage gating is uncertain because the resting state exists only at deeply negative membrane potentials. To stabilize the resting conformation, we inserted voltage-shifting mutations and introduced a disulfide crosslink in the VS of the ancestral bacterial sodium channel NaVAb. Here, we present a cryo-EM structure of the resting state and a complete voltage-dependent gating mechanism. The S4 segment of the VS is drawn intracellularly, with three gating charges passing through the transmembrane electric field. This movement forms an elbow connecting S4 to the S4-S5 linker, tightens the collar around the S6 activation gate, and prevents its opening. Our structure supports the classical "sliding helix" mechanism of voltage sensing and provides a complete gating mechanism for voltage sensor function, pore opening, and activation-gate closure based on high-resolution structures of a single sodium channel protein.


Assuntos
Potenciais de Ação/fisiologia , Membrana Externa Bacteriana/metabolismo , Escherichia coli/metabolismo , Ativação do Canal Iônico/fisiologia , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Linhagem Celular , Microscopia Crioeletrônica , Cristalografia por Raios X , Mutação , Conformação Proteica em alfa-Hélice , Sódio/metabolismo , Spodoptera/citologia , Canais de Sódio Disparados por Voltagem/química
7.
Cell ; 173(7): 1636-1649.e16, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29754813

RESUMO

Hydrogen gas-evolving membrane-bound hydrogenase (MBH) and quinone-reducing complex I are homologous respiratory complexes with a common ancestor, but a structural basis for their evolutionary relationship is lacking. Here, we report the cryo-EM structure of a 14-subunit MBH from the hyperthermophile Pyrococcus furiosus. MBH contains a membrane-anchored hydrogenase module that is highly similar structurally to the quinone-binding Q-module of complex I while its membrane-embedded ion-translocation module can be divided into a H+- and a Na+-translocating unit. The H+-translocating unit is rotated 180° in-membrane with respect to its counterpart in complex I, leading to distinctive architectures for the two respiratory systems despite their largely conserved proton-pumping mechanisms. The Na+-translocating unit, absent in complex I, resembles that found in the Mrp H+/Na+ antiporter and enables hydrogen gas evolution by MBH to establish a Na+ gradient for ATP synthesis near 100°C. MBH also provides insights into Mrp structure and evolution of MBH-based respiratory enzymes.


Assuntos
Proteínas Arqueais/metabolismo , Hidrogenase/metabolismo , Pyrococcus furiosus/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Membrana Celular/química , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Evolução Molecular , Hidrogênio/metabolismo , Hidrogenase/química , Hidrogenase/genética , Mutagênese , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Sódio/química , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/metabolismo
8.
Cell ; 168(3): 341-343, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28129535

RESUMO

In this issue of Cell, Hite and MacKinnon (2017) report the open conformation structure of Slo2.2, a neuronal Na+-activated K+ channel. More importantly, 3D classification of electron cryomicroscopy (cryo-EM) images allows visualization of the structural transition that occurs as the open probability of individual channels increases with added sodium.


Assuntos
Microscopia Crioeletrônica , Canais Iônicos , Sódio
9.
Cell ; 168(3): 390-399.e11, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28111072

RESUMO

The stable structural conformations that occur along the complete reaction coordinate for ion channel opening have never been observed. In this study, we describe the equilibrium ensemble of structures of Slo2.2, a neuronal Na+-activated K+ channel, as a function of the Na+ concentration. We find that Slo2.2 exists in multiple closed conformations whose relative occupancies are independent of Na+ concentration. An open conformation emerges from an ensemble of closed conformations in a highly Na+-dependent manner, without evidence of Na+-dependent intermediates. In other words, channel opening is a highly concerted, switch-like process. The midpoint of the structural titration matches that of the functional titration. A maximum open conformation probability approaching 1.0 and maximum functional open probability approaching 0.7 imply that, within the class of open channels, there is a subclass that is not permeable to ions.


Assuntos
Proteínas Aviárias/química , Galinhas/metabolismo , Proteínas do Tecido Nervoso/química , Canais de Potássio/química , Animais , Proteínas Aviárias/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Humanos , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio/metabolismo , Conformação Proteica , Sódio/química
10.
Cell ; 170(5): 860-874.e19, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28803730

RESUMO

Lower urinary tract infections are among the most common human bacterial infections, but extension to the kidneys is rare. This has been attributed to mechanical forces, such as urine flow, that prevent the ascent of bladder microbes. Here, we show that the regional hypersalinity, required for the kidney's urine-concentrating function, instructs epithelial cells to produce chemokines that localize monocyte-derived mononuclear phagocytes (MNPs) to the medulla. This hypersaline environment also increases the intrinsic bactericidal and neutrophil chemotactic activities of MNPs to generate a zone of defense. Because MNP positioning and function are dynamically regulated by the renal salt gradient, we find that patients with urinary concentrating defects are susceptible to kidney infection. Our work reveals a critical accessory role for the homeostatic function of a vital organ in optimizing tissue defense.


Assuntos
Rim/imunologia , Fagócitos/imunologia , Animais , Linhagem Celular , Quimiocina CCL2/metabolismo , Quimiocinas/imunologia , Diabetes Insípido , Humanos , Rim/citologia , Medula Renal/imunologia , Receptores de Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Salinidade , Sódio/metabolismo , Fatores de Transcrição/genética , Infecções Urinárias/imunologia , Infecções Urinárias/microbiologia , Urina/química , Escherichia coli Uropatogênica/fisiologia
11.
Physiol Rev ; 104(1): 199-251, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37477622

RESUMO

The teleology of sex differences has been argued since at least as early as Aristotle's controversial Generation of Animals more than 300 years BC, which reflects the sex bias of the time to contemporary readers. Although the question "why are the sexes different" remains a topic of debate in the present day in metaphysics, the recent emphasis on sex comparison in research studies has led to the question "how are the sexes different" being addressed in health science through numerous observational studies in both health and disease susceptibility, including blood pressure regulation and hypertension. These efforts have resulted in better understanding of differences in males and females at the molecular level that partially explain their differences in vascular function and renal sodium handling and hence blood pressure and the consequential cardiovascular and kidney disease risks in hypertension. This review focuses on clinical studies comparing differences between men and women in blood pressure over the life span and response to dietary sodium and highlights experimental models investigating sexual dimorphism in the renin-angiotensin-aldosterone, vascular, sympathetic nervous, and immune systems, endothelin, the major renal sodium transporters/exchangers/channels, and the impact of sex hormones on these systems in blood pressure homeostasis. Understanding the mechanisms governing sex differences in blood pressure regulation could guide novel therapeutic approaches in a sex-specific manner to lower cardiovascular risks in hypertension and advance personalized medicine.


Assuntos
Hipertensão , Caracteres Sexuais , Animais , Feminino , Humanos , Masculino , Pressão Sanguínea/fisiologia , Rim , Hemodinâmica , Sódio
12.
Physiol Rev ; 104(3): 1147-1204, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38329422

RESUMO

The Na+-Cl- cotransporter (NCC; SLC12A3) is a highly regulated integral membrane protein that is known to exist as three splice variants in primates. Its primary role in the kidney is to mediate the cosymport of Na+ and Cl- across the apical membrane of the distal convoluted tubule. Through this role and the involvement of other ion transport systems, NCC allows the systemic circulation to reclaim a fraction of the ultrafiltered Na+, K+, Cl-, and Mg+ loads in exchange for Ca2+ and [Formula: see text]. The physiological relevance of the Na+-Cl- cotransport mechanism in humans is illustrated by several abnormalities that result from NCC inactivation through the administration of thiazides or in the setting of hereditary disorders. The purpose of the present review is to discuss the molecular mechanisms and overall roles of Na+-Cl- cotransport as the main topics of interest. On reading the narrative proposed, one will realize that the knowledge gained in regard to these themes will continue to progress unrelentingly no matter how refined it has now become.


Assuntos
Homeostase , Humanos , Animais , Homeostase/fisiologia , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Equilíbrio Hidroeletrolítico/fisiologia , Sódio/metabolismo , Rim/metabolismo
13.
Physiol Rev ; 104(1): 399-472, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37615954

RESUMO

Cell excitability and its modulation by hormones and neurotransmitters involve the concerted action of a large repertoire of membrane proteins, especially ion channels. Unique complements of coexpressed ion channels are exquisitely balanced against each other in different excitable cell types, establishing distinct electrical properties that are tailored for diverse physiological contributions, and dysfunction of any component may induce a disease state. A crucial parameter controlling cell excitability is the resting membrane potential (RMP) set by extra- and intracellular concentrations of ions, mainly Na+, K+, and Cl-, and their passive permeation across the cell membrane through leak ion channels. Indeed, dysregulation of RMP causes significant effects on cellular excitability. This review describes the molecular and physiological properties of the Na+ leak channel NALCN, which associates with its accessory subunits UNC-79, UNC-80, and NLF-1/FAM155 to conduct depolarizing background Na+ currents in various excitable cell types, especially neurons. Studies of animal models clearly demonstrate that NALCN contributes to fundamental physiological processes in the nervous system including the control of respiratory rhythm, circadian rhythm, sleep, and locomotor behavior. Furthermore, dysfunction of NALCN and its subunits is associated with severe pathological states in humans. The critical involvement of NALCN in physiology is now well established, but its study has been hampered by the lack of specific drugs that can block or agonize NALCN currents in vitro and in vivo. Molecular tools and animal models are now available to accelerate our understanding of how NALCN contributes to key physiological functions and the development of novel therapies for NALCN channelopathies.


Assuntos
Canais Iônicos , Canais de Sódio , Humanos , Animais , Canais Iônicos/metabolismo , Potenciais da Membrana/fisiologia , Neurônios/metabolismo , Sódio/metabolismo , Proteínas de Membrana
14.
Cell ; 162(4): 836-48, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26276633

RESUMO

Circadian clocks regulate membrane excitability in master pacemaker neurons to control daily rhythms of sleep and wake. Here, we find that two distinctly timed electrical drives collaborate to impose rhythmicity on Drosophila clock neurons. In the morning, a voltage-independent sodium conductance via the NA/NALCN ion channel depolarizes these neurons. This current is driven by the rhythmic expression of NCA localization factor-1, linking the molecular clock to ion channel function. In the evening, basal potassium currents peak to silence clock neurons. Remarkably, daily antiphase cycles of sodium and potassium currents also drive mouse clock neuron rhythms. Thus, we reveal an evolutionarily ancient strategy for the neural mechanisms that govern daily sleep and wake.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Drosophila/fisiologia , Animais , Relógios Biológicos , Membrana Celular/metabolismo , Drosophila/citologia , Proteínas de Drosophila/metabolismo , Técnicas de Silenciamento de Genes , Canais Iônicos/genética , Canais Iônicos/metabolismo , Proteínas de Membrana , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Técnicas de Patch-Clamp , Potássio/metabolismo , Sódio/metabolismo
15.
Cell ; 161(3): 610-621, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25910210

RESUMO

Cytotoxic brain edema triggered by neuronal swelling is the chief cause of mortality following brain trauma and cerebral infarct. Using fluorescence lifetime imaging to analyze contributions of intracellular ionic changes in brain slices, we find that intense Na(+) entry triggers a secondary increase in intracellular Cl(-) that is required for neuronal swelling and death. Pharmacological and siRNA-mediated knockdown screening identified the ion exchanger SLC26A11 unexpectedly acting as a voltage-gated Cl(-) channel that is activated upon neuronal depolarization to membrane potentials lower than -20 mV. Blockade of SLC26A11 activity attenuates both neuronal swelling and cell death. Therefore cytotoxic neuronal edema occurs when sufficient Na(+) influx and depolarization is followed by Cl(-) entry via SLC26A11. The resultant NaCl accumulation causes subsequent neuronal swelling leading to neuronal death. These findings shed light on unique elements of volume control in excitable cells and lay the ground for the development of specific treatments for brain edema.


Assuntos
Edema Encefálico/patologia , Antiportadores de Cloreto-Bicarbonato/metabolismo , Neurônios/metabolismo , Animais , Edema Encefálico/metabolismo , Morte Celular , Células Cultivadas , Antiportadores de Cloreto-Bicarbonato/química , Humanos , Técnicas In Vitro , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Neurônios/patologia , Ratos , Sódio/metabolismo , Transportadores de Sulfato
16.
Nature ; 632(8025): 678-685, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39112703

RESUMO

The dopamine transporter (DAT) is crucial for regulating dopamine signalling and is the prime mediator for the rewarding and addictive effects of cocaine1. As part of the neurotransmitter sodium symporter family, DAT uses the Na+ gradient across cell membranes to transport dopamine against its chemical gradient2. The transport mechanism involves both intra- and extracellular gates that control substrate access to a central site. However, the molecular intricacies of this process and the inhibitory mechanism of cocaine have remained unclear. Here, we present the molecular structure of human DAT in complex with cocaine at a resolution of 2.66 Å. Our findings reveal that DAT adopts the expected LeuT-fold, posing in an outward-open conformation with cocaine bound at the central (S1) site. Notably, while an Na+ occupies the second Na+ site (Na2), the Na1 site seems to be vacant, with the side chain of Asn82 occupying the presumed Na+ space. This structural insight elucidates the mechanism for the cocaine inhibition of human DAT and deepens our understanding of neurotransmitter transport. By shedding light on the molecular underpinnings of how cocaine acts, our study lays a foundation for the development of targeted medications to combat addiction.


Assuntos
Cocaína , Proteínas da Membrana Plasmática de Transporte de Dopamina , Humanos , Sítios de Ligação , Cocaína/metabolismo , Cocaína/química , Cocaína/farmacologia , Microscopia Crioeletrônica , Dopamina/metabolismo , Dopamina/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/ultraestrutura , Modelos Moleculares , Neurotransmissores/metabolismo , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Sódio/química , Sódio/metabolismo
17.
Cell ; 158(1): 132-42, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24995984

RESUMO

T-cell-mediated hypersensitivity to metal cations is common in humans. How the T cell antigen receptor (TCR) recognizes these cations bound to a major histocompatibility complex (MHC) protein and self-peptide is unknown. Individuals carrying the MHCII allele, HLA-DP2, are at risk for chronic beryllium disease (CBD), a debilitating inflammatory lung condition caused by the reaction of CD4 T cells to inhaled beryllium. Here, we show that the T cell ligand is created when a Be(2+) cation becomes buried in an HLA-DP2/peptide complex, where it is coordinated by both MHC and peptide acidic amino acids. Surprisingly, the TCR does not interact with the Be(2+) itself, but rather with surface changes induced by the firmly bound Be(2+) and an accompanying Na(+) cation. Thus, CBD, by creating a new antigen by indirectly modifying the structure of preexisting self MHC-peptide complex, lies on the border between allergic hypersensitivity and autoimmunity.


Assuntos
Autoimunidade , Beriliose/imunologia , Berílio/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Cadeias beta de HLA-DP/metabolismo , Hipersensibilidade/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Cristalografia por Raios X , Cadeias beta de HLA-DP/química , Humanos , Pulmão/patologia , Modelos Moleculares , Sódio/química , Sódio/metabolismo
18.
Annu Rev Neurosci ; 43: 207-229, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32084327

RESUMO

Activation of mechanosensitive ion channels underlies a variety of fundamental physiological processes that require sensation of mechanical force. Different mechanosensitive channels adapt distinctive structures and mechanotransduction mechanisms to fit their biological roles. How mechanosensitive channels work, especially in animals, has been extensively studied in the past decade. Here we review key findings in the functional and structural characterizations of these channels and highlight the structural features relevant to the mechanotransduction mechanism of each specific channel.


Assuntos
Citoesqueleto/fisiologia , Canais Iônicos/fisiologia , Mecanotransdução Celular/fisiologia , Neurônios/fisiologia , Sódio/metabolismo , Animais , Canais de Cálcio/metabolismo , Humanos
19.
Nature ; 612(7941): 795-801, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36517601

RESUMO

The sodium/iodide symporter (NIS) is the essential plasma membrane protein that mediates active iodide (I-) transport into the thyroid gland, the first step in the biosynthesis of the thyroid hormones-the master regulators of intermediary metabolism. NIS couples the inward translocation of I- against its electrochemical gradient to the inward transport of Na+ down its electrochemical gradient1,2. For nearly 50 years before its molecular identification3, NIS was the molecule at the centre of the single most effective internal radiation cancer therapy: radioiodide (131I-) treatment for thyroid cancer2. Mutations in NIS cause congenital hypothyroidism, which must be treated immediately after birth to prevent stunted growth and cognitive deficiency2. Here we report three structures of rat NIS, determined by single-particle cryo-electron microscopy: one with no substrates bound; one with two Na+ and one I- bound; and one with one Na+ and the oxyanion perrhenate bound. Structural analyses, functional characterization and computational studies show the substrate-binding sites and key residues for transport activity. Our results yield insights into how NIS selects, couples and translocates anions-thereby establishing a framework for understanding NIS function-and how it transports different substrates with different stoichiometries and releases substrates from its substrate-binding cavity into the cytosol.


Assuntos
Iodetos , Sódio , Simportadores , Animais , Ratos , Microscopia Crioeletrônica , Iodetos/metabolismo , Sódio/metabolismo , Simportadores/química , Simportadores/metabolismo , Simportadores/ultraestrutura , Sítios de Ligação , Especificidade por Substrato , Transporte de Íons
20.
Nature ; 606(7916): 1015-1020, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35545671

RESUMO

The liver takes up bile salts from blood to generate bile, enabling absorption of lipophilic nutrients and excretion of metabolites and drugs1. Human Na+-taurocholate co-transporting polypeptide (NTCP) is the main bile salt uptake system in liver. NTCP is also the cellular entry receptor of human hepatitis B and D viruses2,3 (HBV/HDV), and has emerged as an important target for antiviral drugs4. However, the molecular mechanisms underlying NTCP transport and viral receptor functions remain incompletely understood. Here we present cryo-electron microscopy structures of human NTCP in complexes with nanobodies, revealing key conformations of its transport cycle. NTCP undergoes a conformational transition opening a wide transmembrane pore that serves as the transport pathway for bile salts, and exposes key determinant residues for HBV/HDV binding to the outside of the cell. A nanobody that stabilizes pore closure and inward-facing states impairs recognition of the HBV/HDV receptor-binding domain preS1, demonstrating binding selectivity of the viruses for open-to-outside over inward-facing conformations of the NTCP transport cycle. These results provide molecular insights into NTCP 'gated-pore' transport and HBV/HDV receptor recognition mechanisms, and are expected to help with development of liver disease therapies targeting NTCP.


Assuntos
Ácidos e Sais Biliares , Microscopia Crioeletrônica , Fígado , Transportadores de Ânions Orgânicos Dependentes de Sódio , Sódio , Simportadores , Bile/metabolismo , Ácidos e Sais Biliares/metabolismo , Vírus da Hepatite B/metabolismo , Vírus Delta da Hepatite/metabolismo , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/química , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/ultraestrutura , Conformação Proteica , Receptores Virais/metabolismo , Anticorpos de Domínio Único , Sódio/metabolismo , Simportadores/química , Simportadores/metabolismo , Simportadores/ultraestrutura , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA