Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 461
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 165(4): 801-11, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27153494

RESUMO

Multidirectional interactions between the nervous and immune systems have been documented in homeostasis and pathologies ranging from multiple sclerosis to autism, and from leukemia to acute and chronic inflammation. Recent studies have addressed this crosstalk using cell-specific targeting, novel sequencing, imaging, and analytical tools, shedding light on unappreciated mechanisms of neuro-immune regulation. This Review focuses on neuro-immune interactions at barrier surfaces-mostly the gut, but also including the skin and the airways, areas densely populated by neurons and immune cells that constantly sense and adapt to tissue-specific environmental challenges.


Assuntos
Sistema Imunitário/metabolismo , Mucosa/imunologia , Mucosa/inervação , Sistema Nervoso/anatomia & histologia , Animais , Hematopoese , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/inervação , Intestinos/imunologia , Intestinos/inervação , Tecido Linfoide/imunologia , Tecido Linfoide/fisiologia , Sistema Nervoso/metabolismo , Neurônios/citologia
2.
Trop Anim Health Prod ; 56(5): 179, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809309

RESUMO

We evaluated the effects of supplementing yeast mannan-reach-fraction on growth performance, jejunal morphology and lymphoid tissue characteristics in weaned piglets challenged with E. Coli F4. A total of 20 crossbred piglets were used. At weaning, piglets were assigned at random to one of four groups: piglets challenged and fed the basal diet supplemented with yeast mannan-rich fraction (C-MRF, n = 5); piglets challenged and fed the basal diet (C-BD, n = 5); piglets not challenged and fed the basal diet supplemented with yeast mannan-rich fraction (NC-MRF, n = 5), and piglets not challenged and fed the basal diet (NC-BD). Each dietary treatment had five replicates. On days 4, 5 and 10, piglets were orally challenged with 108 CFU/mL of E. Coli F4. C-MRF piglets had higher BW (p = 0.002; interactive effect) than C-BD piglets. C-MRF piglets had higher (p = 0.02; interactive effect) ADG in comparison with C-BD piglets. C-MRF piglets had higher (p = 0.04; interactive effect) ADFI than C-BD piglets. The diameter of lymphoid follicles was larger (p = 0.010; interactive effect) in the tonsils of C-MRF piglets than C-BD piglets. Lymphoid cells proliferation was greater in the mesenteric lymphnodes and ileum (p = 0.04 and p = 0.03, respectively) of C-MRF piglets. A reduction (p > 0.05) in E. Coli adherence in the ileum of piglets fed MRF was observed. In conclusion, the results of the present study demonstrate that dietary yeast mannan-rich fraction supplementation was effective in protecting weaned piglets against E. Coli F4 challenge.


Assuntos
Suplementos Nutricionais , Escherichia coli Enterotoxigênica , Mananas , Leveduras , Animais , Suínos/crescimento & desenvolvimento , Suínos/microbiologia , Infecções por Escherichia coli/veterinária , Doenças dos Suínos/microbiologia , Jejuno/crescimento & desenvolvimento , Desmame , Criação de Animais Domésticos , Tecido Linfoide/fisiologia
3.
Nat Immunol ; 12(10): 941-8, 2011 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21874025

RESUMO

Colonic patches (CLPs) and isolated lymphoid follicles (ILFs) are two main lymphoid structures in the colon. Lymphoid tissue-inducer cells (LTi cells) are indispensable for the development of ILFs. LTi cells also produce interleukin 17 (IL-17) and IL-22, signature cytokines secreted by IL-17-producing helper T cells. Here we report that IL-22 acted downstream of the lymphotoxin pathway and regulated the organization and maintenance of mature CLPs and ILFs in the colon during infection with Citrobacter rodentium. Lymphotoxin (LTα(1)ß(2)) regulated the production of IL-22 during infection with C. rodentium, but the lymphotoxin-like protein LIGHT did not. IL-22 signaling was sufficient to restore the organization of CLPs and ILFs and host defense against infection with C. rodentium in mice lacking lymphotoxin signals, which suggests that IL-22 connects the lymphotoxin pathway to mucosal epithelial defense mechanisms.


Assuntos
Citrobacter rodentium , Colo/imunologia , Infecções por Enterobacteriaceae/imunologia , Interleucinas/fisiologia , Tecido Linfoide/fisiologia , Linfotoxina-alfa/fisiologia , Animais , Colo/microbiologia , Interleucina-23/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Interleucina 22
4.
Immunology ; 164(4): 677-688, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34411302

RESUMO

Neutrophils are traditionally considered short-lived, circulating innate immune cells that are rapidly recruited to sites of inflammation in response to infectious and inflammatory stimuli. Neutrophils efficiently internalize, kill or entrap pathogens, but their effector molecules may cause collateral tissue damage. More recently, it has been appreciated that neutrophils can also influence adaptive immunity. Lymph nodes (LNs) are immune cell-rich secondary lymphoid organs that provide an ideal platform for cellular interaction and the integration of immunological information collected from local tissues. A variety of peripheral stimuli promote neutrophil migration to draining LNs via blood or lymphatics, utilizing differing molecular cues depending on the site of entry. Within LNs, neutrophils interact with other innate and adaptive cells. Crosstalk with subcapsular sinus macrophages contributes to the control of pathogen spread beyond the LN. Neutrophils can influence antigen presentation indirectly by interacting with DCs or directly by expressing major histocompatibility complex (MHC) and costimulatory molecules for antigen presentation. Interactions between neutrophils and adaptive lymphocytes can alter B-cell antibody responses. Studies have shown conflicting results on whether neutrophils exert stimulatory or inhibitory effects on other LN immune cells, with stimulus-specific and temporal differences in the outcome of these interactions. Furthermore, neutrophils have also been shown to traffick to LNs in homeostasis, with a potential role in immune surveillance, antigen capture and in shaping early adaptive responses in LNs. Understanding the mechanisms underpinning the effects of neutrophils on LN immune cells and adaptive immunity could facilitate the development of neutrophil-targeted therapies in inflammatory diseases.


Assuntos
Sistema Imunitário/citologia , Sistema Imunitário/fisiologia , Tecido Linfoide/citologia , Tecido Linfoide/fisiologia , Neutrófilos/fisiologia , Imunidade Adaptativa , Animais , Apresentação de Antígeno/imunologia , Comunicação Celular/imunologia , Movimento Celular/imunologia , Citocinas/biossíntese , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Suscetibilidade a Doenças , Homeostase/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Infiltração de Neutrófilos , Neutrófilos/citologia
5.
Clin Immunol ; 231: 108850, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34506944

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has resulted in considerable morbidity and mortality in humans. Little is known regarding the development of immunological memory following SARS-CoV-2 infection or whether immunological memory can provide long-lasting protection against reinfection. Urgent need for vaccines is a considerable issue for all governments worldwide. METHODS: A total of 39 patients were recruited in this study. Tonsillar mononuclear cells (MNCs) were co-cultured in RPMI medium and stimulated with the full-length SARS-CoV-2 spike protein in the presence and absence of a CpG-DNA adjuvant. An enzyme-linked immunosorbent assay (ELISA) was utilised to measure the specific antibody response to the spike protein in the cell culture supernatants. RESULTS: The SARS-CoV-2 spike protein primed a potent memory B cell-mediated immune response in nasal-associated lymphoid tissue (NALT) from patients previously infected with the virus. Additionally, spike protein combined with the CpG-DNA adjuvant induced a significantly increased level of specific anti-spike protein IgG antibody compared with the spike protein alone (p < 0.0001, n = 24). We also showed a strong positive correlation between the specific anti-spike protein IgG antibody level in a serum samples and that produced by MNCs derived from the same COVID-19-recovered patients following stimulation (r = 0.76, p = 0.0002, n = 24). CONCLUSION: Individuals with serological evidence of previous SARS-CoV-2 exposure showed a significant anti-spike protein-specific memory humoral immune response to the viral spike protein upon stimulation. Additionally, our results demonstrated the functional response of NALT-derived MNCs to the viral spike protein. CpG-DNA adjuvant combined with spike protein induced significantly stronger humoral immune responses than the spike protein alone. These data indicate that the S protein antigen combined with CpG-DNA adjuvant could be used as a future vaccine candidate.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Memória Imunológica/fisiologia , Tecido Linfoide/fisiologia , SARS-CoV-2/imunologia , Anticorpos Antivirais/metabolismo , Linfócitos B , Células Cultivadas , DNA , Ensaio de Imunoadsorção Enzimática , Humanos , Imunidade Celular , Imunidade Humoral , Imunoglobulina G/metabolismo , Tecido Linfoide/virologia , Nariz , Oligodesoxirribonucleotídeos , Glicoproteína da Espícula de Coronavírus/imunologia
6.
J Immunol ; 203(9): 2415-2424, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31570507

RESUMO

Bacterial, parasitic, and viral infections are well-known causes of lymphoid tissue disorganization, although the factors, both host and/or pathogen derived, that mediate these changes are largely unknown. Ehrlichia muris infection in mice causes a loss of germinal center (GC) B cells that is accompanied by the generation of extrafollicular T-bet+ CD11c+ plasmablasts and IgM memory B cells. We addressed a possible role for TNF-α in this process because this cytokine has been shown to regulate GC development. Ablation of TNF-α during infection resulted in an 8-fold expansion of GL7+ CD38lo CD95+ GC B cells, and a 2.5- and 5-fold expansion of CD138+ plasmablasts and T-bet+ memory cells, respectively. These changes were accompanied by a reduction in splenomegaly, more organized T and B cell zones, and an improved response to Ag challenge. CXCL13, the ligand for CXCR5, was detected at 6-fold higher levels following infection but was much reduced following TNF-α ablation, suggesting that CXCL13 dysregulation also contributes to loss of lymphoid tissue organization. T follicular helper cells, which also underwent expansion in infected TNF-α--deficient mice, may also have contributed to the expansion of T-bet+ B cells, as the latter are known to require T cell help. Our findings contrast with previously described roles for TNF-α in GCs and reveal how host-pathogen interactions can induce profound changes in cytokine and chemokine production that can alter lymphoid tissue organization, GC B cell development, and extrafollicular T-bet+ B cell generation.


Assuntos
Linfócitos B/imunologia , Infecções Bacterianas/imunologia , Centro Germinativo/imunologia , Tecido Linfoide/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Quimiocina CXCL13/fisiologia , Tolerância Imunológica , Memória Imunológica , Tecido Linfoide/imunologia , Camundongos , Camundongos Endogâmicos C57BL
7.
J Immunol ; 203(9): 2401-2414, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31548329

RESUMO

Ligand-engaged chemoattractant receptors trigger Gαi subunit nucleotide exchange, stimulating the activation of downstream effector molecules. Activated chemoattractant receptors also dock G protein-coupled receptor kinases (GRKs) that help mediate receptor desensitization. In this study, we show that the B cell-specific loss of GRK2 severely disrupts B cell trafficking and immune cell homeostasis. The GRK2 deficiency in developing murine B cells leads to a severe immune phenotype, including a major reduction of bone marrow IgD+ cells, splenomegaly with a loss of white pulp and grossly expanded red pulp, a deficit of Peyer patches, and small lymph nodes with marked reductions in B cell numbers. The major phenotypes in these mice arise from excessive S1PR1 signaling combined with inadequate homeostatic chemokine receptor signaling. CXCL13 signaling is the most severely compromised. In B cells, our data also indicate that S1PR1 signals constitutively, as blocking S1PR1 signaling with an S1PR1 antagonist enhanced CXCL13-triggered wild-type B cell migration. Furthermore, blocking S1PR1 signaling in the GRK2-deficient B cells partially corrected their poor response to chemokines. Treating mice lacking GRK2 expression in their B cells with an S1PR1 antagonist partially normalized B cell trafficking into lymph node and splenic follicles. These findings reveal the critical interdependence of Gαi-linked signaling pathways in controlling B lymphocyte trafficking.


Assuntos
Linfócitos B/fisiologia , Homeostase , Tecido Linfoide/fisiologia , Receptores de Quimiocinas/fisiologia , Receptores de Esfingosina-1-Fosfato/fisiologia , Animais , Cálcio/metabolismo , Movimento Celular , Quimiocina CXCL13/fisiologia , Quinase 2 de Receptor Acoplado a Proteína G/fisiologia , Leucocitose/imunologia , Lisofosfolipídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores CXCR4/fisiologia , Transdução de Sinais/fisiologia , Esfingosina/análogos & derivados , Esfingosina/farmacologia
8.
FASEB J ; 33(10): 11481-11491, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31314592

RESUMO

C-C chemokine receptor type 7 (CCR7) is essential for migration of dendritic cells (DCs) to draining lymph nodes. PU.1/Spi1 is a transcription factor playing a critical role in the gene regulation of DCs. PU.1 knockdown decreased the expression of CCR7 in bone marrow-derived DCs and subsequently attenuated migration in vitro and in vivo. Reporter assays, EMSA, and chromatin immunoprecipitation assays revealed that PU.1 binds to the most proximal Ets motif of the Ccr7 promoter, which is involved in transcriptional activation. The CCR7 expression level, which was higher in the programmed cell death 1 ligand 2 (PD-L2)+ population than in the PD-L2- population and was markedly suppressed by TGF-ß treatment, coincided with the binding level of PU.1 to the Ccr7 promoter. The PU.1 binding level in CCR7high mesenteric lymph nodes DCs was higher than in other DC subtypes. The involvement of PU.1 in the expression of the CCR7 gene was also observed in human DCs. We conclude that PU.1 plays a pivotal role in DC migration by transactivating the CCR7 gene via the Ets motif in the promoter in both humans and mice.-Yashiro, T., Takeuchi, H., Nakamura, S., Tanabe, A., Hara, M., Uchida, K., Okumura, K., Kasakura, K., Nishiyama, C. PU.1 plays a pivotal role in dendritic cell migration from the periphery to secondary lymphoid organs via regulating CCR7 expression.


Assuntos
Movimento Celular/genética , Células Dendríticas/fisiologia , Linfonodos/fisiologia , Tecido Linfoide/fisiologia , Proteínas Proto-Oncogênicas/genética , Receptores CCR7/genética , Transativadores/genética , Animais , Linhagem Celular , Feminino , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Ativação Transcricional/genética
9.
Fish Shellfish Immunol ; 107(Pt B): 435-443, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33161090

RESUMO

Cartilaginous fish are located at a pivotal point in phylogeny where the adaptive immune system begins to resemble that of other, more-derived jawed vertebrates, including mammals. For this reason, sharks and other cartilaginous fish are ideal models for studying the natural history of immunity. Insights from such studies may include distinguishing the (evolutionarily conserved) fundamental aspects of adaptive immunity from the (more recent) accessory. Some lymphoid tissues of sharks, including the thymus and spleen, resemble those of mammals in both appearance and function. The cartilaginous skeleton of sharks has no bone marrow, which is also absent in bony fish despite calcified bone, but cartilaginous fish have other Leydig's and epigonal organs that function to provide hematopoiesis analogous to mammalian bone marrow. Conserved across all vertebrate phylogeny in some form is gut-associated lymphoid tissues, or GALT, which is seen from agnathans to mammals. Though it takes many forms, from typhlosole in lamprey to Peyer's patches in mammals, the GALT serves as a site of antigen concentration and exposure to lymphocytes in the digestive tract. Though more complex lymphoid organs are not present in agnathans, they have several primitive tissues, such as the thymoid and supraneural body, that appear to serve their variable lymphocyte receptor-based adaptive immune system. There are several similarities between the adaptive immune structures in cartilaginous and bony fish, such as the thymus and spleen, but there are mechanisms employed in bony fish that in some instances bridge their adaptive immune systems to that of tetrapods. This review summarizes what we know of lymphoid tissues in cartilaginous fishes and uses these data to compare primary and secondary tissues in jawless, cartilaginous, and bony fishes to contextualize the early natural history of vertebrate mucosal immune tissues.


Assuntos
Imunidade Adaptativa/fisiologia , Evolução Biológica , Elasmobrânquios/anatomia & histologia , Tecido Linfoide/anatomia & histologia , Animais , Elasmobrânquios/imunologia , Elasmobrânquios/fisiologia , Tecido Linfoide/fisiologia
10.
Cytokine ; 101: 39-47, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27623349

RESUMO

Lymphotoxin (LT) is a member of the tumor necrosis factor (TNF) superfamily of cytokines which serves multiple functions, including the control of lymphoid organ development and maintenance, as well as regulation of inflammation and autoimmunity. Although the role of LT in organogenesis and maintenance of lymphoid organs is well established, the contribution of LT pathway to homeostasis of lymphoid organs during the immune response to pathogens is less understood. In this review, we highlight recent advances on the role of LT pathway in antiviral immune responses. We discuss the role of LT signaling in lymphoid organ integrity, type I IFN production and regulation of protection and immunopathology during viral infections. We further discuss the potential of therapeutic targeting LT pathway for controlling immunopathology and antiviral protection.


Assuntos
Antivirais/imunologia , Tecido Linfoide/fisiologia , Linfotoxina-alfa/imunologia , Viroses/imunologia , Animais , Autoimunidade , Homeostase/imunologia , Humanos , Inflamação , Interferon Tipo I/biossíntese , Interferon Tipo I/imunologia , Tecido Linfoide/imunologia , Receptor beta de Linfotoxina/imunologia , Linfotoxina-alfa/efeitos dos fármacos , Linfotoxina-alfa/genética , Camundongos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Fator de Necrose Tumoral alfa/fisiologia , Viroses/tratamento farmacológico , Viroses/fisiopatologia
11.
Curr Hypertens Rep ; 20(11): 94, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30215153

RESUMO

PURPOSE OF REVIEW: Dietary sodium is an important trigger for hypertension and humans show a heterogeneous blood pressure response to salt intake. The precise mechanisms for this have not been fully explained although renal sodium handling has traditionally been considered to play a central role. RECENT FINDINGS: Animal studies have shown that dietary salt loading results in non-osmotic sodium accumulation via glycosaminoglycans and lymphangiogenesis in skin mediated by vascular endothelial growth factor-C, both processes attenuating the rise in BP. Studies in humans have shown that skin could be a buffer for sodium and that skin sodium could be a marker of hypertension and salt sensitivity. Skin sodium storage could represent an additional system influencing the response to salt load and blood pressure in humans.


Assuntos
Hipertensão/metabolismo , Pele/metabolismo , Sódio/metabolismo , Animais , Hemodinâmica/fisiologia , Humanos , Hipertensão/fisiopatologia , Tecido Linfoide/fisiologia , Macrófagos/fisiologia , Espectroscopia de Ressonância Magnética , Sódio na Dieta/administração & dosagem , Fator C de Crescimento do Endotélio Vascular/sangue
12.
Blood ; 126(24): 2632-41, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26492933

RESUMO

Ionizing irradiation is used routinely to induce myeloablation and immunosuppression. However, it has not been possible to evaluate the extent of ablation without invasive biopsy. For lymphoid recovery, peripheral blood (PB) lymphocytes (PBLs) have been used for analysis, but they represent <2% of cells in lymphoid tissues (LTs). Using a combination of single-photon emission computed tomography imaging and a radiotracer ((99m)Tc-labeled rhesus immunoglobulin G1 anti-CD4R1 (Fab')2), we sequentially imaged CD4(+) cell recovery in rhesus macaques following total body irradiation (TBI) and reinfusion of vector-transduced, autologous CD34(+) cells. Our results present for the first time a sequential, real-time, noninvasive method to evaluate CD4(+) cell recovery. Importantly, despite myeloablation of circulating leukocytes following TBI, total depletion of CD4(+) lymphocytes in LTs such as the spleen is not achieved. The impact of TBI on LTs and PBLs is discordant, in which as few as 32.4% of CD4(+) cells were depleted from the spleen. In addition, despite full lymphocyte recovery in the spleen and PB, lymph nodes have suboptimal recovery. This highlights concerns about residual disease, endogenous contributions to recovery, and residual LT damage following ionizing irradiation. Such methodologies also have direct application to immunosuppressive therapy and other immunosuppressive disorders, such as those associated with viral monitoring.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Tecido Linfoide/fisiologia , Tomografia Computadorizada de Emissão de Fóton Único , Condicionamento Pré-Transplante , Animais , Medula Óssea/efeitos da radiação , Antígenos CD4/genética , Contagem de Linfócito CD4 , Sistemas Computacionais , Genes Reporter , Genes Sintéticos , Vetores Genéticos , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Imunoglobulina G/genética , Lentivirus/genética , Linfonodos/imunologia , Linfonodos/efeitos da radiação , Tecido Linfoide/diagnóstico por imagem , Tecido Linfoide/efeitos da radiação , Macaca mulatta , Imagem Multimodal , Especificidade de Órgãos , Quimera por Radiação , Baço/imunologia , Baço/efeitos da radiação , Tomografia Computadorizada por Raios X , Transdução Genética , Transplante Autólogo , Irradiação Corporal Total
13.
Trends Immunol ; 35(5): 219-29, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24746883

RESUMO

The mammalian immune system is tasked with protecting the host against a broad range of threats. Understanding how immune populations leverage cellular diversity to achieve this breadth and flexibility, particularly during dynamic processes such as differentiation and antigenic response, is a core challenge that is well suited for single cell analysis. Recent years have witnessed transformative and intersecting advances in nanofabrication and genomics that enable deep profiling of individual cells, affording exciting opportunities to study heterogeneity in the immune response at an unprecedented scope. In light of these advances, here we review recent work exploring how immune populations generate and leverage cellular heterogeneity at multiple molecular and phenotypic levels. Additionally, we highlight opportunities for single cell technologies to shed light on the causes and consequences of heterogeneity in the immune system.


Assuntos
Sistema Imunitário/fisiologia , Animais , Regulação da Expressão Gênica , Heterogeneidade Genética , Humanos , Sistema Imunitário/citologia , Imunidade/fisiologia , Tecido Linfoide/citologia , Tecido Linfoide/fisiologia , Fenótipo , Processamento de Proteína Pós-Traducional
14.
Nat Rev Immunol ; 6(3): 205-17, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16498451

RESUMO

The frequent observation of organized lymphoid structures that resemble secondary lymphoid organs in tissues that are targeted by chronic inflammatory processes, such as autoimmunity and infection, has indicated that lymphoid neogenesis might have a role in maintaining immune responses against persistent antigens. In this Review, we discuss recent progress in several aspects of lymphoid neogenesis, focusing on the similarities with lymphoid tissue development, the mechanisms of induction, functional competence and pathophysiological significance. As more information on these issues becomes available, a better understanding of the role of lymphoid neogenesis in promoting chronic inflammation might eventually lead to new strategies to target immunopathological processes.


Assuntos
Inflamação/imunologia , Tecido Linfoide/fisiologia , Animais , Quimiocina CCL21 , Quimiocinas/fisiologia , Quimiocinas CC/fisiologia , Doença Crônica , Centro Germinativo/fisiologia , Humanos , Imunoterapia , Infecções/imunologia , Inflamação/terapia
15.
Int J Mol Sci ; 18(5)2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28467354

RESUMO

This review provides a comprehensive summary of research on aging-associated alterations in lymphatic vessels and mast cells in perilymphatic tissues. Aging alters structure (by increasing the size of zones with low muscle cell investiture), ultrastructure (through loss of the glycocalyx), and proteome composition with a concomitant increase in permeability of aged lymphatic vessels. The contractile function of aged lymphatic vessels is depleted with the abolished role of nitric oxide and an increased role of lymphatic-born histamine in flow-dependent regulation of lymphatic phasic contractions and tone. In addition, aging induces oxidative stress in lymphatic vessels and facilitates the spread of pathogens from these vessels into perilymphatic tissues. Aging causes the basal activation of perilymphatic mast cells, which, in turn, restricts recruitment/activation of immune cells in perilymphatic tissues. This aging-associated basal activation of mast cells limits proper functioning of the mast cell/histamine/NF-κB axis that is essential for the regulation of lymphatic vessel transport and barrier functions as well as for both the interaction and trafficking of immune cells near and within lymphatic collecting vessels. Cumulatively, these changes play important roles in the pathogenesis of alterations in inflammation and immunity associated with aging.


Assuntos
Envelhecimento/fisiologia , Imunidade/imunologia , Inflamação/imunologia , Vasos Linfáticos/fisiologia , Tecido Linfoide/fisiologia , Animais , Histamina/metabolismo , Humanos , Mastócitos/metabolismo , Camundongos , NF-kappa B/metabolismo , Ratos
16.
Immunology ; 148(3): 287-303, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26997606

RESUMO

T-cell immunoglobulin and mucin (TIM) family molecules are cell membrane proteins, preferentially expressed on various immune cells and implicated in recognition and clearance of apoptotic cells. Little is known of their function outside human and mouse, and nothing outside mammals. We identified only two TIM genes (chTIM) in the chicken genome, putative orthologues of mammalian TIM1 and TIM4, and cloned the respective cDNAs. Like mammalian TIM1, chTIM1 expression was restricted to lymphoid tissues and immune cells. The gene chTIM4 encodes at least five splice variants with distinct expression profiles that also varied between strains of chicken. Expression of chTIM4 was detected in myeloid antigen-presenting cells, and in γδ T cells, whereas mammalian TIM4 is not expressed in T cells. Like the mammalian proteins, chTIM1 and chTIM4 fusion proteins bind to phosphatidylserine, and are thereby implicated in recognition of apoptotic cells. The chTIM4-immunoglobulin fusion protein also had co-stimulatory activity on chicken T cells, suggesting a function in antigen presentation.


Assuntos
Apoptose , Proteínas Aviárias/genética , Galinhas , Tecido Linfoide/fisiologia , Linfócitos T/imunologia , Animais , Apoptose/genética , Células Cultivadas , Clonagem Molecular , Biologia Computacional , Receptor Celular 1 do Vírus da Hepatite A/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Polimorfismo Genético , Ligação Proteica , Análise de Sequência de DNA , Transdução de Sinais
17.
Annu Rev Genomics Hum Genet ; 13: 127-49, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22703179

RESUMO

The evolutionary emergence of vertebrates was accompanied by the invention of adaptive immunity. This is characterized by extraordinarily diverse repertoires of somatically assembled antigen receptors and the facility of antigen-specific memory, leading to more rapid and efficient secondary immune responses. Adaptive immunity emerged twice during early vertebrate evolution, once in the lineage leading to jawless fishes (such as lamprey and hagfish) and, independently, in the lineage leading to jawed vertebrates (comprising the overwhelming majority of extant vertebrates, from cartilaginous fishes to mammals). Recent findings on the immune systems of jawless and jawed fishes (here referred to as lower vertebrates) impact on the identification of general principles governing the structure and function of adaptive immunity and its coevolution with innate defenses. The discovery of conserved features of adaptive immunity will guide attempts to generate synthetic immunological functionalities and thus provide new avenues for intervening with faulty immune functions in humans.


Assuntos
Imunidade Adaptativa/genética , Sistema Imunitário/fisiologia , Síndromes de Imunodeficiência/veterinária , Animais , Evolução Molecular , Doenças dos Peixes/genética , Peixes/genética , Peixes/imunologia , Humanos , Sistema Imunitário/citologia , Síndromes de Imunodeficiência/genética , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Tecido Linfoide/fisiologia , Filogenia
19.
Poult Sci ; 94(6): 1115-21, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25838315

RESUMO

An experiment was conducted to evaluate the effect of outdoor access days on growth performance, carcass yield, meat quality, and lymphoid organ index of a local chicken breed. In total, 864 twenty one-day-old male Suqin yellow chickens, with similar body weight (536±36g), were selected and raised in indoor floor pens that measured 1.42×1.42 m (2 m2, 18 birds/m2) in conventional poultry research houses (36 birds per pen). Two hundred and sixteen birds were allowed outdoor access treatments at 21, 28, 35, and 42 d of age, respectively (access to outdoor for 35, 28, 21, and 14 days, respectively). Each treatment was represented by 6 replicates (pens) containing 36 birds (216 birds per treatment). In the outdoor access treatment, the birds had an outdoor free-range paddock that measured 3×8 m (24 m2, 1.5 birds/m2). The body weight of birds at 56 d of age increased linearly with increasing outdoor access days (P<0.001), but there was no effect of the outdoor access days on the body weight at 42 d of age (P=0.161). The daily weight gain, daily feed intake, and feed per gain from 21 to 42 d of age were unaffected by outdoor access days (P=0.401, P=0.463, P=0.223, respectively). However, the daily weight gain and daily feed intake from 42 to 56 and from 21 to 56 d of age increased linearly with increasing outdoor access days (P=0.002, P<0.001; P=0.001, P=0.004; respectively), while the feed per gain tended to decrease linearly from 21 to 56 d of age (P=0.060). The mortality from 21 to 56 d of age was unaffected by outdoor access days (P=0.261). At 56 d of age, the breast yield increased linearly with increasing outdoor access days (P<0.001), while the foot yield decreased linearly (P=0.016). The light (L*) and red (b*) values of leg meat color increased linearly with increasing outdoor access days (P=0.032, P=0.013, respectively). The spleen: the body weight ratio showed a decreasing and then increasing quadratic response to increasing outdoor access days (P=0.047). The litter moisture content at 42 and 56 d of age increased linearly with increasing outdoor access days (P<0.001, P=0.013, respectively). The findings of this study suggest that increasing outdoor access days advantageously affects the body weight, daily weight gain, feed per gain and breast yield as well as the light (L*) and red (b*) values of leg meat color, while decreasing foot yield.


Assuntos
Criação de Animais Domésticos/métodos , Bem-Estar do Animal , Galinhas/fisiologia , Tecido Linfoide/fisiologia , Carne/análise , Animais , Galinhas/crescimento & desenvolvimento , Qualidade dos Alimentos , Abrigo para Animais , Masculino , Distribuição Aleatória , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA