RESUMO
The selenocysteine (Sec) tRNA (tRNA[Ser]Sec) governs Sec insertion into selenoproteins by the recoding of a UGA codon, typically used as a stop codon. A homozygous point mutation (C65G) in the human tRNA[Ser]Sec acceptor arm has been reported by two independent groups and was associated with symptoms such as thyroid dysfunction and low blood selenium levels; however, the extent of altered selenoprotein synthesis resulting from this mutation has yet to be comprehensively investigated. In this study, we used CRISPR/Cas9 technology to engineer homozygous and heterozygous mutant human cells, which we then compared with the parental cell lines. This C65G mutation affected many aspects of tRNA[Ser]Sec integrity and activity. Firstly, the expression level of tRNA[Ser]Sec was significantly reduced due to an altered recruitment of RNA polymerase III at the promoter. Secondly, selenoprotein expression was strongly altered, but, more surprisingly, it was no longer sensitive to selenium supplementation. Mass spectrometry analyses revealed a tRNA isoform with unmodified wobble nucleotide U34 in mutant cells that correlated with reduced UGA recoding activities. Overall, this study demonstrates the pleiotropic effect of a single C65G mutation on both tRNA phenotype and selenoproteome expression.
Assuntos
Selênio , Humanos , Códon de Terminação , Mutação , Selênio/farmacologia , Selênio/metabolismo , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/genética , ProteomaRESUMO
Translational readthrough of UGA stop codons by selenocysteine-specific tRNA (tRNASec) enables the synthesis of selenoproteins. Seryl-tRNA synthetase (SerRS) charges tRNASec with serine, which is modified into selenocysteine and delivered to the ribosome by a designated elongation factor (eEFSec in eukaryotes). Here we found that components of the human selenocysteine incorporation machinery (SerRS, tRNASec, and eEFSec) also increased translational readthrough of non-selenocysteine genes, including VEGFA, to create C-terminally extended isoforms. SerRS recognizes target mRNAs through a stem-loop structure that resembles the variable loop of its cognate tRNAs. This function of SerRS depends on both its enzymatic activity and a vertebrate-specific domain. Through eCLIP-seq, we identified additional SerRS-interacting mRNAs as potential readthrough genes. Moreover, SerRS overexpression was sufficient to reverse premature termination caused by a pathogenic nonsense mutation. Our findings expand the repertoire of selenoprotein biosynthesis machinery and suggest an avenue for therapeutic targeting of nonsense mutations using endogenous factors.
Assuntos
Biossíntese de Proteínas , Serina-tRNA Ligase , Humanos , Códon sem Sentido , Códon de Terminação , RNA Mensageiro/metabolismo , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/genética , Serina-tRNA Ligase/genéticaRESUMO
Selenoprotein P (SeP, encoded by the SELENOP gene) is a plasma protein that contains selenium in the form of selenocysteine residues (Sec, a cysteine analog containing selenium instead of sulfur). SeP functions for the transport of selenium to specific tissues in a receptor-dependent manner. Apolipoprotein E receptor 2 (ApoER2) has been identified as a SeP receptor. However, diverse variants of ApoER2 have been reported, and the details of its tissue specificity and the molecular mechanism of its efficiency remain unclear. In the present study, we found that human T lymphoma Jurkat cells have a high ability to utilize selenium via SeP, while this ability was low in human rhabdomyosarcoma cells. We identified an ApoER2 variant with a high affinity for SeP in Jurkat cells. This variant had a dissociation constant value of 0.67 nM and a highly glycosylated O-linked sugar domain. Moreover, the acidification of intracellular vesicles was necessary for selenium transport via SeP in both cell types. In rhabdomyosarcoma cells, SeP underwent proteolytic degradation in lysosomes and transported selenium in a Sec lyase-dependent manner. However, in Jurkat cells, SeP transported selenium in Sec lyase-independent manner. These findings indicate a preferential selenium transport pathway involving SeP and high-affinity ApoER2 in a Sec lyase-independent manner. Herein, we provide a novel dynamic transport pathway for selenium via SeP.
Assuntos
Liases , Selênio , Humanos , Liases/metabolismo , Selênio/metabolismo , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteína P/genética , Selenoproteína P/metabolismo , Selenoproteínas , Células JurkatRESUMO
In [NiFe]-hydrogenases, the active-site Ni is coordinated by four cysteine-S ligands (Cys; C), two of which are bridging to the Fe(CO)(CN)2 fragment. Substitution of a single Cys residue by selenocysteine (Sec; U) occurs occasionally in nature. Using a recent method for site-specific Sec incorporation into proteins, each of the four Ni-coordinating cysteine residues in the oxygen-tolerant Escherichia coli [NiFe]-hydrogenase-1 (Hyd-1) has been replaced by U to identify its importance for enzyme function. Steady-state solution activity of each Sec-substituted enzyme (on a per-milligram basis) is lowered, although this may reflect the unquantified presence of recalcitrant inactive/immature/misfolded forms. Protein film electrochemistry, however, reveals detailed kinetic data that are independent of absolute activities. Like native Hyd-1, the variants have low apparent KMH2 values, do not produce H2 at pH 6, and display the same onset overpotential for H2 oxidation. Mechanistically important differences were identified for the C576U variant bearing the equivalent replacement found in native [NiFeSe]-hydrogenases, its extreme O2 tolerance (apparent KMH2 and Vmax [solution] values relative to native Hyd-1 of 0.13 and 0.04, respectively) implying the importance of a selenium atom in the position cis to the site where exogenous ligands (H-, H2, O2) bind. Observation of the same unusual electrocatalytic signature seen earlier for the proton transfer-defective E28Q variant highlights the direct role of the chalcogen atom (S/Se) at position 576 close to E28, with the caveat that Se is less effective than S in facilitating proton transfer away from the Ni during H2 oxidation by this enzyme.
Assuntos
Cisteína/química , Proteínas de Escherichia coli/química , Hidrogenase/química , Oxigênio/química , Selenocisteína/química , Substituição de Aminoácidos , Biocatálise , Cisteína/genética , Proteínas de Escherichia coli/genética , Hidrogenase/genética , Selenocisteína/genéticaRESUMO
Seleno-methylselenocysteine (SeMCys) is an effective component for selenium supplementation with anti-carcinogenic potential and can ameliorate neuropathology and cognitive deficits. In this study, we aimed to engineer Bacillus subtilis 168 for the microbial production of SeMCys. First, the accumulation of intracellular selenocysteine (SeCys) as the precursor of SeMCys was enhanced through overexpression of serine O-acetyltransferase, which was desensitized against feedback inhibition by cysteine. Next, the S-adenosylmethionine (SAM) synthetic pathway was optimized to improve methyl donor availability through expression of S-adenosylmethionine synthetase. Further, SeMCys was successfully produced through expression of the selenocysteine methyltransferase in SeCys and SAM-producing strain. The increased expression level of selenocysteine methyltransferase benefited the SeMCys production. Finally, all the heterologous genes were integrated into the genome of B. subtilis, and the strain produced SeMCys at a titer of 18.4 µg/L in fed-batch culture. This is the first report on the metabolic engineering of B. subtilis for microbial production of SeMCys and provides a good starting point for future pathway engineering to achieve the industrial-grade production of SeMCys. KEY POINTS: ⢠Expression of the feedback-insensitive serine O-acetyltransferase provided B. subtilis the ability of accumulating SeCys. ⢠SAM production was enhanced through expressing S-adenosylmethionine synthetase in B. subtilis. ⢠Expression of selenocysteine methyltransferase in SeCys and SAM-accumulating strain facilitated SeMCys production.
Assuntos
Bacillus subtilis , Selenocisteína , Selenocisteína/genética , Selenocisteína/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Serina O-Acetiltransferase/metabolismo , Metionina Adenosiltransferase/metabolismo , Engenharia Metabólica , S-Adenosilmetionina/metabolismoRESUMO
Selenocysteine (Sec) was discovered as the 21st genetically encoded amino acid. In nature, site-directed incorporation of Sec into proteins requires specialized biosynthesis and recoding machinery that evolved distinctly in bacteria compared to archaea and eukaryotes. Many organisms, including higher plants and most fungi, lack the Sec-decoding trait. We review the discovery of Sec and its role in redox enzymes that are essential to human health and important targets in disease. We highlight recent genetic code expansion efforts to engineer site-directed incorporation of Sec in bacteria and yeast. We also review methods to produce selenoproteins with 21 or more amino acids and approaches to delivering recombinant selenoproteins to mammalian cells as new applications for selenoproteins in synthetic biology.
Assuntos
Antifibrinolíticos , Selenoproteínas , Humanos , Animais , Selenoproteínas/genética , Aminoácidos , Archaea , Saccharomyces cerevisiae , Selenocisteína/genética , MamíferosRESUMO
Currently, selenobiology is an actively developing area, primarily due to the study of the role of the trace element selenium and its organic and inorganic compounds in the regulation of vital processes occurring in the cell. In particular, the study of the functions of selenium nanoparticles has gained great popularity in recent years. However, a weak point in this area of biology is the study of the functions of selenoproteins, of which 25 have been identified in mammals to date. First of all, this is due to the difficulties in obtaining native forms of selenoproteins in preparative quantities, due to the fact that the amino acid selenocysteine is encoded by one of the three stop codons of the TGA universal genetic code. A complex system for recognizing a given codon as a selenocysteine codon has a number of features in pro- and eukaryotes. The selenoprotein SELENOM is one of the least studied mammalian selenoproteins. In this work, for the first time, studies of the molecular mechanisms of regulation of the cytotoxic effect of this protein on human glioblastoma cells were carried out. The cytotoxicity of cancer cells in our experiments was already observed when cells were exposed to 50 µg of SELENOM and increased in proportion to the increase in protein concentration. Apoptosis of human glioblastoma cells was accompanied by an increase in mRNA expression of a number of pro-apoptotic genes, an increase in endoplasmic reticulum stress, and activation of the UPR IRE1α signaling pathway. The results obtained also demonstrate a dose-dependent depletion of the Ca2+ pool under the action of SELENOM, which proves the important role of this protein in the regulation of calcium homeostasis in the cell.
Assuntos
Glioblastoma , Selênio , Animais , Humanos , Endorribonucleases/genética , Selênio/farmacologia , Selênio/metabolismo , Selenocisteína/farmacologia , Selenocisteína/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Proteínas Serina-Treonina Quinases/genética , Selenoproteínas/metabolismo , Códon de Terminação , Mamíferos/metabolismoRESUMO
Selenocysteine (Sec), the 21st genetically encoded amino acid, is structurally similar to cysteine (Cys) but with a sulfur to selenium replacement. This small change confers Sec with related chemical properties to Cys but often with enhanced reactivity. In organisms, Sec is present in selenoproteins taking on various roles such as cellular maintenance, immune response, hormone regulation, and oxidative stress. The detailed reactions of Sec in these functions remains unclear and has been a difficult question to answer. This is related to the low natural expression of selenoproteins and their complicated biosynthesis pathway. As a result, the focus in selenoprotein research has been on the expansion of tools and techniques to promote research in this area. Over the past two decades there has been immense progress in the development of selenoprotein expression systems, Sec-detection methods, and genomic databases. In this review we have compiled these tools systematically, highlighting their strengths and clarifying the limitations, as a resource for future selenoprotein research.
Assuntos
Selênio , Selenocisteína , Selenocisteína/genética , Selenocisteína/metabolismo , Cisteína , Aminoácidos , Selenoproteínas/química , Enxofre , HormôniosRESUMO
There is an urgent need for new and improved therapeutic strategies in breast cancer, which is the most common malignancy affecting women in the United States and worldwide. Selenium (Se) is an essential trace element of the human diet and plays a critical role in many aspects of human health. Clinical and epidemiological studies summarized here clearly demonstrate that Se status correlates with breast cancer survival. As a result, one way to curb breast cancer mortality would be via Se supplementation, especially in patients with severely deplete Se status. Se manifests its biological activity through incorporation into selenoproteins as selenocysteine. However, a better understanding of tissue-specific mechanisms and roles for selenoproteins in general is required. Additionally, many human selenoproteins harbor single nucleotide polymorphisms, which impact protein expression and activity and have been associated with cancer susceptibility or impacting survival. Increasing evidence indicates that these genetic variations impinge on the interactions between Se and breast cancer. This highlights the importance of integrating the Se status with genetic factors to fully define the benefit of Se in breast cancer. While Se supplementation would clearly benefit a subset of patients, this requires first the identification of at-risk patients and warrants validation through intervention trials.
Assuntos
Neoplasias da Mama , Selênio , Humanos , Feminino , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Selenoproteínas/genética , Selenoproteínas/metabolismo , Selenocisteína/genética , Selenocisteína/metabolismo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Selenium (Se) plays an essential role in the growth of fish and performs its physiological functions mainly through incorporation into selenoproteins. Our previous studies suggested that the selenoprotein W gene (selenow) is sensitive to changes in dietary Se in rainbow trout. However, the molecular characterization and tissue expression pattern of selenow are still unknown. Here, we revealed the molecular characterization, the tissue expression pattern of rainbow trout selenow and analyzed its response to dietary Se. The open reading frame (ORF) of the selenow gene was composed of 393 base pairs (bp) and encodes a 130-amino-acid protein. The 3' untranslated region (UTR) was 372 bp with a selenocysteine insertion sequence (SECIS) element. Remarkably, the rainbow trout selenow gene sequence was longer than those reported for mammals and most other fish. A ß1-α1-ß2-ß3-ß4-α2 pattern made up the secondary structure of SELENOW. Furthermore, multiple sequence alignment revealed that rainbow trout SELENOW showed a high level of identity with SELENOW from Salmo salar. In addition, the selenow gene was ubiquitously distributed in 13 tissues with various abundances and was predominantly expressed in muscle and brain. Interestingly, dietary Se significantly increased selenow mRNA expression in muscle. Our results highlight the vital role of selenow in rainbow trout muscle response to dietary Se levels and provide a theoretical basis for studies of selenow.
Assuntos
Oncorhynchus mykiss , Selênio , Animais , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo , Selenoproteína W/genética , Selenoproteína W/metabolismo , Selênio/metabolismo , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Clonagem Molecular , Mamíferos/genéticaRESUMO
Selenocysteine is cotranslationally inserted into polypeptide chains by recoding the stop codon UGA. However, selenocysteine has also been found to be misincorporated into a small number of proteins displacing cysteines in previous studies, but such misincorporation has not yet been examined at the proteome level thoroughly. We performed label-free quantitative proteomics analysis on Escherichia coli grown in a high-selenium medium to obtain a fuller picture of selenocysteine misincorporation in its proteome. We found 139 misincorporation sites, including 54 recurred in all biological replicates, suggesting that some cysteine sites are more prone to be misincorporated than others. However, sequence and evolutionary conservation analysis showed no clear pattern among these misincorporation sites. We hypothesize that misincorporations occur randomly throughout the proteome, but the degradation rate of such misincorporated proteins varies depending on the impact of the misincorporation on protein function and stability, leading to the differential detectability of misincorporated sites by proteomics. Our hypothesis is further supported by two observations: (1) cells cultured with severely limited sulfur still retained a substantial proportion of normal cysteine counterparts of all of the found misincorporated proteins and (2) proteins involved in protein folding and proteolysis were highly upregulated in high-selenium culture.
Assuntos
Proteoma , Selenocisteína , Cisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Biossíntese de Proteínas , Proteoma/genética , Proteoma/metabolismo , Proteômica , Selenocisteína/genéticaRESUMO
Selenocysteine (Sec), a rare naturally proteinogenic amino acid, is the major form of essential trace element selenium in living organisms. Selenoproteins, with one or several Sec residues, are found in all three domains of life. Many selenoproteins play a role in critical cellular functions such as maintaining cell redox homeostasis. Sec is usually encoded by an in-frame stop codon UGA in the selenoprotein mRNA, and its incorporation in vivo is highly species-dependent and requires the reprogramming of translation. This mechanistic complexity of selenoprotein synthesis poses a big challenge to produce synthetic selenoproteins. To understand the functions of natural as well as engineered selenoproteins, many strategies have recently been developed to overcome the inherent barrier for recombinant selenoprotein production. In this review, we will describe the progress in selenoprotein production methodology.
Assuntos
Engenharia Genética , Selenocisteína/genética , Selenoproteínas/genética , Homeostase , Humanos , Oxirredução , Selenocisteína/metabolismo , Selenoproteínas/biossíntese , Selenoproteínas/metabolismoRESUMO
Selenium is incorporated into selenoproteins as the 21st amino acid selenocysteine (Sec). There are 25 selenoproteins encoded in the human genome, and their synthesis requires a dedicated machinery. Most selenoproteins are oxidoreductases with important functions in human health. A number of disorders have been associated with deficiency of selenoproteins, caused by mutations in selenoprotein genes or Sec machinery genes. We discuss mutations that are known to cause disease in humans and report their allele frequencies in the general population. The occurrence of protein-truncating variants in the same genes is also presented. We provide an overview of pathogenic variants in selenoproteins genes from a population genomics perspective.
Assuntos
Variação Genética/genética , Selenocisteína/genética , Selenoproteínas/genética , Alelos , Animais , Genoma Humano/genética , Humanos , Selênio/metabolismoRESUMO
In bacteria, selenocysteine (Sec) is incorporated into proteins via the recoding of a particular codon, the UGA stop codon in most cases. Sec-tRNASec is delivered to the ribosome by the Sec-dedicated elongation factor SelB that also recognizes a Sec-insertion sequence element following the codon on the mRNA. Since the excess of SelB may lead to sequestration of Sec-tRNASec under selenium deficiency or oxidative stress, the expression levels of SelB and tRNASec should be regulated. In this bioinformatic study, I analyzed the Rhizobiales SelB species because they were annotated to have a non-canonical C-terminal extension. I found that the open reading frame (ORF) of diverse Alphaproteobacteria selB genes includes an entire tRNASec sequence (selC) and overlaps with the start codon of the downstream ORF. A remnant tRNASec sequence was found in the Sinorhizobium melilotiselB genes whose products have a shorter C-terminal extension. Similar overlapping traits were found in Gammaproteobacteria and Nitrospirae. I hypothesized that once the tRNASec moiety is folded and processed, the expression of the full-length SelB may be repressed. This is the first report on a nested tRNA gene inside a protein ORF in bacteria.
Assuntos
Alphaproteobacteria/genética , Proteínas de Bactérias/genética , Selenocisteína/genética , Proteínas de Bactérias/metabolismo , Códon de Terminação/metabolismo , Biologia Computacional/métodos , Conformação de Ácido Nucleico , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA de Transferência/genética , RNA de Transferência Aminoácido-Específico/genética , RNA de Transferência Aminoácido-Específico/metabolismo , Ribossomos/metabolismo , Selenocisteína/metabolismoRESUMO
Transfer RNA[Ser]Sec carries multiple post-transcriptional modifications. The A37G mutation in tRNA[Ser]Sec abrogates isopentenylation of base 37 and has a profound effect on selenoprotein expression in mice. Patients with a homozygous pathogenic p.R323Q variant in tRNA-isopentenyl-transferase (TRIT1) show a severe neurological disorder, and hence we wondered whether selenoprotein expression was impaired. Patient fibroblasts with the homozygous p.R323Q variant did not show a general decrease in selenoprotein expression. However, recombinant human TRIT1R323Q had significantly diminished activities towards several tRNA substrates in vitro. We thus engineered mice conditionally deficient in Trit1 in hepatocytes and neurons. Mass-spectrometry revealed that hypermodification of U34 to mcm5Um occurs independently of isopentenylation of A37 in tRNA[Ser]Sec. Western blotting and 75Se metabolic labeling showed only moderate effects on selenoprotein levels and 75Se incorporation. A detailed analysis of Trit1-deficient liver using ribosomal profiling demonstrated that UGA/Sec re-coding was moderately affected in Selenop, Txnrd1, and Sephs2, but not in Gpx1. 2'O-methylation of U34 in tRNA[Ser]Sec depends on FTSJ1, but does not affect UGA/Sec re-coding in selenoprotein translation. Taken together, our results show that a lack of isopentenylation of tRNA[Ser]Sec affects UGA/Sec read-through but differs from a A37G mutation.
Assuntos
Alquil e Aril Transferases/genética , RNA de Transferência/metabolismo , Selenoproteínas/metabolismo , Alquil e Aril Transferases/metabolismo , Animais , Linhagem Celular , Cisteína/metabolismo , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Neurônios/metabolismo , Fosfotransferases/genética , Fosfotransferases/metabolismo , Biossíntese de Proteínas/genética , RNA de Transferência/genética , Ribossomos/metabolismo , Selênio/metabolismo , Selenocisteína/genética , Selenoproteína P/genética , Selenoproteínas/genéticaRESUMO
Selenocysteine (Sec) is the 21st non-standard proteinogenic amino acid. Due to the particularity of the codon encoding Sec, the selenoprotein synthesis needs to be completed by unique mechanisms in specific biological systems. In this paper, the underlying mechanisms for the biosynthesis and incorporation of Sec into selenoprotein were comprehensively reviewed on five aspects: (i) the specific biosynthesis mechanism of Sec and the role of its internal influencing factors (SelA, SelB, SelC, SelD, SPS2 and PSTK); (ii) the elements (SECIS, PSL, SPUR and RF) on mRNA and their functional mechanisms; (iii) the specificity (either translation termination or translation into Sec) of UGA; (iv) the structure-activity relationship and action mechanism of SelA, SelB, SelC and SelD; and (v) the operating mechanism of two key enzyme systems for inorganic selenium source flow before Sec synthesis. Lastly, the size of the translation initiation interval, other action modes of SECIS and effects of REPS (Repetitive Extragenic Palindromic Sequences) that affect the incorporation efficiency of Sec was also discussed to provide scientific basis for the large-scale industrial fermentation for the production of selenoprotein.
Assuntos
Conformação de Ácido Nucleico , Selênio/química , Selenocisteína/genética , Selenoproteínas/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Selenocisteína/biossíntese , Selenocisteína/química , Selenoproteínas/biossíntese , Selenoproteínas/química , Selenoproteínas/ultraestrutura , Relação Estrutura-AtividadeRESUMO
Selenocysteine (Sec) is the 21st proteogenic amino acid in the genetic code. Incorporation of Sec into proteins is a complex and bioenergetically costly process that evokes the following question: "Why did nature choose selenium?" An answer that has emerged over the past decade is that Sec confers resistance to irreversible oxidative inactivation by reactive oxygen species. Here, we explore the question of whether this concept can be broadened to include resistance to reactive electrophilic species (RES) because oxygen and related compounds are merely a subset of RES. To test this hypothesis, we inactivated mammalian thioredoxin reductase (Sec-TrxR), a mutant containing α-methylselenocysteine [(αMe)Sec-TrxR], and a cysteine ortholog TrxR (Cys-TrxR) with various electrophiles, including acrolein, 4-hydroxynonenal, and curcumin. Our results show that the acrolein-inactivated Sec-TrxR and the (αMe)Sec-TrxR mutant could regain 25% and 30% activity, respectively, when incubated with 2 mM H2O2 and 5 mM imidazole. In contrast, Cys-TrxR did not regain activity under the same conditions. We posit that Sec enzymes can undergo a repair process via ß-syn selenoxide elimination that ejects the electrophile, leaving the enzyme in the oxidized selenosulfide state. (αMe)Sec-TrxR was created by incorporating the non-natural amino acid (αMe)Sec into TrxR by semisynthesis and allowed for rigorous testing of our hypothesis. This Sec derivative enables higher resistance to both oxidative and electrophilic inactivation because it lacks a backbone Cα-H, which prevents loss of selenium through the formation of dehydroalanine. This is the first time this unique amino acid has been incorporated into an enzyme and is an example of state-of-the-art protein engineering.
Assuntos
Mutação , Selenocisteína/análogos & derivados , Selenoproteínas/química , Tiorredoxina Dissulfeto Redutase/metabolismo , Cisteína/química , Humanos , Oxirredução , Óxidos de Selênio/química , Selenocisteína/química , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxinas/química , Tiorredoxinas/metabolismoRESUMO
Gene-specific expansion of the genetic code allows for UGA codons to specify the amino acid selenocysteine (Sec). A striking example of UGA redefinition occurs during translation of the mRNA coding for the selenium transport protein, selenoprotein P (SELENOP), which in vertebrates may contain up to 22 in-frame UGA codons. Sec incorporation at the first and downstream UGA codons occurs with variable efficiencies to control synthesis of full-length and truncated SELENOP isoforms. To address how the Selenop mRNA can direct dynamic codon redefinition in different regions of the same mRNA, we undertook a comprehensive search for phylogenetically conserved RNA structures and examined the function of these structures using cell-based assays, in vitro translation systems, and in vivo ribosome profiling of liver tissue from mice carrying genomic deletions of 3' UTR selenocysteine-insertion-sequences (SECIS1 and SECIS2). The data support a novel RNA structure near the start codon that impacts translation initiation, structures located adjacent to UGA codons, additional coding sequence regions necessary for efficient production of full-length SELENOP, and distinct roles for SECIS1 and SECIS2 at UGA codons. Our results uncover a remarkable diversity of RNA elements conducting multiple occurrences of UGA redefinition to control the synthesis of full-length and truncated SELENOP isoforms.
Assuntos
Códon de Iniciação/genética , Códon de Terminação/genética , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/genética , Selenoproteína P/genética , Regiões 3' não Traduzidas/genética , Animais , Sequência de Bases , Humanos , Camundongos Endogâmicos C57BL , Conformação de Ácido Nucleico , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteína P/metabolismo , Homologia de Sequência do Ácido NucleicoRESUMO
Selenoproteins that contain selenocysteine (Sec) are found in all kingdoms of life. Although they constitute a small proportion of the proteome, selenoproteins play essential roles in many organisms. In photosynthetic eukaryotes, selenoproteins have been found in algae but are missing in land plants (embryophytes). In this study, we explored the evolutionary dynamics of Sec incorporation by conveying a genomic search for the Sec machinery and selenoproteins across Archaeplastida. We identified a complete Sec machinery and variable sizes of selenoproteomes in the main algal lineages. However, the entire Sec machinery was missing in the Bangiophyceae-Florideophyceae clade (BV) of Rhodoplantae (red algae) and only partial machinery was found in three species of Archaeplastida, indicating parallel loss of Sec incorporation in different groups of algae. Further analysis of genome and transcriptome data suggests that all major lineages of streptophyte algae display a complete Sec machinery, although the number of selenoproteins is low in this group, especially in subaerial taxa. We conclude that selenoproteins tend to be lost in Archaeplastida upon adaptation to a subaerial or acidic environment. The high number of redox-active selenoproteins found in some bloom-forming marine microalgae may be related to defense against viral infections. Some of the selenoproteins in these organisms may have been gained by horizontal gene transfer from bacteria.
Assuntos
Clorófitas/genética , Proteínas de Plantas/genética , Rodófitas/genética , Selenoproteínas/genética , Estreptófitas/genética , Evolução Molecular , Transferência Genética Horizontal , Genômica , Filogenia , Selenocisteína/genética , TranscriptomaRESUMO
Here, we introduce the concept of the "seleno effect" in the study of oxidoreductases that catalyze thiol/disulfide exchange reactions. In these reactions, selenium can replace sulfur as a nucleophile, electrophile, or leaving group, and the resulting change in rate (the seleno effect) is defined as kS/ kSe. In solution, selenium accelerates the rate of thiol/disulfide exchange regardless of its chemical role (e.g., nucleophile or electrophile). Here we show that this is not the case for enzyme catalyzed reactions and that the magnitude of the seleno effect can differentiate the role of each sulfur atom of a disulfide bond between that of an electrophile or leaving group. We used selenium for sulfur substitution to study the thiol/disulfide exchange step that occurs between the N-terminal redox center and the C-terminal disulfide-containing ß-hairpin motif of Plasmodium falciparum thioredoxin reductase (PfTrxR), which has the sequence Gly-Cys535-Gly-Gly-Gly-Lys-Cys540-Gly. We assayed a truncated PfTrxR enzyme missing this C-terminal tail for disulfide-reductase activity using synthetic peptide substrates in which either Cys535 or Cys540 was replaced with selenocysteine (Sec). The results show that substitution of Cys535 with Sec resulted in a nearly 9-fold decrease in the rate of reduction, while substitution of Cys540 resulted in a 1.5-fold increase in the rate of reduction. We also produced full-length, semisynthetic enzymes in which Sec replaced either of these two Cys residues and observed similar results using E. coli thioredoxin as the substrate. In this assay, the observed seleno effect ( kS/ kSe) for the C535U mutant was 7.4, and that for the C540U mutant was 0.2.