Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
2.
Environ Res ; 212(Pt C): 113282, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35487258

RESUMO

A smooth, exceptionally sensitive, correct, and extra reproducible RP-HPLC technique was developed and demonstrated to estimate Sofosbuvir (SOF) in pharmaceutical dosage formulations. This process was carried out by Agilent High-Pressure Liquid Chromatograph 1260 with GI311C Quat. Pump, Phenomenex Luna C-18 (150 mm × 4.6 mm × 5 µm) (USA), and Photodiode Array Detector (PDA) G1315D. The cell section, including acetonitrile and methanol with 80:20 v/v and solution (B) 0.1% phosphoric acid (40:60), was used for the study. However, 10 µL of the sample was injected with a drift flow of 1 mL/min. The separation occurred at a column temperature of 30 °C, and the eluents used PDA set at 260 nm. The retention time of SOF was 5 min. The calibration curve was modified linearly within the range of 0.05-0.15 mg/mL with a correlation coefficient of 0.99 and genuine linear dating among top vicinity and consciousness in the calibration curve. The detection and quantification restrictions were 0.001 and 0.003 mg/mL, respectively. SOF recovery from pharmaceutical components ranged from 98% to 99%. The percentage assay of SOF was 99%. Analytical validation parameters, such as specificity, linearity, precision, accuracy, and selectivity, were studied, and the percentage relative standard deviation (%RSD) was less than 2%. All other key parameters were observed within the desired thresholds. Hence, the proposed RP-HPLC technique was proven effective for developing SOF in bulk and pharmaceutical pill dosage forms. SOF was found to interact with SARS-COV-2 nsp12, and molecular docking results revealed its high affinity and firm binding within the active site groove of nsp12. The key interacting residues include; LYS-72, GLN-75, MET-80 ALA-99, ASN-99, TRP-100, TYR-101 with ASN-99 and TRP-100 forming hydrogen bonds. Molecular Dynamics simulation of SOF and nsp12 complex elucidated that the system was stable throughout 20ns. Therefore, this drug repurposing strategy for SOF can be used for treating COVID-19 infections by performing animal experiments and accurate clinical trials in the future.


Assuntos
COVID-19 , Sofosbuvir , Animais , Cromatografia Líquida de Alta Pressão/métodos , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Preparações Farmacêuticas , Reprodutibilidade dos Testes , SARS-CoV-2 , Sofosbuvir/química
3.
J Proteome Res ; 19(11): 4690-4697, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32692185

RESUMO

SARS-CoV-2 is responsible for the current COVID-19 pandemic. On the basis of our analysis of hepatitis C virus and coronavirus replication, and the molecular structures and activities of viral inhibitors, we previously demonstrated that three nucleotide analogues (the triphosphates of Sofosbuvir, Alovudine, and AZT) inhibit the SARS-CoV RNA-dependent RNA polymerase (RdRp). We also demonstrated that a library of additional nucleotide analogues terminate RNA synthesis catalyzed by the SARS-CoV-2 RdRp, a well-established drug target for COVID-19. Here, we used polymerase extension experiments to demonstrate that the active triphosphate form of Sofosbuvir (an FDA-approved hepatitis C drug) is incorporated by SARS-CoV-2 RdRp and blocks further incorporation. Using the molecular insight gained from the previous studies, we selected the active triphosphate forms of six other antiviral agents, Alovudine, Tenofovir alafenamide, AZT, Abacavir, Lamivudine, and Emtricitabine, for evaluation as inhibitors of the SARS-CoV-2 RdRp and demonstrated the ability of these viral polymerase inhibitors to be incorporated by SARS-CoV-2 RdRp, where they terminate further polymerase extension with varying efficiency. These results provide a molecular basis for inhibition of the SARS-CoV-2 RdRp by these nucleotide analogues. If sufficient efficacy of some of these FDA-approved drugs in inhibiting viral replication in cell culture is established, they may be explored as potential COVID-19 therapeutics.


Assuntos
Antivirais , Betacoronavirus , RNA Polimerase Dependente de RNA , Proteínas não Estruturais Virais , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , Betacoronavirus/enzimologia , Betacoronavirus/genética , COVID-19 , Infecções por Coronavirus/virologia , Didesoxinucleosídeos/química , Didesoxinucleosídeos/metabolismo , Didesoxinucleosídeos/farmacologia , Humanos , Pandemias , Pneumonia Viral/virologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2 , Sofosbuvir/química , Sofosbuvir/metabolismo , Sofosbuvir/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
4.
Luminescence ; 35(4): 486-492, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31869004

RESUMO

A fast, low-cost, sensitive, and selective spectrofluorimetric method for the determination of ledipasvir was developed and validated. The method is based on an enhancement in the native fluorescence intensity of ledipasvir by 500% of its original value by the formation of hydrogen bonds between the cited drug and Tween-20 in the micellar system (pH = 5.0). All fluorescence measurements were carried out at 425 nm and 340 nm for emission and excitation wavelengths, respectively. A linear relationship between the concentration of ledipasvir and the observed fluorescence intensity was achieved in the range of 0.1-2.0 µg ml-1 with 0.028, 0.084 µg ml-1 , for detection and quantitation limits, respectively. The acquired selectivity and sensitivity using the proposed method facilitate the analysis of ledipasvir in spiked human plasma with sufficient percentage recovery (95.36-99.30%). The proposed method was developed and validated according to International Council for Harmonisation (ICH) guidelines. Moreover, the cited drug was successfully determined in its pharmaceutical dosage form using the proposed method. In addition, the validity of the proposed results was statistically confirmed using Student's t-test, variance ratio F-test, and interval hypothesis test.


Assuntos
Benzimidazóis/sangue , Fluorenos/sangue , Sofosbuvir/química , Composição de Medicamentos , Humanos , Micelas , Estrutura Molecular , Sofosbuvir/sangue , Espectrometria de Fluorescência , Comprimidos/análise
5.
Molecules ; 25(20)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050433

RESUMO

A simple, rapid, sensitive, and precise reversed-phase liquid chromatographic method was developed and validated for the simultaneous determination of four direct-acting antivirals, sofosbuvir (SF), ledipasvir (LD), declatasvir (DC), and simeprevir (SM), in their respective pharmaceutical formulations. Effective chromatographic separation was achieved on an Agilent Eclipse plus C8 column (250 mm × 4.6 mm, 5 µm) at 40 °C with gradient elution using a mobile phase composed of acetonitrile:phosphate buffer (pH 6.5). The quantification of SF and DC was based on peak area measurements at 260 nm, while the quantification of LD and SM was achieved at 330 nm. The linearity was acceptable from 1.0 to 20.0 µg/mL for the studied drugs, with correlation coefficients >0.999. The analytical performance of the newly proposed HPLC procedure was thoroughly validated according to ICH guidelines in terms of linearity, precision (RSD%, 0.39-1.57), accuracy (98.05-101.90%), specificity, limit of detection (LOD) (0.022-0.039 µg/mL), limit of quantification (LOQ) (0.067-0.118 µg/mL), and robustness. The validated HPLC method was successfully used to analyze the abovementioned drugs in their pure and dosage forms without interference from common excipients present in commercial formulations.


Assuntos
Antivirais/química , Benzimidazóis/química , Cromatografia de Fase Reversa/métodos , Fluorenos/química , Hepatite C Crônica/virologia , Simeprevir/química , Sofosbuvir/química , Cromatografia Líquida de Alta Pressão , Limite de Detecção , Temperatura
6.
Bioorg Med Chem Lett ; 29(16): 2415-2427, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31230974

RESUMO

Direct-acting antiviral inhibitors have revolutionized the treatment of hepatitis C virus (HCV) infected patients. Herein is described the discovery of velpatasvir (VEL, GS-5816), a potent pan-genotypic HCV NS5A inhibitor that is a component of the only approved pan-genotypic single-tablet regimens (STRs) for the cure of HCV infection. VEL combined with sofosbuvir (SOF) is Epclusa®, an STR with 98% cure-rates for genotype 1-6 HCV infected patients. Addition of the pan-genotypic HCV NS3/4A protease inhibitor voxilaprevir to SOF/VEL is the STR Vosevi®, which affords 97% cure-rates for genotype 1-6 HCV patients who have previously failed another treatment regimen.


Assuntos
Antivirais/farmacologia , Carbamatos/farmacologia , Descoberta de Drogas , Hepacivirus/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/síntese química , Antivirais/química , Carbamatos/síntese química , Carbamatos/química , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Genótipo , Hepacivirus/genética , Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Humanos , Compostos Macrocíclicos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Sofosbuvir/química , Relação Estrutura-Atividade , Sulfonamidas/química , Comprimidos/química , Comprimidos/farmacologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
7.
Bioorg Med Chem Lett ; 29(16): 2428-2436, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31133531

RESUMO

Treatment of hepatitis C virus (HCV) infection has been historically challenging due the high viral genetic complexity wherein there are eight distinct genotypes and at least 86 viral subtypes. While HCV NS3/4A protease inhibitors are an established treatment option for genotype 1 infection, limited coverage of genotypes 2 and/or 3 combined with serum alanine transaminase (ALT) elevations for some compounds has limited the broad utility of this therapeutic class. Our discovery efforts were focused on identifying an NS3/4A protease inhibitor with pan-genotypic antiviral activity, improved coverage of resistance associated substitutions, and a decreased risk of hepatotoxicity. Towards this goal, distinct interactions with the conserved catalytic triad of the NS3/4A protease were identified that improved genotype 3 antiviral activity. We further discovered that protein adduct formation strongly correlated with clinical ALT elevation for this therapeutic class. Improving metabolic stability and decreasing protein adduct formation through structural modifications ultimately resulted in voxilaprevir. Voxilaprevir, in combination with sofosbuvir and velpatasvir, has demonstrated pan-genotypic antiviral clinical activity. Furthermore, hepatotoxicity was not observed in Phase 3 clinical trials with voxilaprevir, consistent with our design strategy. Vosevi® (sofosbuvir, velpatasvir, and voxilaprevir) is now an approved pan-genotypic treatment option for the most difficult-to-cure individuals who have previously failed direct acting antiviral therapy.


Assuntos
Antivirais/farmacologia , Carbamatos/química , Descoberta de Drogas , Hepacivirus/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Inibidores de Proteases/farmacologia , Sofosbuvir/química , Sulfonamidas/química , Sulfonamidas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Ácidos Aminoisobutíricos , Antivirais/síntese química , Antivirais/química , Ciclopropanos , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Hepacivirus/genética , Humanos , Lactamas Macrocíclicas , Leucina/análogos & derivados , Compostos Macrocíclicos/síntese química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Prolina/análogos & derivados , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Quinoxalinas , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
8.
J Labelled Comp Radiopharm ; 62(5): 215-229, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30827031

RESUMO

A series of deuterated sofosbuvir analogs were designed and prepared with the aim of improving their pharmacokinetic properties. The devised synthetic routes allow for site-selective deuterium incorporation with high levels of isotopic purity. As expected, the deuterated analogs (37-44) are as efficacious as sofosbuvir when tested in vitro inhibition of viral replication (replicon) assays. Compared with sofosbuvir, deuterated analog 40 displays improved in vivo pharmacokinetics profiles in rats and dogs in terms of the metabolite and the prodrug. The Cmax and area under the curve (AUC) of 40 in dogs were increased by 3.4- and 2.7-fold, respectively. Due to the enhanced pharmacokinetic properties and the great synthetic advantage of an inexpensive deuterium source (D2 O) for 40, it was chosen for further investigation.


Assuntos
Deutério/química , Sofosbuvir/síntese química , Sofosbuvir/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Linhagem Celular , Técnicas de Química Sintética , Cães , Humanos , Fígado/metabolismo , Masculino , Ratos , Sofosbuvir/química , Sofosbuvir/farmacocinética
9.
Drug Dev Ind Pharm ; 45(7): 1111-1119, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30929537

RESUMO

This study describes a simple, sensitive, specific and generic HPLC-DAD method for simultaneous determination of four drugs prescribed for treatment of Hepatitis C Virus (HCV) infection. Investigated drugs include daclatasvir (DAC), ledipasvir (LED), sofosbuvir (SOF) and ribavirin (RIB). Successful separation was accomplished using Thermohypersil BDS-C8 column (4.6 × 250 mm, 5 µm) with gradient elution of the mobile phase consisted of mixed phosphate buffer pH 7.5 and methanol. Gradient elution started with 25% methanol, ramped up linearly to 80% in 15 min then kept constant till the end of the run. Flow rate was 1.5 mL/min. Peak areas were measured at 235, 260, 315, and 332 nm for RIB, SOF, DAC, and LED, respectively. Peaks of the analytes were perfectly resolved with retention times 2.0, 12.1, 14.7, and 17.2 min for RIB, SOF, DAC, and LED, respectively. The developed method was validated according to ICH guidelines with respect to system suitability, linearity, ranges, accuracy, precision, specificity, robustness, and limits of detection and quantification. The proposed method showed good linearity in the ranges 5-500, 2-300, 0.5-75, and 0.5-75 µg/mL for RIB, SOF, DAC, and LED respectively. Limits of detection were 0.10-0.66 µg/mL for the analyzed drugs. Specificity was established by separation of target drugs from 7 process-related impurities for SOF including its major metabolite (GS-331007). Applicability of the proposed method to real life situations was assessed through the analysis of four different pharmaceutical formulations and satisfactory results were obtained. Additionally, dissolution profiles of the 4 drugs were studied using the developed method.


Assuntos
Antivirais/análise , Antivirais/química , Benzimidazóis/química , Cromatografia Líquida de Alta Pressão/métodos , Fluorenos/química , Imidazóis/química , Ribavirina/química , Sofosbuvir/química , Carbamatos , Limite de Detecção , Pirrolidinas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Solubilidade/efeitos dos fármacos , Valina/análogos & derivados
10.
Molecules ; 24(7)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987096

RESUMO

A simple, fast and highly sensitive RP-UPLC-MS/MS method was developed and validated for the simultaneous determination of sofosbuvir (SR) and its metabolite GS331007 in human plasma using ketotifen as an internal standard (IS). The separation was achieved on Acquity UPLC BEH C18 (50 × 2.1 mm, i.d. 1.7 µm, Waters, USA) column using acetonitrile:5 mM ammonium formate:0.1% formic acid (85:15:0.1% v/v/v) as a mobile phase at a flow rate of 0.35 mL/min in an isocratic elution. The Xevo TQD UPLC-MS/MS was operated under the multiple-reaction monitoring mode using positive electrospray ionization. Extraction with dichloromethane was used in the sample preparation. Method validation was performed as per the Food and Drug Administration (FDA) guidelines and the calibration curves of the proposed method were found to be linear in the range of 1-1000 ng/mL for SR and in the range of 10-1500 ng/mL for its metabolite (GS331007) with an elution time of 1.83 min. All validation parameters were within the acceptable range according to the bioanalytical methods validation guidelines. Furthermore, the obtained results of matrix effects indicate that ion suppression or enhancement from human plasma components was negligible under the optimized conditions. The proposed method can be applied in high-throughput analysis required for pharmacokinetic and bioequivalence studies in human samples.


Assuntos
Cromatografia Líquida de Alta Pressão , Metabolômica , Sofosbuvir/farmacocinética , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Estabilidade de Medicamentos , Humanos , Metabolômica/métodos , Metabolômica/normas , Estrutura Molecular , Reprodutibilidade dos Testes , Sofosbuvir/química
11.
Pak J Pharm Sci ; 32(4(Supplementary)): 1835-1842, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31680080

RESUMO

A simple, specific, sensitive, robust, accurate and precise reverse-phase high performance liquid chromatographic (RP-HPLC) method was developed and validated for simultaneous determination of sofosbuvir (SOF) and velpatasvir (VLP) in fixed dose combination tablets and plasma. Validation parameters, such as system suitability, accuracy, inter-day and intra-day variances, specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), robustness and stability were assessed following the standards set by the International Conference on Harmonization (ICH). The isocratic elution of SOF and VLP was carried out under ambient conditions using ammonium acetate buffer (pH = 7.0), acetonitrile and methanol (20:40:40, v/v/v) as mobile phase flowing through a Promosil C18 column at a flow rate of 1.0 mL/min. The average retention time of SOF and VLP was 3.72 min and 7.09 min, respectively. The LOD and LOQ of SOF were 0.23µg/mL and 2.48µg/mL, respectively; while those of VLP were 0.70µg/mL and 7.52µg/mL, respectively. The regression coefficient (r2) was 0.998. The relative standard deviation (RSD) was less than 2% for precision. The recovery of both the analytes remained within 100±1%. All other validation parameters complied with ICH guidelines. The analytes remained stable throughout the analytical procedure. Moreover, this method was successfully applied to assess the in vitro dissolution of SOF and VLP loaded fixed dose combination tablets. Same method with same mobile phase was applied on rat plasma and there was no interference.


Assuntos
Carbamatos/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Compostos Heterocíclicos de 4 ou mais Anéis/química , Plasma/química , Sofosbuvir/química , Comprimidos/análise , Animais , Estabilidade de Medicamentos , Limite de Detecção , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem
12.
Biomed Chromatogr ; 32(6): e4186, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29314090

RESUMO

A simple and highly sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) bioanalytical method was developed and fully validated for the first time for the simultaneous determination of newly discovered antiviral drugs, namely sofosbuvir (SOF) and daclatasvir (DAC) in human plasma. Tadalafil (TAD) was used as internal standard (IS). SOF, DAC and TAD (IS) were extracted from plasma using liquid-liquid extraction technique with methyl tert-butyl ether. The chromatographic separation was carried out using ZorbaxSB-C18 column (4.6 × 50 mm,5 µm) and 5 mm ammonium formate buffer (pH 3.5)-acetonitrile (50:50, v/v) as mobile phase in an isocratic elution mode pumped at a flow rate 0.7 mL min-1 . The quantitation was performed on API4500 triple quadrupole tandem mass spectrometer with positive electrospray ionization interface in multiple reaction monitoring mode. Validation was applied according to US Food and Drug Administration guidelines for bio-analytical methodswith respect to linearity, precision, accuracy, selectivity, carry-over, stability and dilution integrity. Linearity was obtained over concentration ranges of 0.3-3000 and 3-3000 ng mL-1 for SOF and DAC, respectively, by applying a weighted least-squares linear regression method (1/x2 ). The proposed method could be applied successfully in bioequivalence and/or clinical studies for therapeutic drug monitoring of patients undergoing dual combination therapy as the latter combination proved more efficacious and powerful tool for the complete treatment of hepatitis C genotype 3 within 16 weeks. The suggested method has been applied successfully to pharmacokinetic studies with excellent assay ruggedness and reproducibility.


Assuntos
Cromatografia Líquida/métodos , Imidazóis/sangue , Sofosbuvir/sangue , Espectrometria de Massas em Tandem/métodos , Carbamatos , Estabilidade de Medicamentos , Humanos , Imidazóis/química , Imidazóis/farmacocinética , Modelos Lineares , Masculino , Pirrolidinas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Sofosbuvir/química , Sofosbuvir/farmacocinética , Valina/análogos & derivados
13.
Luminescence ; 33(7): 1249-1256, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30144265

RESUMO

Velpatasvir (VLP) is a new, oral, direct-acting antiviral with potent inhibitory activity against all hepatitis C virus (HCV) genotypes. A highly sensitive, simple, fast and specific one fluorometric method for determination of VLP in the presence of sofosbuvir was developed and validated. The fluorescence behavior of VLP in different organic solvents was examined and explained. Methanol was concluded to be the best sensitizing reagent. The native fluorescence intensity of VLP was accomplished at 383 nm with 339 nm for excitation wavelength. The impacts of experimental variables included pH, various organized media, and time of stability were examined and optimized. A linear relationship was achieved between the VLP concentration and the fluorescence intensity in a range of 5 to 5 × 103 ng mL-1 with 0.70 and 0.23 ng mL-1 , for quantitation and detection limits respectively. The proposed method was utilized for analyzing of VLP in human plasma and additionally expanded to examine the stability of VLP after its exposure to various stress conditions, like oxidative, alkaline, acidic, UV, daylight and sunlight conditions, according to ICH guidelines. Furthermore, the kinetics of acidic and oxidative degradations of VLP was examined. Moreover, the half-life times of the reaction (t1/2 ) and the first-order reaction rate constants were estimated. Finally, a suggestion for the degradation pathway was presented.


Assuntos
Antivirais/química , Carbamatos/química , Fluorometria/métodos , Compostos Heterocíclicos de 4 ou mais Anéis/química , Sofosbuvir/química , Antivirais/sangue , Carbamatos/sangue , Estabilidade de Medicamentos , Fluorescência , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Hepatite C/virologia , Compostos Heterocíclicos de 4 ou mais Anéis/sangue , Humanos , Limite de Detecção , Sofosbuvir/sangue
14.
Antimicrob Agents Chemother ; 60(4): 2018-27, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26824949

RESUMO

The hepatitis C virus (HCV) RNA-dependent RNA-polymerase NS5B is essentially required for viral replication and serves as a prominent drug target. Sofosbuvir is a prodrug of a nucleotide analog that interacts selectively with NS5B and has been approved for HCV treatment in combination with ribavirin. Although the emergence of resistance to sofosbuvir is rarely seen in the clinic, the S282T mutation was shown to decrease susceptibility to this drug. S282T was also shown to confer hypersusceptibility to ribavirin, which is of potential clinical benefit. Here we devised a biochemical approach to elucidate the underlying mechanisms. Recent crystallographic data revealed a hydrogen bond between S282 and the 2'-hydroxyl of the bound nucleotide, while the adjacent G283 forms a hydrogen bond with the 2'-hydroxyl of the residue of the template that base pairs with the nucleotide substrate. We show that DNA-like modifications of the template that disrupt hydrogen bonding with G283 cause enzyme pausing with natural nucleotides. However, the specifically introduced DNA residue of the template reestablishes binding and incorporation of sofosbuvir in the context of S282T. Moreover, the DNA-like modifications of the template prevent the incorporation of ribavirin in the context of the wild-type enzyme, whereas the S282T mutant enables the binding and incorporation of ribavirin under the same conditions. Together, these findings provide strong evidence to show that susceptibility to sofosbuvir and ribavirin depends crucially on a network of interdependent hydrogen bonds that involve the adjacent residues S282 and G283 and their interactions with the incoming nucleotide and complementary template residue, respectively.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , RNA Viral/antagonistas & inibidores , Ribavirina/farmacologia , Sofosbuvir/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/química , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Hepacivirus/química , Hepacivirus/metabolismo , Ligação de Hidrogênio , Testes de Sensibilidade Microbiana , Mutação , Ligação Proteica , RNA Viral/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribavirina/química , Sofosbuvir/química , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124478, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38788502

RESUMO

X-ray diffraction is a commonly used technique in the pharmaceutical industry for the determination of the atomic and molecular structure of crystals. However, it is costly, sometimes time-consuming, and it requires a considerable degree of expertise. Vibrational circular dichroism (VCD) spectroscopy resolves these limitations, while also exhibiting substantial sensitivity to subtle modifications in the conformation and molecular packaging in the solid state. This study showcases VCD's ability to differentiate between various crystal structures of the same molecule (polymorphs, cocrystals). We examined the most effective approach for producing high-quality spectra and unveiled the intricate link between structure and spectrum via quantum-chemical computations. We rigorously assessed, using alanine as a model compound, multiple experimental conditions on the resulting VCD spectra, with the aim of proposing an optimal and efficient procedure. The proposed approach, which yields reliable, reproducible, and artifact-free results with maximal signal-to-noise ratio, was then validated using a set comprising of three amino acids (serine, alanine, tyrosine), one hydroxy acid (tartaric acid), and a monosaccharide (ribose) to mimic active pharmaceutical components. Finally, the optimized approach was applied to distinguish three polymorphs of the antiviral drug sofosbuvir and its cocrystal with piperazine. Our results indicate that solid-state VCD is a prompt, cost-effective, and easy-to-use technique to identify crystal structures, demonstrating potential for application in pharmaceuticals. We also adapted the cluster and transfer approach to calculate the spectral properties of molecules in a periodic crystal environment. Our findings demonstrate that this approach reliably produces solid-state VCD spectra of model compounds. Although for large molecules with many atoms per unit cell, such as sofosbuvir, this approach has to be simplified and provides only a qualitative match, spectral calculations, and energy analysis helped us to decipher the observed differences in the experimental spectra of sofosbuvir.


Assuntos
Dicroísmo Circular , Cristalização , Sofosbuvir , Sofosbuvir/química , Vibração , Modelos Moleculares , Antivirais/química
16.
J Pharm Biomed Anal ; 248: 116300, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38924879

RESUMO

The present work describes a developed analytical method based on a colorimetric assay using gold nanoparticles (AuNPs) along with chemometric techniques for the simultaneous estimation of sofosbuvir (SOF) and ledipasvir (LED) in their synthetic mixtures and tablet dosage form. The applied chemometric approaches were continuous wavelet transform (CWT) and least squares support vector machine (LS-SVM). Characterization of AuNPs and AuNPs in combination with the drug was performed by UV-vis spectrophotometer, transmission electron microscopy (TEM), dynamic light scattering (DLS), and Fourier transform infrared (FTIR) spectroscopy. In the CWT method, the zero amplitudes were determined at 427 nm with Daubechies wavelet family for SOF (zero crossing point of LED) and 440 nm with Symlet wavelet family for LED (zero crossing point of SOF) over the concentration range of 7.5-90.0 µg/L and 40.0-100.0 µg/L with coefficients of determination (R2) of 0.9974 and 0.9907 for SOF and LED, respectively. The limit of detection (LOD) and limit of quantification (LOQ) of this method were found to be 7.92, 9.96 µg/L and 12.02, 30.2 µg/L for SOF and LED, respectively. In the LS-SVM model, the mean percentage recovery of SOF and LED in synthetic mixtures was 98.29 % and 99.25 % with root mean square error of 2.392 and 1.034, which were obtained by the optimization of regularization parameter (γ) and width of the function (σ) based on the cross-validation method. The proposed methods were also applied for the determination concentration of SOF and LED in the combined dosage form, recoveries were higher than 95 %, and relative standard deviation (RSD) values were lower than 0.4 %. The achieved results were statistically compared with those obtained from the high-performance liquid chromatography (HPLC) technique for the concurrent estimation of components through one-way analysis of variance (ANOVA), and no significant difference was found between the suggested approaches and the reference one. According to these results, simplicity, high speed, lack of time-consuming process, and cost savings are considerable benefits of colorimetry along with chemometrics methods compared to other ways.


Assuntos
Antivirais , Benzimidazóis , Colorimetria , Fluorenos , Ouro , Nanopartículas Metálicas , Sofosbuvir , Ressonância de Plasmônio de Superfície , Nanopartículas Metálicas/química , Ouro/química , Colorimetria/métodos , Antivirais/análise , Antivirais/química , Cromatografia Líquida de Alta Pressão/métodos , Sofosbuvir/análise , Sofosbuvir/química , Benzimidazóis/análise , Benzimidazóis/química , Fluorenos/análise , Fluorenos/química , Ressonância de Plasmônio de Superfície/métodos , Limite de Detecção , Comprimidos , Máquina de Vetores de Suporte , Quimiometria/métodos , Combinação de Medicamentos , Análise dos Mínimos Quadrados , Reprodutibilidade dos Testes , Hepacivirus/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
17.
Sci Rep ; 13(1): 23080, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38155165

RESUMO

The human coronavirus, SARS-CoV-2, had a negative impact on both the economy and human health, and the emerging resistant variants are an ongoing threat. One essential protein to target to prevent virus replication is the viral RNA-dependent RNA polymerase (RdRp). Sofosbuvir, a uridine nucleotide analog that potently inhibits viral polymerase, has been found to help treat SARS-CoV-2 patients. This work combines molecular docking and dynamics simulation (MDS) to test 14 sofosbuvir-based modifications against SARS-CoV-2 RdRp. The results reveal comparable (slightly better) average binding affinity of five modifications (compounds 3, 4, 11, 12, and 14) to the parent molecule, sofosbuvir. Compounds 3 and 4 show the best average binding affinities against SARS-CoV-2 RdRp (- 16.28 ± 5.69 and - 16.25 ± 5.78 kcal/mol average binding energy compared to - 16.20 ± 6.35 kcal/mol for sofosbuvir) calculated by Molecular Mechanics Generalized Born Surface Area (MM-GBSA) after MDS. The present study proposes compounds 3 and 4 as potential SARS-CoV-2 RdRp blockers, although this has yet to be proven experimentally.


Assuntos
COVID-19 , Sofosbuvir , Humanos , Sofosbuvir/farmacologia , Sofosbuvir/química , SARS-CoV-2/genética , Antivirais/química , RNA Viral , Simulação de Acoplamento Molecular , RNA Polimerase Dependente de RNA/genética , Simulação de Dinâmica Molecular
18.
Int J Biol Macromol ; 190: 927-939, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34480910

RESUMO

The incorporation between nano-polyvinyl alcohol (PVA) and nano-chitosan (Cs) to produce sandwich nanohybrid (SNH) for water treatment and improvement the adsorption of sofosbuvir drug (SOF). The photocatalytic activity and formation of reactive oxygen species (ROS) were detected with oxidation of organic dyes such as Rhodamine B (RhB), methylene blue (MB), and methyl orange (MO). The effect of SNH on the release of SOF in blood and inside the cells at pH 7.4 and pH 6.8, respectively were observed by UV-Visible spectroscopy (UV-Vis). The binding constant (Kb) was reported at 0.0035 min-1 and the loading constant at 0.0024 min-1, while the release efficiency was 42.6% at pH 7.4 and 74.7% at pH 6.8. The efficiency of photocatalytic activity against organic dyes MO, MB, and RhB are detected at 2.4% and 1%, and 42%, respectively. The cytotoxicity of SNH has been observed with MDA-MB-231 and HepG2 cell line with three concentrations of SNH, where the little concentration has low effect on the HepG2 and high viability, this result was reversed with the high concentration, also the yellow color due to the lysis of the cells. The antioxidant of the SNH was detected by FRAP technique.


Assuntos
Quitosana/química , Sistemas de Liberação de Medicamentos , Hepacivirus/fisiologia , Nanopartículas/química , Álcool de Polivinil/química , Sofosbuvir/farmacologia , Água/química , Antioxidantes/farmacologia , Calibragem , Catálise , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Hepacivirus/efeitos dos fármacos , Humanos , Fenômenos Ópticos , Rodaminas/química , Sofosbuvir/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática
19.
J Chromatogr Sci ; 57(10): 910-919, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31644804

RESUMO

A new ultra-high-performance liquid chromatography method for the simultaneous quantification of sofosbuvir, daclatasvir and ledipasvir was developed. Two combinations of these direct-acting antivirals are used in hepatitis C virus infection therapy and show high efficacy and safety. Fractional factorial design was used for screening the most influential factors on separation and time analysis. These significant factors were optimized using a central composite design. The optimum resolution was carried out by using a Waters XBridge C18 column (150 mm, 4.6 mm ID, 5 µm) at a temperature of 35°C ± 2°C and acetonitrile/sodium perchlorate buffer (10 mM, pH = 3.2) (40: 60 v/v) as mobile phase at a flow rate of 1.5 mL min-1. UV detection was set at λ = 210 nm. A short chromatographic separation time was achieved. The developed method was validated according to the accuracy profile approach and was found specific, precise, faithful and accurate. The detection limits were between 0.07 and 0.13 µg mL-1. Hence, this novel method can be employed for the routine quality control analysis and in dissolution profile studies of generics containing these products.


Assuntos
Benzimidazóis/análise , Cromatografia Líquida de Alta Pressão/métodos , Fluorenos/análise , Imidazóis/análise , Sofosbuvir/análise , Benzimidazóis/química , Carbamatos , Fluorenos/química , Imidazóis/química , Limite de Detecção , Modelos Lineares , Pirrolidinas , Reprodutibilidade dos Testes , Sofosbuvir/química , Comprimidos , Valina/análogos & derivados
20.
Drug Metab Pharmacokinet ; 35(3): 334-340, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32345577

RESUMO

Sofosbuvir (SOF) is a nucleotide prodrug which has been used as a backbone for the clinical treatment of hepatitis C viral infection. Because sofosbuvir undergoes complex first pass metabolism, including metabolic activation to form its pharmacologically active triphosphate (GS-331007-TP) to inhibit the viral RNA polymerase in the liver, it is difficult to project the human dose for clinical evaluation based on preclinical data. Selecting an appropriate animal model for drug exposure in the target tissue is challenging due to differences in absorption, stability, hepatic uptake, and intracellular activation across species. Efficient liver delivery has been established in human liver following administration in a clinical trial of patients receiving sofosbuvir prior to liver transplantation. Using the clinical liver exposure as a benchmark, we assessed and compared the pharmacokinetic profile in mouse, rat, hamster, dog and monkey. Liver accumulation was also assessed in the PXB mouse model in which the liver is mostly populated with human hepatocytes. At human equivalent dose, the hepatic concentrations of GS-331007-TP in dog and PXB mouse were comparable to those observed in the human livers. In these species, high and sustained levels of GS-331007-TP were observed in both primary hepatocytes in vitro and the liver in vivo.


Assuntos
Fígado/química , Fígado/metabolismo , Pró-Fármacos/metabolismo , Sofosbuvir/metabolismo , Animais , Cães , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Conformação Molecular , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Ratos , Ratos Sprague-Dawley , Sofosbuvir/química , Sofosbuvir/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA