Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 464
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Cell ; 153(3): 614-27, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23622245

RESUMO

Protein degradation by the ubiquitin-proteasome system is central to cell homeostasis and survival. Defects in this process are associated with diseases such as cancer and neurodegenerative disorders. The 26S proteasome is a large protease complex that degrades ubiquitinated proteins. Here, we show that ADP-ribosylation promotes 26S proteasome activity in both Drosophila and human cells. We identify the ADP-ribosyltransferase tankyrase (TNKS) and the 19S assembly chaperones dp27 and dS5b as direct binding partners of the proteasome regulator PI31. TNKS-mediated ADP-ribosylation of PI31 drastically reduces its affinity for 20S proteasome α subunits to relieve 20S repression by PI31. Additionally, PI31 modification increases binding to and sequestration of dp27 and dS5b from 19S regulatory particles, promoting 26S assembly. Inhibition of TNKS by either RNAi or a small-molecule inhibitor, XAV939, blocks this process to reduce 26S assembly. These results unravel a mechanism of proteasome regulation that can be targeted with existing small-molecule inhibitors.


Assuntos
Drosophila melanogaster/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Tanquirases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Células HEK293 , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência
2.
Nature ; 612(7938): 162-169, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36418402

RESUMO

The poly-ADP-ribosyltransferase tankyrase (TNKS, TNKS2) controls a wide range of disease-relevant cellular processes, including WNT-ß-catenin signalling, telomere length maintenance, Hippo signalling, DNA damage repair and glucose homeostasis1,2. This has incentivized the development of tankyrase inhibitors. Notwithstanding, our knowledge of the mechanisms that control tankyrase activity has remained limited. Both catalytic and non-catalytic functions of tankyrase depend on its filamentous polymerization3-5. Here we report the cryo-electron microscopy reconstruction of a filament formed by a minimal active unit of tankyrase, comprising the polymerizing sterile alpha motif (SAM) domain and its adjacent catalytic domain. The SAM domain forms a novel antiparallel double helix, positioning the protruding catalytic domains for recurring head-to-head and tail-to-tail interactions. The head interactions are highly conserved among tankyrases and induce an allosteric switch in the active site within the catalytic domain to promote catalysis. Although the tail interactions have a limited effect on catalysis, they are essential to tankyrase function in WNT-ß-catenin signalling. This work reveals a novel SAM domain polymerization mode, illustrates how supramolecular assembly controls catalytic and non-catalytic functions, provides important structural insights into the regulation of a non-DNA-dependent poly-ADP-ribosyltransferase and will guide future efforts to modulate tankyrase and decipher its contribution to disease mechanisms.


Assuntos
Biocatálise , Microscopia Crioeletrônica , Polimerização , Tanquirases , beta Catenina , Tanquirases/química , Tanquirases/metabolismo , Tanquirases/ultraestrutura , Ativação Enzimática , Domínio Catalítico , Via de Sinalização Wnt , Motivos de Aminoácidos
3.
Genes Dev ; 33(5-6): 276-281, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30804226

RESUMO

Formation of individualized sister chromatids is essential for their accurate segregation. In budding yeast, while most of the genome segregates at the metaphase to anaphase transition, resolution of the ribosomal DNA (rDNA) repeats is delayed. The timing and mechanism in human cells is unknown. Here we show that resolution of human rDNA occurs in anaphase after the bulk of the genome, dependent on tankyrase 1, condensin II, and topoisomerase IIα. Defective resolution leads to rDNA bridges, rDNA damage, and aneuploidy of an rDNA-containing acrocentric chromosome. Thus, temporal regulation of rDNA segregation is conserved between yeast and man and is essential for genome integrity.


Assuntos
Adenosina Trifosfatases/metabolismo , Anáfase/fisiologia , DNA Topoisomerases Tipo II/metabolismo , DNA Ribossômico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Tanquirases/metabolismo , Aneuploidia , Segregação de Cromossomos , Dano ao DNA/genética , DNA Ribossômico/genética , Humanos , Saccharomyces cerevisiae/genética
4.
Am J Hum Genet ; 110(9): 1470-1481, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37582359

RESUMO

Sclerosing skeletal dysplasias result from an imbalance between bone formation and resorption. We identified three homozygous, C-terminally truncating AXIN1 variants in seven individuals from four families affected by macrocephaly, cranial hyperostosis, and vertebral endplate sclerosis. Other frequent findings included hip dysplasia, heart malformations, variable developmental delay, and hematological anomalies. In line with AXIN1 being a central component of the ß-catenin destruction complex, analyses of primary and genome-edited cells harboring the truncating variants revealed enhanced basal canonical Wnt pathway activity. All three AXIN1-truncating variants resulted in reduced protein levels and impaired AXIN1 polymerization mediated by its C-terminal DIX domain but partially retained Wnt-inhibitory function upon overexpression. Addition of a tankyrase inhibitor attenuated Wnt overactivity in the AXIN1-mutant model systems. Our data suggest that AXIN1 coordinates the action of osteoblasts and osteoclasts and that tankyrase inhibitors can attenuate the effects of AXIN1 hypomorphic variants.


Assuntos
Luxação do Quadril , Osteosclerose , Tanquirases , Humanos , Tanquirases/genética , Tanquirases/metabolismo , Proteína Axina/genética , Proteína Axina/metabolismo , Via de Sinalização Wnt/genética , Osteosclerose/genética , beta Catenina/metabolismo
5.
Cell ; 147(6): 1340-54, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22153077

RESUMO

The poly(ADP-ribose)polymerases Tankyrase 1/2 (TNKS/TNKS2) catalyze the covalent linkage of ADP-ribose polymer chains onto target proteins, regulating their ubiquitylation, stability, and function. Dysregulation of substrate recognition by Tankyrases underlies the human disease cherubism. Tankyrases recruit specific motifs (often called RxxPDG "hexapeptides") in their substrates via an N-terminal region of ankyrin repeats. These ankyrin repeats form five domains termed ankyrin repeat clusters (ARCs), each predicted to bind substrate. Here we report crystal structures of a representative ARC of TNKS2 bound to targeting peptides from six substrates. Using a solution-based peptide library screen, we derive a rule-based consensus for Tankyrase substrates common to four functionally conserved ARCs. This 8-residue consensus allows us to rationalize all known Tankyrase substrates and explains the basis for cherubism-causing mutations in the Tankyrase substrate 3BP2. Structural and sequence information allows us to also predict and validate other Tankyrase targets, including Disc1, Striatin, Fat4, RAD54, BCR, and MERIT40.


Assuntos
Querubismo/metabolismo , Tanquirases/química , Tanquirases/metabolismo , Sequência de Aminoácidos , Animais , Repetição de Anquirina , Cristalografia por Raios X , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência
6.
Cell ; 147(6): 1324-39, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22153076

RESUMO

Cherubism is an autosomal-dominant syndrome characterized by inflammatory destructive bony lesions resulting in symmetrical deformities of the facial bones. Cherubism is caused by mutations in Sh3bp2, the gene that encodes the adaptor protein 3BP2. Most identified mutations in 3BP2 lie within the peptide sequence RSPPDG. A mouse model of cherubism develops hyperactive bone-remodeling osteoclasts and systemic inflammation characterized by expansion of the myelomonocytic lineage. The mechanism by which cherubism mutations alter 3BP2 function has remained obscure. Here we show that Tankyrase, a member of the poly(ADP-ribose)polymerase (PARP) family, regulates 3BP2 stability through ADP-ribosylation and subsequent ubiquitylation by the E3-ubiquitin ligase RNF146 in osteoclasts. Cherubism mutations uncouple 3BP2 from Tankyrase-mediated protein destruction, which results in its stabilization and subsequent hyperactivation of the SRC, SYK, and VAV signaling pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Querubismo/metabolismo , Transdução de Sinais , Tanquirases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Querubismo/genética , Modelos Animais de Doenças , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/metabolismo , Osteoclastos/metabolismo , Estabilidade Proteica , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Deleção de Sequência , Quinase Syk , Tanquirases/genética , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitinação
7.
Nucleic Acids Res ; 52(7): 4002-4020, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38321934

RESUMO

Poly(ADP-ribosylation) (PARylation) is a post-translational modification mediated by a subset of ADP-ribosyl transferases (ARTs). Although PARylation-inhibition based therapies are considered as an avenue to combat debilitating diseases such as cancer and myopathies, the role of this modification in physiological processes such as cell differentiation remains unclear. Here, we show that Tankyrase1 (TNKS1), a PARylating ART, plays a major role in myogenesis, a vital process known to drive muscle fiber formation and regeneration. Although all bona fide PARPs are expressed in muscle cells, experiments using siRNA-mediated knockdown or pharmacological inhibition show that TNKS1 is the enzyme responsible of catalyzing PARylation during myogenesis. Via this activity, TNKS1 controls the turnover of mRNAs encoding myogenic regulatory factors such as nucleophosmin (NPM) and myogenin. TNKS1 mediates these effects by targeting RNA-binding proteins such as Human Antigen R (HuR). HuR harbors a conserved TNKS-binding motif (TBM), the mutation of which not only prevents the association of HuR with TNKS1 and its PARylation, but also precludes HuR from regulating the turnover of NPM and myogenin mRNAs as well as from promoting myogenesis. Therefore, our data uncover a new role for TNKS1 as a key modulator of RBP-mediated post-transcriptional events required for vital processes such as myogenesis.


Assuntos
Desenvolvimento Muscular , Fibras Musculares Esqueléticas , Miogenina , RNA Mensageiro , Tanquirases , Tanquirases/metabolismo , Tanquirases/genética , Humanos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Desenvolvimento Muscular/genética , Animais , Fibras Musculares Esqueléticas/metabolismo , Camundongos , Miogenina/genética , Miogenina/metabolismo , Nucleofosmina , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Estabilidade de RNA/genética , Poli ADP Ribosilação/genética , Linhagem Celular , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Diferenciação Celular/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Células HEK293
8.
J Cell Sci ; 136(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37721093

RESUMO

Axin (also known as AXIN1) is a central negative regulator of the proto-oncogenic Wnt/ß-catenin signaling pathway, as axin condensates provide a scaffold for the assembly of a multiprotein complex degrading ß-catenin. Axin, in turn, is degraded through tankyrase. Consequently, tankyrase small-molecule inhibitors block Wnt signaling by stabilizing axin, revealing potential for cancer therapy. Here, we discovered that axin is phosphorylated by casein kinase 1 alpha 1 (CSNK1A1, also known as CK1α) at an N-terminal casein kinase 1 consensus motif, and that this phosphorylation is antagonized by the catalytic subunit alpha of protein phosphatase 1 (PPP1CA, hereafter referred to as PP1). Axin condensates promoted phosphorylation by enriching CK1α over PP1. Importantly, the phosphorylation took place within the tankyrase-binding site, electrostatically and/or sterically hindering axin-tankyrase interaction, and counteracting tankyrase-mediated degradation of axin. Thus, the presented data propose a novel mechanism regulating axin stability, with implications for Wnt signaling, cancer therapy and self-organization of biomolecular condensates.


Assuntos
Neoplasias , Tanquirases , Humanos , Proteína Axina/metabolismo , Fosforilação , Tanquirases/metabolismo , Condensados Biomoleculares , beta Catenina/metabolismo , Via de Sinalização Wnt
9.
Development ; 149(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36398796

RESUMO

Propagation of human naïve pluripotent stem cells (nPSCs) relies on the inhibition of MEK/ERK signalling. However, MEK/ERK inhibition also promotes differentiation into trophectoderm (TE). Therefore, robust self-renewal requires suppression of TE fate. Tankyrase inhibition using XAV939 has been shown to stabilise human nPSCs and is implicated in TE suppression. Here, we dissect the mechanism of this effect. Tankyrase inhibition is known to block canonical Wnt/ß-catenin signalling. However, we show that nPSCs depleted of ß-catenin remain dependent on XAV939. Rather than inhibiting Wnt, we found that XAV939 prevents TE induction by reducing activation of YAP, a co-factor of TE-inducing TEAD transcription factors. Tankyrase inhibition stabilises angiomotin, which limits nuclear accumulation of YAP. Upon deletion of angiomotin-family members AMOT and AMOTL2, nuclear YAP increases and XAV939 fails to prevent TE induction. Expression of constitutively active YAP similarly precipitates TE differentiation. Conversely, nPSCs lacking YAP1 or its paralog TAZ (WWTR1) resist TE differentiation and self-renewal efficiently without XAV939. These findings explain the distinct requirement for tankyrase inhibition in human but not in mouse nPSCs and highlight the pivotal role of YAP activity in human naïve pluripotency and TE differentiation. This article has an associated 'The people behind the papers' interview.


Assuntos
Angiomotinas , Células-Tronco Pluripotentes , Tanquirases , Proteínas de Sinalização YAP , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , beta Catenina/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Tanquirases/metabolismo , Via de Sinalização Wnt , Células-Tronco Pluripotentes/citologia
10.
Biochem J ; 481(17): 1097-1123, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39178157

RESUMO

ADP-ribosylation is a prominent and versatile post-translational modification, which regulates a diverse set of cellular processes. Poly-ADP-ribose (PAR) is synthesised by the poly-ADP-ribosyltransferases PARP1, PARP2, tankyrase (TNKS), and tankyrase 2 (TNKS2), all of which are linked to human disease. PARP1/2 inhibitors have entered the clinic to target cancers with deficiencies in DNA damage repair. Conversely, tankyrase inhibitors have continued to face obstacles on their way to clinical use, largely owing to our limited knowledge of their molecular impacts on tankyrase and effector pathways, and linked concerns around their tolerability. Whilst detailed structure-function studies have revealed a comprehensive picture of PARP1/2 regulation, our mechanistic understanding of the tankyrases lags behind, and thereby our appreciation of the molecular consequences of tankyrase inhibition. Despite large differences in their architecture and cellular contexts, recent structure-function work has revealed striking parallels in the regulatory principles that govern these enzymes. This includes low basal activity, activation by intra- or inter-molecular assembly, negative feedback regulation by auto-PARylation, and allosteric communication. Here we compare these poly-ADP-ribosyltransferases and point towards emerging parallels and open questions, whose pursuit will inform future drug development efforts.


Assuntos
Poli(ADP-Ribose) Polimerase-1 , Tanquirases , Tanquirases/metabolismo , Tanquirases/antagonistas & inibidores , Tanquirases/genética , Tanquirases/química , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/genética , Animais , Processamento de Proteína Pós-Traducional , Reparo do DNA , ADP-Ribosilação , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli ADP Ribosilação/genética
11.
Proc Natl Acad Sci U S A ; 119(26): e2122805119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35733260

RESUMO

During viral infection, sensing of viral RNA by retinoic acid-inducible gene-I-like receptors (RLRs) initiates an antiviral innate immune response, which is mediated by the mitochondrial adaptor protein VISA (virus-induced signal adaptor; also known as mitochondrial antiviral signaling protein [MAVS]). VISA is regulated by various posttranslational modifications (PTMs), such as polyubiquitination, phosphorylation, O-linked ß-d-N-acetylglucosaminylation (O-GlcNAcylation), and monomethylation. However, whether other forms of PTMs regulate VISA-mediated innate immune signaling remains elusive. Here, we report that Poly(ADP-ribosyl)ation (PARylation) is a PTM of VISA, which attenuates innate immune response to RNA viruses. Using a biochemical purification approach, we identified tankyrase 1 (TNKS1) as a VISA-associated protein. Viral infection led to the induction of TNKS1 and its homolog TNKS2, which translocated from cytosol to mitochondria and interacted with VISA. TNKS1 and TNKS2 catalyze the PARylation of VISA at Glu137 residue, thereby priming it for K48-linked polyubiquitination by the E3 ligase Ring figure protein 146 (RNF146) and subsequent degradation. Consistently, TNKS1, TNKS2, or RNF146 deficiency increased the RNA virus-triggered induction of downstream effector genes and impaired the replication of the virus. Moreover, TNKS1- or TNKS2-deficient mice produced higher levels of type I interferons (IFNs) and proinflammatory cytokines after virus infection and markedly reduced virus loads in the brains and lungs. Together, our findings uncover an essential role of PARylation of VISA in virus-triggered innate immune signaling, which represents a mechanism to avoid excessive harmful immune response.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Imunidade Inata , Infecções por Vírus de RNA , Vírus de RNA , Tanquirases , Ubiquitina-Proteína Ligases , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células HEK293 , Humanos , Imunidade Inata/genética , Camundongos , Infecções por Vírus de RNA/imunologia , Vírus de RNA/imunologia , Tanquirases/genética , Tanquirases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
12.
Genes Dev ; 31(10): 1024-1035, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28619731

RESUMO

Aberrant activation of the Wnt signaling pathway plays an important role in human cancer development. Wnt signaling is negatively regulated by Axin, a scaffolding protein that controls a rate-limiting step in the destruction of ß-catenin, the central activator of the Wnt pathway. In Wnt-stimulated cells, Axin is rapidly modified by tankyrase-mediated poly(ADP-ribosyl)ation, which promotes the proteolysis of Axin and consequent stabilization of ß-catenin. Thus, regulation of the levels and activity of tankyrases is mechanistically important in controlling Wnt signaling. Here, we identify ubiquitin-specific protease 25 (USP25) as a positive regulator of Wnt/ß-catenin signaling. We found that USP25 directly interacted with tankyrases to promote their deubiquitination and stabilization. We demonstrated that USP25 deficiency could promote the degradation of tankyrases and consequent stabilization of Axin to antagonize Wnt signaling. We further characterized the interaction between TNKS1 and USP25 by X-ray crystal structure determination. Our results provide important new insights into the molecular mechanism that regulates the turnover of tankyrases and the possibility of targeting the stability of tankyrases by antagonizing their interaction with USP25 to modulate the Wnt/ß-catenin pathway.


Assuntos
Estabilidade Enzimática/genética , Tanquirases/metabolismo , Ubiquitina Tiolesterase/metabolismo , Via de Sinalização Wnt/fisiologia , Repetição de Anquirina , Proteína Axina/metabolismo , Linhagem Celular , Cristalografia por Raios X , Células HCT116 , Células HEK293 , Humanos , Mutação , Ligação Proteica , Tanquirases/química , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/genética , Via de Sinalização Wnt/genética
13.
Br J Cancer ; 130(1): 151-162, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37968472

RESUMO

BACKGROUND: Aberrant WNT/ß-catenin signaling drives carcinogenesis. Tankyrases poly(ADP-ribosyl)ate and destabilize AXINs, ß-catenin repressors. Tankyrase inhibitors block WNT/ß-catenin signaling and colorectal cancer (CRC) growth. We previously reported that 'short' APC mutations, lacking all seven ß-catenin-binding 20-amino acid repeats (20-AARs), are potential predictive biomarkers for CRC cell sensitivity to tankyrase inhibitors. Meanwhile, 'Long' APC mutations, which possess more than one 20-AAR, do not predict inhibitor-resistant cells. Thus, additional biomarkers are needed to precisely predict the inhibitor sensitivity. METHODS: Using 47 CRC patient-derived cells (PDCs), we examined correlations between the sensitivity to tankyrase inhibitors (G007-LK and RK-582), driver mutations, and the expressions of signaling factors. NOD.CB17-Prkdcscid/J and BALB/c-nu/nu xenograft mice were treated with RK-582. RESULTS: Short APC mutant CRC cells exhibited high/intermediate sensitivities to tankyrase inhibitors in vitro and in vivo. Active ß-catenin levels correlated with inhibitor sensitivity in both short and long APC mutant PDCs. PIK3CA mutations, but not KRAS/BRAF mutations, were more frequent in inhibitor-resistant PDCs. Some wild-type APC PDCs showed inhibitor sensitivity in a ß-catenin-independent manner. CONCLUSIONS: APC/PIK3CA mutations and ß-catenin predict the sensitivity of APC-mutated CRC PDCs to tankyrase inhibitors. These observations may help inform the strategy of patient selection in future clinical trials of tankyrase inhibitors.


Assuntos
Neoplasias Colorretais , Tanquirases , Animais , Camundongos , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Tanquirases/genética , Tanquirases/metabolismo , Linhagem Celular Tumoral , beta Catenina/genética , beta Catenina/metabolismo , Camundongos Endogâmicos NOD , Via de Sinalização Wnt/genética , Biomarcadores , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo
14.
Bioorg Med Chem ; 111: 117843, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39083980

RESUMO

This study reported the design and synthesis of novel 1-amido-2-one-4-thio-deoxypyranose as inhibitors of potential drug target TRIP13 for developing new mechanism-based therapeutic agents in the treatment of multiple myeloma (MM). In comparison with the positive control DCZ0415, the most active compounds C16, C18, C20 and C32 exhibited strong anti-proliferative activity against human MM cell lines (ARP-1 and NCI-H929) with IC50 values of 1 âˆ¼ 2 µM. While the surface plasmon resonance (SPR) and ATPase activity assays demonstrated that the representative compound C20 is a potent inhibitor of TRIP13, C20 also showed good antitumor activity in vivo on BALB/c nude mice xenografted with MM tumor cells. An initial structure-activity study showed that the carbonyl group is crucial for anticancer activity. Overall, this study provided novel 1-amido-2-one-4-thio-deoxypyranoses, which are entirely different from previously reported potent inhibitor structures of TRIP13, and thus would aid the development of carbohydrate-based novel agents in MM pharmacotherapy.


Assuntos
Antineoplásicos , Proliferação de Células , Desenho de Fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mieloma Múltiplo , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Animais , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Mieloma Múltiplo/metabolismo , Relação Estrutura-Atividade , Camundongos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Relação Dose-Resposta a Droga , Tanquirases
15.
Mol Cell ; 63(3): 498-513, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27494558

RESUMO

The poly(ADP-ribose) polymerase (PARP) Tankyrase (TNKS and TNKS2) is paramount to Wnt-ß-catenin signaling and a promising therapeutic target in Wnt-dependent cancers. The pool of active ß-catenin is normally limited by destruction complexes, whose assembly depends on the polymeric master scaffolding protein AXIN. Tankyrase, which poly(ADP-ribosyl)ates and thereby destabilizes AXIN, also can polymerize, but the relevance of these polymers has remained unclear. We report crystal structures of the polymerizing TNKS and TNKS2 sterile alpha motif (SAM) domains, revealing versatile head-to-tail interactions. Biochemical studies informed by these structures demonstrate that polymerization is required for Tankyrase to drive ß-catenin-dependent transcription. We show that the polymeric state supports PARP activity and allows Tankyrase to effectively access destruction complexes through enabling avidity-dependent AXIN binding. This study provides an example for regulated signal transduction in non-membrane-enclosed compartments (signalosomes), and it points to novel potential strategies to inhibit Tankyrase function in oncogenic Wnt signaling.


Assuntos
Motivo Estéril alfa , Tanquirases/metabolismo , Via de Sinalização Wnt , Proteína Axina/metabolismo , Sítios de Ligação , Domínio de Ativação e Recrutamento de Caspases , Catálise , Cristalografia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Mutação , Poli(ADP-Ribose) Polimerases/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Relação Estrutura-Atividade , Tanquirases/química , Tanquirases/genética , Transfecção
16.
J Sep Sci ; 47(1): e2300750, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38066395

RESUMO

Polygonum cognatum Meissn, a perennial herbaceous belonging to the Polygonaceae family, is an aromatic plant. High-performance liquid chromatography/diode array detector method was developed and validated for the phytochemical analysis of the plant. Also, various methods were used to investigate the antioxidant, antimicrobial, and cytotoxic activities of the methanolic extracts. Antioxidant activities were researched by 2,2'-diphenyl-1-picrylhydrazyl and cupric reducing antioxidant capacity methods. Among the tested standard microbial strains, Candida albicans was found to be more sensitive with a 24.60 ± 0.55 mm inhibition zone according to the diffusion tests. In the microdilution tests, the minimum inhibitory concentration and minimum bactericidal/fungicidal concentration values were 4.75 and ≥ 4.75 mg/mL, respectively, for all tested pathogens. Human colon carcinoma cells were used to investigate cytotoxicity by using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide analysis (IC50  = 2891 µg/mL for Plant A, IC50  = 3291 µg/mL for Plant B). Molecular docking and absorption, distribution, metabolism, excretion, and toxicity analysis were used to explain inhibition mechanisms of major phenolic compounds of plants against Tankyrase 1, Tankyrase 2 enzymes, and deoxyribonucleic acid gyrase subunit B and found compatible with experimental results.


Assuntos
Polygonum , Tanquirases , Humanos , Polygonum/química , Extratos Vegetais/química , Simulação de Acoplamento Molecular , Antioxidantes/análise , Compostos Fitoquímicos/farmacologia
17.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338721

RESUMO

We investigated the effects of a Tankyrase (TNKS-1/2) inhibitor on mechanical stress-induced gene expression in human chondrocytes and examined TNKS-1/2 expression in human osteoarthritis (OA) cartilage. Cells were seeded onto stretch chambers and incubated with or without a TNKS-1/2 inhibitor (XAV939) for 12 h. Uni-axial cyclic tensile strain (CTS) (0.5 Hz, 8% elongation, 30 min) was applied and the gene expression of type II collagen a1 chain (COL2A1), aggrecan (ACAN), SRY-box9 (SOX9), TNKS-1/2, a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5), and matrix metalloproteinase-13 (MMP-13) were examined by real-time PCR. The expression of ADAMTS-5, MMP-13, nuclear translocation of nuclear factor-κB (NF-κB), and ß-catenin were examined by immunocytochemistry and Western blotting. The concentration of IL-1ß in the supernatant was examined by enzyme-linked immunosorbent assay (ELISA). TNKS-1/2 expression was assessed by immunohistochemistry in human OA cartilage obtained at the total knee arthroplasty. TNKS-1/2 expression was increased after CTS. The expression of anabolic factors were decreased by CTS, however, these declines were abrogated by XAV939. XAV939 suppressed the CTS-induced expression of catabolic factors, the release of IL-1ß, as well as the nuclear translocation of NF-κB and ß-catenin. TNKS-1/2 expression increased in mild and moderate OA cartilage. Our results demonstrated that XAV939 suppressed mechanical stress-induced expression of catabolic proteases by the inhibition of NF-κB and activation of ß-catenin, indicating that TNKS-1/2 expression might be associated with OA pathogenesis.


Assuntos
Cartilagem Articular , Osteoartrite , Tanquirases , Humanos , beta Catenina/metabolismo , Cartilagem Articular/metabolismo , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Interleucina-1beta/metabolismo , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , NF-kappa B/metabolismo , Osteoartrite/metabolismo , Peptídeo Hidrolases/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Estresse Mecânico , Tanquirases/antagonistas & inibidores
18.
Biochem J ; 479(22): 2379-2394, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36383218

RESUMO

p21WAF1/Cip1 acts as a key negative regulator of cell cycle progression, which can form complexes with cyclin-dependent kinases together with specific cyclins to induce cell cycle arrest at specific stages. p21 protein levels have been shown to be regulated primarily through phosphorylation and ubiquitination during various stages of the cell cycle. Although phosphorylation and ubiquitin-dependent proteasomal degradation of p21 have been well established, other post-translational modifications that contribute to regulation of p21 stability and function remain to be further elucidated. Here, we show that p21 degradation and its function are controlled by tankyrases, which are members of the poly(ADP-ribose) polymerase (PARP) protein family. p21 interacts with tankyrases via newly defined tankyrase-binding motifs and is PARylated by tankyrases in vitro and in vivo, suggesting that PARylation is a new post-translational modification of p21. Up-regulation of tankyrases induces ubiquitin-dependent proteasomal degradation of p21 through an E3 ligase RNF146, thus promoting cell cycle progression in the G1/S phase transition. On the contrary, inhibition of tankyrases by knockdown or inhibitor treatment stabilizes p21 protein and leads to cell cycle arrest in the G1 phase. Together, our data demonstrate that tankyrase may function as a new molecular regulator that controls the protein levels of p21 through PARylation-dependent proteasomal degradation. Hence, a novel function of the tankyrase-p21 axis may represent a new avenue for regulating cell cycle progression.


Assuntos
Tanquirases , Tanquirases/química , Tanquirases/metabolismo , Poli ADP Ribosilação , Ubiquitinação , Ciclo Celular , Ubiquitinas/metabolismo
19.
Ecotoxicol Environ Saf ; 250: 114489, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36603485

RESUMO

Coke oven emissions (COEs) contain many carcinogenic polycyclic aromatic hydrocarbons (PAHs). Telomere damage is an early biological marker reflecting long-term COEs-exposure. Whereas, whether the genetic variations of telomere-regulated gene TNKS have an effect on the COEs-induced telomere damage is unknown. So we detected the environmental exposure levels, relative telomere length (RTL), and TNKS genetic polymorphisms among 544 COEs-exposure workers and 238 healthy participants. We found that the RTL of the wild homozygous GG genotype in rs1055328 locus was statistically shorter compared with the CG+CC genotype for the healthy participants using covariance analysis(P = 0.008). In the Generalized linear model (GLM) analysis, TNKS rs1055328 GG could accelerate telomere shortening (P = 0.011); and the interaction between TNKS rs1055328 GG and COEs-exposure had an effect on RTL (P = 0.002). In conclusion, this study was the first to discover the role of TNKS rs1055328 locus in COEs-induced telomere damage, and proved that chromosomal damage was a combined consequence of environmental and genetic factors.


Assuntos
Coque , Exposição Ocupacional , Hidrocarbonetos Policíclicos Aromáticos , Tanquirases , Humanos , Coque/efeitos adversos , Dano ao DNA , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Polimorfismo Genético , Tanquirases/genética , Telômero/genética
20.
Genes Dev ; 29(2): 157-70, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25547115

RESUMO

PTEN [phosphatidylinositol (3,4,5)-trisphosphate phosphatase and tensin homolog deleted from chromosome 10], a phosphatase and critical tumor suppressor, is regulated by numerous post-translational modifications, including phosphorylation, ubiquitination, acetylation, and SUMOylation, which affect PTEN localization and protein stability. Here we report ADP-ribosylation as a new post-translational modification of PTEN. We identified PTEN as a novel substrate of tankyrases, which are members of the poly(ADP-ribose) polymerases (PARPs). We showed that tankyrases interact with and ribosylate PTEN, which promotes the recognition of PTEN by a PAR-binding E3 ubiquitin ligase, RNF146, leading to PTEN ubiquitination and degradation. Double knockdown of tankyrase1/2 stabilized PTEN, resulting in the subsequent down-regulation of AKT phosphorylation and thus suppressed cell proliferation and glycolysis in vitro and tumor growth in vivo. Furthermore, tankyrases were up-regulated and negatively correlated with PTEN expression in human colon carcinomas. Together, our study revealed a new regulation of PTEN and highlighted a role for tankyrases in the PTEN-AKT pathway that can be explored further for cancer treatment.


Assuntos
Neoplasias do Colo/fisiopatologia , Neoplasias Colorretais/fisiopatologia , PTEN Fosfo-Hidrolase/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Tanquirases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Glicólise , Células HCT116 , Células HEK293 , Células HT29 , Humanos , Proteína Oncogênica v-akt/metabolismo , PTEN Fosfo-Hidrolase/genética , Fosforilação , Processamento de Proteína Pós-Traducional , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA