Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 379
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(14): e23837, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39031536

RESUMO

Bone morphogenetic protein 15 (BMP15) is an oocyte-specific growth factor important for successful female reproduction in mammals. While mutations in BMP15/Bmp15 cause ovulatory deficiency and/or infertility in certain mammalian species, loss of bmp15 in zebrafish, a continuous spawner and the only bmp15 knockout model in fish to date, results in complete arrest of follicle development and later female-to-male sex reversal, preventing to examine effects on ovulation/fertilization. Here, we used Atlantic salmon, a seasonal spawner, and generated bmp15 mutants to investigate ovarian development and fertility. Histological and morphometric analyses revealed that in biallelic frameshift (bmp15 fs/fs) mutant ovaries, folliculogenesis started earlier, resulting in an advanced development compared to wild-type (WT) controls, accompanied by a weaker expression of the (early) oocyte-specific factor figla. This precocious ovarian development was followed in bmp15 fs/fs females by enhanced follicle atresia during vitellogenic stages. Although genes involved in steroid synthesis and signaling (star, cyp11b, cyp17a1 and esr1) were dramatically higher in late vitellogenic bmp15 fs/fs mutant ovaries, estradiol-17ß plasma levels were lower than in WT counterparts, potentially reflecting compensatory changes at the level of ovarian gene expression. At spawning, bmp15 fs/fs females displayed lower gonado-somatic index values and reduced oocyte diameter, and the majority (71.4%), showed mature non-ovulating ovaries with a high degree of atresia. The remaining (28.6%) females spawned eggs but they either could not be fertilized or, upon fertilization, showed severe malformations and embryonic mortality. Our results show that Bmp15 is required for proper follicle recruitment and growth and later ovulatory success in Atlantic salmon, providing an alternative candidate target to induce sterility in farmed salmon. Moreover, since loss of bmp15 in salmon, in contrast to zebrafish, does not result in female-to-male sex change, this is the first mutant model in fish allowing further investigations on Bmp15-mediated functions in the ovulatory period.


Assuntos
Proteína Morfogenética Óssea 15 , Ovulação , Salmo salar , Animais , Proteína Morfogenética Óssea 15/genética , Proteína Morfogenética Óssea 15/metabolismo , Feminino , Salmo salar/metabolismo , Salmo salar/genética , Salmo salar/crescimento & desenvolvimento , Ovário/metabolismo , Folículo Ovariano/metabolismo , Oócitos/metabolismo , Masculino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Estações do Ano
2.
PLoS Genet ; 16(9): e1009055, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32997662

RESUMO

A major goal in biology is to understand how evolution shapes variation in individual life histories. Genome-wide association studies have been successful in uncovering genome regions linked with traits underlying life history variation in a range of species. However, lack of functional studies of the discovered genotype-phenotype associations severely restrains our understanding how alternative life history traits evolved and are mediated at the molecular level. Here, we report a cis-regulatory mechanism whereby expression of alternative isoforms of the transcription co-factor vestigial-like 3 (vgll3) associate with variation in a key life history trait, age at maturity, in Atlantic salmon (Salmo salar). Using a common-garden experiment, we first show that vgll3 genotype associates with puberty timing in one-year-old salmon males. By way of temporal sampling of vgll3 expression in ten tissues across the first year of salmon development, we identify a pubertal transition in vgll3 expression where maturation coincided with a 66% reduction in testicular vgll3 expression. The late maturation allele was not only associated with a tendency to delay puberty, but also with expression of a rare transcript isoform of vgll3 pre-puberty. By comparing absolute vgll3 mRNA copies in heterozygotes we show that the expression difference between the early and late maturity alleles is largely cis-regulatory. We propose a model whereby expression of a rare isoform from the late allele shifts the liability of its carriers towards delaying puberty. These results exemplify the potential importance of regulatory differences as a mechanism for the evolution of life history traits.


Assuntos
Proteínas de Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Sequências Reguladoras de Ácido Ribonucleico , Salmo salar/fisiologia , Fatores de Transcrição/metabolismo , Alelos , Processamento Alternativo , Animais , Éxons , Feminino , Genótipo , Características de História de Vida , Masculino , Isoformas de Proteínas/genética , Salmo salar/genética , Salmo salar/crescimento & desenvolvimento , Maturidade Sexual , Testículo/crescimento & desenvolvimento , Fatores de Transcrição/genética
3.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163597

RESUMO

The objective of the current study was to examine the effects of yeasts on intestinal health and transcriptomic profiles from the distal intestine and spleen tissue of Atlantic salmon fed SBM-based diets in seawater. Cyberlindnera jadinii (CJ) and Wickerhamomyces anomalus (WA) yeasts were heat-inactivated with spray-drying (ICJ and IWA) or autolyzed at 50 °C for 16 h (ACJ and AWA), followed by spray-drying. Six diets were formulated, one based on fishmeal (FM), a challenging diet with 30% soybean meal (SBM) and four other diets containing 30% SBM and 10% of each of the four yeast fractions (i.e., ICJ, ACJ, IWA and AWA). The inclusion of CJ yeasts reduced the loss of enterocyte supranuclear vacuolization and reduced the population of CD8α labeled cells present in the lamina propria of fish fed the SBM diet. The CJ yeasts controlled the inflammatory responses of fish fed SBM through up-regulation of pathways related to wound healing and taurine metabolism. The WA yeasts dampened the inflammatory profile of fish fed SBM through down-regulation of pathways related to toll-like receptor signaling, C-lectin receptor, cytokine receptor and signal transduction. This study suggests that the yeast species, Cyberlindnera jadinii and Wickerhamomyces anomalus are novel high-quality protein sources with health-beneficial effects in terms of reducing inflammation associated with feeding plant-based diets to Atlantic salmon.


Assuntos
Ração Animal , Candida/química , Glycine max/química , Intestinos/metabolismo , Saccharomycetales/química , Salmo salar/crescimento & desenvolvimento , Transcriptoma , Animais
4.
Immunogenetics ; 73(1): 53-63, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33426583

RESUMO

The function of a tissue is determined by its construction and cellular composition. The action of different genes can thus only be understood properly when seen in the context of the environment in which they are expressed and function. We now experience a renaissance in morphological research in fish, not only because, surprisingly enough, large structures have remained un-described until recently, but also because improved methods for studying morphological characteristics in combination with expression analysis are at hand. In this review, we address anatomical features of teleost immune tissues. There are approximately 30,000 known teleost fish species and only a minor portion of them have been studied. We aim our review at the Atlantic salmon (Salmo salar) and other salmonids, but when applicable, we also present information from other species. Our focus is the anatomy of the kidney, thymus, spleen, the interbranchial lymphoid tissue (ILT), the newly discovered salmonid cloacal bursa and the naso-pharynx associated lymphoid tissue (NALT).


Assuntos
Peixes/imunologia , Tecido Linfoide/anatomia & histologia , Animais , Peixes/anatomia & histologia , Peixes/crescimento & desenvolvimento , Brânquias/anatomia & histologia , Brânquias/crescimento & desenvolvimento , Brânquias/imunologia , Rim/anatomia & histologia , Rim/crescimento & desenvolvimento , Rim/imunologia , Tecido Linfoide/crescimento & desenvolvimento , Tecido Linfoide/imunologia , Nasofaringe/anatomia & histologia , Nasofaringe/crescimento & desenvolvimento , Nasofaringe/imunologia , Salmo salar/anatomia & histologia , Salmo salar/crescimento & desenvolvimento , Salmo salar/imunologia , Baço/anatomia & histologia , Baço/crescimento & desenvolvimento , Baço/imunologia , Timo/anatomia & histologia , Timo/crescimento & desenvolvimento , Timo/imunologia
5.
J Fish Biol ; 98(1): 6-16, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32951198

RESUMO

Variation in circulus spacing on the scales of wild Atlantic salmon is indicative of changes in body length growth rate. We analyzed scale circulus spacing during the post-smolt growth period for adult one sea-winter salmon (n = 1947) returning to Scotland over the period 1993-2011. The growth pattern of the scales was subjectively and visually categorized according to the occurrence and zonal sequence of three intercirculus spacing criteria ("Slow", "Fast" and "Check" zones). We applied hierarchical time-series cluster analysis to the empirical circulus spacing data, followed by post hoc analysis of significant changes in growth patterns within the 20 identified clusters. Temporal changes in growth pattern frequencies showed significant correlation with sea surface temperature anomalies during the early months of the post-smolt growth season and throughout the Norwegian Sea. Since the turn of the millennium, we observed (a) a marked decrease in the occurrence of continuous Fast growth; (b) increased frequencies of fish showing an extended period of initially Slow growth; and (c) the occurrence of obvious growth Checks or hiatuses. These changes in post-smolt growth pattern were manifest also in decreases in the mean body length attained by the ocean midwinter, as sea surface temperatures have risen.


Assuntos
Temperatura Alta , Salmo salar/crescimento & desenvolvimento , Migração Animal , Animais , Oceano Atlântico , Rios , Escócia , Estações do Ano
6.
Fish Physiol Biochem ; 47(4): 979-997, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33974164

RESUMO

In stocking program, the use of artificial incubation conditions in hatcheries from the fertilisation of eggs to the release of unfed fry could reduce their ability to adapt to the natural environment. This study evaluates the effects of three factors on the fitness and physiology of salmon fry at their emergence, the origin of water (river vs drilling), the type of support in the incubator (support matrix vs plastic sheets) and the type of incubators (Californian vs vertical trays), and compares them to a semi-natural incubation method in river. Key biological functions including nutritional and immune status were compared among experimental conditions using biometric parameters, lipid composition and gene expression analyses. Our findings demonstrated that fry incubated in vertical trays supplied with river water had no significant difference in growth and lipid composition compared to those in semi-natural incubators. Besides, fry incubated on a substrate matrix in Californian trays exhibited phenotypic characteristics closest to those incubated in river. This support matrix improved fish growth, lipid consumption and distribution compared to fry on plastic sheets. Moreover, the large amounts of several PUFAs in these fry could allow a better membrane fluidity ensuring a better adaptation to temperature variation under cold conditions. In addition, drilling water improved the survival rate compared to river water due to lower numbers of fine particles, known to be responsible for the clogging of eggs. To conclude, using a substrate combined with drilling water in artificial incubators could increase fry fitness and its adaption to wild life.


Assuntos
Pesqueiros , Metabolismo dos Lipídeos , Salmo salar , Animais , Feminino , Expressão Gênica , Masculino , Rios , Salmo salar/genética , Salmo salar/crescimento & desenvolvimento , Salmo salar/metabolismo , Temperatura , Água
7.
Am Nat ; 195(4): 678-690, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32216673

RESUMO

Life-history theory predicts that investment per offspring should correlate negatively with the quality of the environment that offspring are anticipated to encounter; parents may use their own experience as juveniles to predict this environment and may modulate offspring traits, such as growth capacity and initial size. We manipulated nutrient levels in the juvenile habitat of wild Atlantic salmon (Salmo salar) to investigate the hypothesis that the egg size that maximizes juvenile growth and survival depends on environmental quality. We also tested whether offspring traits were related to parental growth trajectory. Mothers that grew fast when young produced more offspring and smaller offspring than mothers that grew slowly to reach the same size. Despite their size disadvantage, offspring of faster-growing mothers grew faster than those of slower-growing mothers in all environments, counter to the expectation that they would be competitively disadvantaged. However, they had lower relative survival in environments where the density of older predatory/competitor fish was relatively high. These links between maternal (but not paternal) growth trajectory and offspring survival rate were independent of egg size, underscoring that mothers may be adjusting egg traits other than size to suit the environment their offspring are anticipated to face.


Assuntos
Tamanho Corporal , Ecossistema , Salmo salar/crescimento & desenvolvimento , Animais , Feminino , Masculino , Óvulo/citologia , Fenótipo , Comportamento Predatório , Salmo salar/fisiologia
8.
Appl Environ Microbiol ; 86(8)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32033945

RESUMO

In recent years, a wealth of studies has examined the relationships between a host and its microbiome across diverse taxa. Many studies characterize the host microbiome without considering the ecological processes that underpin microbiome assembly. In this study, the intestinal microbiota of Atlantic salmon, Salmo salar, sampled from farmed and wild environments was first characterized using 16S rRNA gene MiSeq sequencing analysis. We used neutral community models to determine the balance of stochastic and deterministic processes that underpin microbial community assembly and transfer across life cycle stage and between gut compartments. Across gut compartments in farmed fish, neutral models suggest that most microbes are transient with no evidence of adaptation to their environment. In wild fish, we found declining taxonomic and functional microbial community richness as fish mature through different life cycle stages. Alongside neutral community models applied to wild fish, we suggest that declining richness demonstrates an increasing role for the host in filtering microbial communities that is correlated with age. We found a limited subset of gut microflora adapted to the farmed and wild host environment among which Mycoplasma spp. are prominent. Our study reveals the ecological drivers underpinning community assembly in both farmed and wild Atlantic salmon and underlines the importance of understanding the role of stochastic processes, such as random drift and small migration rates in microbial community assembly, before considering any functional role of the gut microbes encountered.IMPORTANCE A growing number of studies have examined variation in the microbiome to determine the role in modulating host health, physiology, and ecology. However, the ecology of host microbial colonization is not fully understood and rarely tested. The continued increase in production of farmed Atlantic salmon, coupled with increased farmed-wild salmon interactions, has accentuated the need to unravel the potential adaptive function of the microbiome and to distinguish resident from transient gut microbes. Between gut compartments in a farmed system, we found a majority of operational taxonomic units (OTUs) that fit the neutral model, with Mycoplasma species among the key exceptions. In wild fish, deterministic processes account for more OTU differences across life stages than those observed across gut compartments. Unlike previous studies, our results make detailed comparisons between fish from wild and farmed environments, while also providing insight into the ecological processes underpinning microbial community assembly in this ecologically and economically important species.


Assuntos
Aquicultura , Bactérias/genética , Salmo salar/microbiologia , Animais , Microbioma Gastrointestinal , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Salmo salar/crescimento & desenvolvimento , Processos Estocásticos
9.
Mol Ecol ; 29(6): 1173-1184, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32077545

RESUMO

In species with complex life cycles, life history theory predicts that fitness is affected by conditions encountered in previous life history stages. Here, we use a 4-year pedigree to investigate if time spent in two distinct life history stages has sex-specific reproductive fitness consequences in anadromous Atlantic salmon (Salmo salar). We determined the amount of years spent in fresh water as juveniles (freshwater age, FW, measured in years), and years spent in the marine environment as adults (sea age, SW, measured in sea winters) on 264 sexually mature adults collected on a river spawning ground. We then estimated reproductive fitness as the number of offspring (reproductive success) and the number of mates (mating success) using genetic parentage analysis (>5,000 offspring). Sea age is significantly and positively correlated with reproductive and mating success of both sexes whereby older and larger individuals gained the highest reproductive fitness benefits (females: 62.2% increase in offspring/SW and 34.8% increase in mate number/SW; males: 201.9% offspring/SW and 60.3% mates/SW). Younger freshwater age was significantly related to older sea age and thus increased reproductive fitness, but only among females (females: -33.9% offspring/FW and -32.4% mates/FW). This result implies that females can obtain higher reproductive fitness by transitioning to the marine environment earlier. In contrast, male mating and reproductive success was unaffected by freshwater age and more males returned at a younger age than females despite the reproductive fitness advantage of later sea age maturation. Our results show that the timing of transitions between juvenile and adult phases has a sex-specific consequence on female reproductive fitness, demonstrating a life history trade-off between maturation and reproduction in wild Atlantic salmon.


Assuntos
Aptidão Genética , Estágios do Ciclo de Vida , Reprodução/genética , Salmo salar/genética , Fatores Etários , Animais , Feminino , Água Doce , Masculino , Linhagem , Salmo salar/crescimento & desenvolvimento , Água do Mar , Fatores de Tempo
10.
BMC Genet ; 21(1): 13, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32033538

RESUMO

BACKGROUND: Quantitative traits are typically considered to be under additive genetic control. Although there are indications that non-additive factors have the potential to contribute to trait variation, experimental demonstration remains scarce. Here, we investigated the genetic basis of growth in Atlantic salmon by exploiting the high level of genetic diversity and trait expression among domesticated, hybrid and wild populations. RESULTS: After rearing fish in common-garden experiments under aquaculture conditions, we performed a variance component analysis in four mapping populations totaling ~ 7000 individuals from six wild, two domesticated and three F1 wild/domesticated hybrid strains. Across the four independent datasets, genome-wide significant quantitative trait loci (QTLs) associated with weight and length were detected on a total of 18 chromosomes, reflecting the polygenic nature of growth. Significant QTLs correlated with both length and weight were detected on chromosomes 2, 6 and 9 in multiple datasets. Significantly, epistatic QTLs were detected in all datasets. DISCUSSION: The observed interactions demonstrated that the phenotypic effect of inheriting an allele deviated between half-sib families. Gene-by-gene interactions were also suggested, where the combined effect of two loci resulted in a genetic effect upon phenotypic variance, while no genetic effect was detected when the two loci were considered separately. To our knowledge, this is the first documentation of epistasis in a quantitative trait in Atlantic salmon. These novel results are of relevance for breeding programs, and for predicting the evolutionary consequences of domestication-introgression in wild populations.


Assuntos
Domesticação , Epistasia Genética , Locos de Características Quantitativas , Salmo salar/crescimento & desenvolvimento , Salmo salar/genética , Animais , Cruzamento , Mapeamento Cromossômico , Feminino , Ligação Genética , Masculino , Fenótipo
11.
Fish Shellfish Immunol ; 97: 624-636, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31877359

RESUMO

While triploid Atlantic salmon represent a practical and affordable solution to the issues associated with sexual maturation in the salmonid aquaculture industry, empirical evidence suggests triploids are more susceptible to disease and vaccine side-effects than diploids. With vaccination now part of routine husbandry, it is essential their response be studied to confirm their suitability for commercial production. This study tested the response of triploid and diploid Atlantic salmon to vaccination with commercially available vaccines. Triploid and diploid Atlantic salmon siblings were injected with one of three commercial vaccines (or sham-vaccinated) and monitored for performance throughout a commercial production cycle. Sampling at smolt and harvest was undertaken along with individual weight and length assessments through the cycle. Antibody response to Aeromonas salmonicida vaccination was similar in both ploidy, with a positive response in vaccine-injected fish. For both adhesions and melanin, analysis found that higher scores were more likely to occur as the anticipated severity of the vaccine increased. In addition, for adhesion scores at smolt and melanin scores at smolt and harvest, triploids were statistically more likely to exhibit high scores than diploids. Triploids maintained a significantly higher body weight during freshwater and until 11 months post-seawater transfer, with diploids weighing significantly more at harvest. Growth, represented by thermal growth coefficient (TGC), decreased in both ploidy as the severity of adhesions increased, and regression patterns did not differ significantly between ploidy. Vertebral deformity prevalence was consistently higher in triploids (smolt 12.3 ± 4.5%; harvest 34.9 ± 5.9%) than diploids (smolt 0.8 ± 0.5%; harvest 15.9 ± 1.9%), with no significant difference between vaccine groups in each ploidy. This study demonstrates that triploids respond as well to vaccination as diploids and provides further supporting evidence of triploid robustness for commercial aquaculture.


Assuntos
Vacinas Bacterianas/administração & dosagem , Anormalidades Congênitas/veterinária , Doenças dos Peixes/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Salmo salar/genética , Triploidia , Vacinação/veterinária , Aeromonas salmonicida/imunologia , Animais , Aquicultura/métodos , Vacinas Bacterianas/imunologia , Peso Corporal , Diploide , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Salmo salar/crescimento & desenvolvimento , Salmo salar/imunologia , Alimentos Marinhos , Coluna Vertebral/anormalidades
12.
Genet Sel Evol ; 52(1): 9, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32050893

RESUMO

BACKGROUND: Understanding genetic architecture is essential for determining how traits will change in response to evolutionary processes such as selection, genetic drift and/or gene flow. In Atlantic salmon, age at maturity is an important life history trait that affects factors such as survival, reproductive success, and growth. Furthermore, age at maturity can seriously impact aquaculture production. Therefore, characterizing the genetic architecture that underlies variation in age at maturity is of key interest. RESULTS: Here, we refine our understanding of the genetic architecture for age at maturity of male Atlantic salmon using a genome-wide association study of 11,166 males from a single aquaculture strain, using imputed genotypes at 512,397 single nucleotide polymorphisms (SNPs). All individuals were genotyped with a 50K SNP array and imputed to higher density using parents genotyped with a 930K SNP array and pedigree information. We found significant association signals on 28 of 29 chromosomes (P-values: 8.7 × 10-133-9.8 × 10-8), including two very strong signals spanning the six6 and vgll3 gene regions on chromosomes 9 and 25, respectively. Furthermore, we identified 116 independent signals that tagged 120 candidate genes with varying effect sizes. Five of the candidate genes found here were previously associated with age at maturity in other vertebrates, including humans. DISCUSSION: These results reveal a mixed architecture of large-effect loci and a polygenic component that consists of multiple smaller-effect loci, suggesting a more complex genetic architecture of Atlantic salmon age at maturity than previously thought. This more complex architecture will have implications for selection on this key trait in aquaculture and for management of wild salmon populations.


Assuntos
Estudo de Associação Genômica Ampla , Herança Multifatorial , Salmo salar/genética , Animais , Aquicultura , Evolução Biológica , Cruzamento , Cromossomos , Feminino , Genótipo , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Salmo salar/crescimento & desenvolvimento
13.
Genet Sel Evol ; 52(1): 66, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33158415

RESUMO

BACKGROUND: One objective of this study was to identify putative quantitative trait loci (QTL) that affect indicator phenotypes for growth, nitrogen, and carbon metabolism in muscle, liver, and adipose tissue, and for feed efficiency. Another objective was to perform an RNAseq analysis (184 fish from all families), to identify genes that are associated with carbon and nitrogen metabolism in the liver. The material consisted of a family experiment that was performed in freshwater and included 2281 individuals from 23 full-sib families. During the 12-day feed conversion test, families were randomly allocated to family tanks (50 fish per tank and 2 tanks per family) and fed a fishmeal-based diet labeled with the stable isotopes 15N and 13C at inclusion levels of 2 and 1%, respectively. RESULTS: Using a linear mixed-model algorithm, a QTL for pre-smolt growth was identified on chromosome 9 and a QTL for carbon metabolism in the liver was identified on chromosome 12 that was closely related to feed conversion ratio on a tank level. For the indicators of feed efficiency traits that were derived from the stable isotope ratios (15N and 13C) of muscle tissue and growth, no convincing QTL was detected, which suggests that these traits are polygenic. The transcriptomic analysis showed that high carbon and nitrogen metabolism was associated with individuals that convert protein from the feed more efficiently, primarily due to higher expression of the proteasome, lipid, and carbon metabolic pathways in liver. In addition, we identified seven transcription factors that were associated with carbon and nitrogen metabolism and located in the identified QTL regions. CONCLUSIONS: Analyses revealed one QTL associated with pre-smolt growth and one QTL for carbon metabolism in the liver. Both of these traits are associated with feed efficiency. However, more accurate mapping of the putative QTL will require a more diverse family material. In this experiment, fish that have a high carbon and nitrogen metabolism in the liver converted protein from the feed more efficiently, potentially because of a higher expression of the proteasome, lipid, and carbon metabolic pathways in liver. Within the QTL regions, we detected seven transcription factors that were associated with carbon and nitrogen metabolism.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/genética , Locos de Características Quantitativas , Característica Quantitativa Herdável , Salmo salar/genética , Ração Animal , Animais , Carbono/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Fígado/metabolismo , Herança Multifatorial , Músculo Esquelético/metabolismo , Nitrogênio/metabolismo , Salmo salar/crescimento & desenvolvimento , Salmo salar/metabolismo , Transdução de Sinais , Transcriptoma
14.
J Appl Microbiol ; 129(1): 146-160, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32227437

RESUMO

AIMS: Disease in farmed Atlantic salmon occurs in all its life stages. Salmon are particularly vulnerable to infectious diseases at transition from the freshwater stage to the saltwater stage. Our aim in these studies reported was to investigate the possibility that waterborne delivery of a probiotic comprised of naturally occurring marine bacterial species would reduce the mortality and improve the health and growth of farmed Atlantic salmon. METHODS AND RESULTS: In three trials at two aquaculture production sites in Norway, isolates of Aliivibrio bacteria were added to the rearing water of Atlantic salmon. The fish were followed in 4-6 months after one single bath with observations and samplings. Growth, ulcers and survival were recorded. At the end of the studies growth was up to 31% larger in the probiotic enhanced groups and in trial 1 both mortality and prevalence of ulcer were significantly lower in the probiotic enhanced group compared to the control. Feed conversion rates were recorded in trial 1 and 2 and were from 9 to 28 % better for the probiotic enhanced groups compared to the control groups. CONCLUSION: Bathing of Atlantic salmon with probiotic Aliivibrio strains increased growth, reduced mortality and improved FCR in the postsmolt period. SIGNIFICANCE AND IMPACT OF THE STUDY: The study demonstrates the potential to enhance growth, prevent ulcers and decrease mortality in Atlantic salmon after adding probiotic strains of Aliivibrio spp. into the rearing water. The study can have impact on animal welfare, economy and sustainability in the aquaculture industry.


Assuntos
Probióticos , Salmo salar/fisiologia , Vibrionaceae , Ração Animal/análise , Animais , Doenças dos Peixes/prevenção & controle , Pesqueiros , Noruega , Salmo salar/crescimento & desenvolvimento , Salmo salar/microbiologia , Água do Mar/microbiologia , Análise de Sobrevida , Vibrionaceae/isolamento & purificação , Vibrionaceae/fisiologia
15.
BMC Vet Res ; 16(1): 32, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005242

RESUMO

BACKGROUND: Various intestinal morphological alterations have been reported in cultured fish fed diets with high contents of plant ingredients. Since 2000, salmon farmers have reported symptoms indicating an intestinal problem, which we suggest calling lipid malabsorption syndrome (LMS), characterized by pale and foamy appearance of the enterocytes of the pyloric caeca, the result of lipid accumulation. The objective of the present study was to investigate if insufficient dietary choline may be a key component in development of the LMS. RESULTS: The results showed that Atlantic salmon (Salmo salar), average weight 362 g, fed a plant based diet for 79 days developed signs of LMS. In fish fed a similar diet supplemented with 0.4% choline chloride no signs of LMS were seen. The relative weight of the pyloric caeca was 40% lower, reflecting 65% less triacylglycerol content and histologically normal gut mucosa. Choline supplementation further increased specific fish growth by 18%. The concomitant alterations in intestinal gene expression related to phosphatidylcholine synthesis (chk and pcyt1a), cholesterol transport (abcg5 and npc1l1), lipid metabolism and transport (mgat2a and fabp2) and lipoprotein formation (apoA1 and apoAIV) confirmed the importance of choline in lipid turnover in the intestine and its ability to prevent LMS. Another important observation was the apparent correlation between plin2 expression and degree of enterocyte hyper-vacuolation observed in the current study, which suggests that plin2 may serve as a marker for intestinal lipid accumulation and steatosis in fish. Future research should be conducted to strengthen the knowledge of choline's critical role in lipid transport, phospholipid synthesis and lipoprotein secretion to improve formulations of plant based diets for larger fish and to prevent LMS. CONCLUSIONS: Choline prevents excessive lipid accumulation in the proximal intestine and is essential for Atlantic salmon in seawater.


Assuntos
Colina/administração & dosagem , Dieta/veterinária , Doenças dos Peixes/dietoterapia , Salmo salar/metabolismo , Ração Animal/análise , Animais , Aquicultura , Ceco/patologia , Enterócitos , Mucosa Intestinal , Intestinos/patologia , Metabolismo dos Lipídeos , Salmo salar/genética , Salmo salar/crescimento & desenvolvimento , Transcriptoma
16.
J Fish Biol ; 97(1): 137-147, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32242933

RESUMO

The effect of a dietary phosphorus regime in freshwater on vertebra bone mineralization was assessed in diploid and triploid Atlantic salmon, Salmo salar. Fish were fed either a low phosphorus (LP) diet containing 10.5 g kg-1 total phosphorus or a normal phosphorus (NP) diet containing 17.4 g kg-1 total phosphorus from ∼3 to ∼65 g (day 126) in body weight. Two further groups were fed the NP diet from ∼3 g in body weight, but were then switched to the LP diet after 38 (∼10 g in body weight) or 77 (∼30 g in body weight) days. Growth, vertebral ash content (% ash) and radiologically detectable vertebra pathologies were assessed. Triploids were initially smaller than diploids, and again on day 77, but there was no ploidy effect on days 38 or 126. Vertebral ash content increased with increasing body size and those fish fed the NP diet had higher vertebral ash content than those groups fed the LP diet during the intervening time period, but this diet effect became less apparent as fish grew, with all groups having relatively equal vertebral ash content at termination. In general, triploids had lower vertebral ash content than diploids on day 38 and this was most evident in the group fed the LP diet. On day 77, those triploids fed the LP diet during the intervening time period had lower vertebral ash content than diploids. At termination on day 126, the triploids had the same vertebral ash content as diploids, irrespective of diet. There was a ploidy × diet interaction on vertebral deformities, with triploids having higher prevalences of fish with ≥1 deformed vertebra in all dietary groups except continuous NP. In conclusion, between days 0 and 77 (3-30 g body size), triploids required more dietary phosphorus than diploids in order to maintain similar vertebral ash content. A possible link between phosphorus feeding history and phosphorus demand is also discussed.


Assuntos
Calcificação Fisiológica/fisiologia , Dieta/veterinária , Fósforo na Dieta/metabolismo , Salmo salar/crescimento & desenvolvimento , Salmo salar/genética , Animais , Peso Corporal , Necessidades Nutricionais , Fósforo na Dieta/administração & dosagem , Salmo salar/metabolismo , Triploidia
17.
J Sci Food Agric ; 100(3): 1038-1047, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31650558

RESUMO

BACKGROUND: The aquafeed sector has been replacing conventional dietary ingredients with more economic and eco-friendly ingredients. Insects embody a promising alternative as a result of being highly nutritious and showing traits leading to a circular bioeconomy. Atlantic salmon (Salmo salar L.) at the sea-water stage were fed diets with a partial or complete substitution of fishmeal with meal of Hermetia illucens larvae reared on a media containing Ascophyllum nodosum mixed with organic wastes (60:40). The present study aimed to assess the quality of fillets by characterizing its physico-chemical traits with conventional and innovative methods, such as the proton transfer reaction-time of flight-mass spectrometer technique, allowing the analysis of samples at room temperature. Finally, steamed fillets underwent a consumer test to investigate the liking of consumers and their intention of re-consumption. RESULTS: The main findings showed that a complete dietary substitution of fishmeal with H. illucens larvae meal did not impair the physico-chemical quality of A. salmon fillets. Notably, neutral n-3 polyunsaturated fatty acids (PUFA) slightly but significantly increased in the fillets of A. salmon fed H. illucens, also as a result of the additional fish oil present in the diets containing insect. The volatile organic profile was not altered by the different diets. The consumer-liking test revealed that Italian consumers appreciated the tested salmon irrespective of the administered feed. CONCLUSION: Tailoring the insect fatty acid profile by rearing the larvae on a PUFA-rich substrate, coupled with a dietary modulation of the oily source, can successfully maintain or even increase the cardioprotective characteristics of fillets. © 2019 Society of Chemical Industry.


Assuntos
Ração Animal/análise , Larva/química , Salmo salar/metabolismo , Compostos Orgânicos Voláteis/análise , Animais , Dieta/veterinária , Ácidos Graxos Insaturados/análise , Ácidos Graxos Insaturados/metabolismo , Pesqueiros , Larva/metabolismo , Carne/análise , Salmo salar/crescimento & desenvolvimento , Simuliidae/química , Simuliidae/metabolismo , Compostos Orgânicos Voláteis/metabolismo
18.
Fish Physiol Biochem ; 46(6): 2331-2353, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33001367

RESUMO

Limited fish meal and fish oil supplies have necessitated research on alternatives for aquafeeds. Seven dietary treatments with different protein and lipid sources were formulated for farmed Atlantic salmon, and their effects on liver and head kidney lipid class, fatty acid, and elemental composition were studied. Fish meal, fish oil, and EPA + DHA content ranged from 5-35%, 0-12%, and 0.1-3%, respectively. Elemental analysis showed that the C to N ratio was higher in the head kidney than in the liver, which is consistent with higher content of total lipids in the head kidney compared with the liver. There was a greater susceptibility to dietary lipid alterations in the liver compared with the head kidney despite liver having a greater proportion of phospholipid and a much lower proportion of triacylglycerol. So long as fish oil levels were 5% or more of the diet, arachidonic acid (ARA) and docosahexaenoic acid (DHA) proportions were the same for each tissue as with feeding the marine diet with 12% fish oil; however, livers and head kidneys from fish fed the lowest amount of fish meal and fish oil had the lowest levels of eicosapentaenoic (EPA) and DHA and the highest ARA levels. Removal of fish oil and reduction of fish meal to 5% in diets of farmed Atlantic salmon affected elemental and lipid compositions of the liver and head kidney tissues potentially increasing susceptibility to inflammation. However, with 10% of the diet comprising fish meal and fish oil, lipid contents were comparable with fish fed marine-based diets.


Assuntos
Dieta/veterinária , Rim Cefálico/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Salmo salar/metabolismo , Ração Animal/análise , Animais , Aquicultura , Ácido Araquidônico/análise , Ácidos Docosa-Hexaenoicos/análise , Ácido Eicosapentaenoico/análise , Óleos de Peixe , Produtos Pesqueiros , Salmo salar/crescimento & desenvolvimento
19.
BMC Genomics ; 20(1): 475, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31185904

RESUMO

BACKGROUND: When puberty starts before males reach harvest size, animal welfare and sustainability issues occur in Atlantic salmon (Salmo salar) aquaculture. Hallmarks of male puberty are an increased proliferation activity in the testis and elevated androgen production. Examining transcriptional changes in salmon testis during the transition from immature to maturing testes may help understanding the regulation of puberty, potentially leading to procedures to modulate its start. Since differences in body weight influence, via unknown mechanisms, the chances for entering puberty, we used two feed rations to create body weight differences. RESULTS: Maturing testes were characterized by an elevated proliferation activity of Sertoli cells and of single undifferentiated spermatogonia. Pituitary gene expression data suggest increased Gnrh receptor and gonadotropin gene expression, potentially responsible for the elevated circulating androgen levels in maturing fish. Transcriptional changes in maturing testes included a broad variety of signaling systems (e.g. Tgfß, Wnt, insulin/Igf, nuclear receptors), but also, activation of metabolic pathways such as anaerobic metabolism and protection against ROS. Feed restriction lowered the incidence of puberty. In males maturing despite feed restriction, plasma androgen levels were higher than in maturing fish receiving the full ration. A group of 449 genes that were up-regulated in maturing fully fed fish, was up-regulated more prominently in testis from fish maturing under caloric restriction. Moreover, 421 genes were specifically up-regulated in testes from fish maturing under caloric restriction, including carbon metabolism genes, a pathway relevant for nucleotide biosynthesis and for placing epigenetic marks. CONCLUSIONS: Undifferentiated spermatogonia and Sertoli cell populations increased at the beginning of puberty, which was associated with the up-regulation of metabolic pathways (e.g. anaerobic and ROS pathways) known from other stem cell systems. The higher androgen levels in males maturing under caloric restriction may be responsible for the stronger up-regulation of a common set of (449) maturation-associated genes, and the specific up-regulation of another set of (421) genes. The latter opened regulatory and/or metabolic options for initiating puberty despite feed restriction. As a means to reduce the incidence of male puberty in salmon, however, caloric restriction seems unsuitable.


Assuntos
Metabolismo Energético , Regulação da Expressão Gênica no Desenvolvimento , Salmo salar/crescimento & desenvolvimento , Salmo salar/genética , Maturidade Sexual/genética , Testículo/metabolismo , Animais , Perfilação da Expressão Gênica , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Salmo salar/metabolismo , Testículo/fisiologia
20.
Transgenic Res ; 28(Suppl 2): 101-105, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31321691

RESUMO

Gene editing offers opportunities to solve fish farming sustainability issues that presently hampers expansion of the aquaculture industry. In for example Atlantic salmon farming, there are now two major bottlenecks limiting the expansion of the industry. One is the genetic impact of escaped farmed salmon on wild populations, which is considered the most long-term negative effect on the environment. Secondly and the utmost acute problem is the fish parasite salmon lice, which is currently causing high lethality in wild salmonids due to high concentrations of the parasite in the sea owing to sea cage salmon farming. There are also sustainability issues associated with increased use of vegetable-based ingredients as replacements for marine products in fish feed. This transition comes at the expense of the omega-3 content both in fish feed and the fish filet of the farmed fish. Reduced fish welfare represents another obstacle, and robust farmed fish is needed to avoid negative stress associated phenotypes such as cataract, bone and fin deformities, precocious maturity and higher disease susceptibility. Gene editing could solve some of these problems as genetic traits can be altered positively to reach phenotype of interest such as for example disease resistance and increased omega-3 production.


Assuntos
Aquicultura/tendências , Resistência à Doença/genética , Edição de Genes/métodos , Salmo salar/genética , Animais , Pesqueiros , Humanos , Fenótipo , Salmo salar/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA