Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 608(7924): 813-818, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35831498

RESUMO

Telomeres are the physical ends of linear chromosomes. They are composed of short repeating sequences (such as TTGGGG in the G-strand for Tetrahymena thermophila) of double-stranded DNA with a single-strand 3' overhang of the G-strand and, in humans, the six shelterin proteins: TPP1, POT1, TRF1, TRF2, RAP1 and TIN21,2. TPP1 and POT1 associate with the 3' overhang, with POT1 binding the G-strand3 and TPP1 (in complex with TIN24) recruiting telomerase via interaction with telomerase reverse transcriptase5 (TERT). The telomere DNA ends are replicated and maintained by telomerase6, for the G-strand, and subsequently DNA polymerase α-primase7,8 (PolαPrim), for the C-strand9. PolαPrim activity is stimulated by the heterotrimeric complex CTC1-STN1-TEN110-12 (CST), but the structural basis of the recruitment of PolαPrim and CST to telomere ends remains unknown. Here we report cryo-electron microscopy (cryo-EM) structures of Tetrahymena CST in the context of the telomerase holoenzyme, in both the absence and the presence of PolαPrim, and of PolαPrim alone. Tetrahymena Ctc1 binds telomerase subunit p50, a TPP1 orthologue, on a flexible Ctc1 binding motif revealed by cryo-EM and NMR spectroscopy. The PolαPrim polymerase subunit POLA1 binds Ctc1 and Stn1, and its interface with Ctc1 forms an entry port for G-strand DNA to the POLA1 active site. We thus provide a snapshot of four key components that are required for telomeric DNA synthesis in a single active complex-telomerase-core ribonucleoprotein, p50, CST and PolαPrim-that provides insights into the recruitment of CST and PolαPrim and the handoff between G-strand and C-strand synthesis.


Assuntos
DNA Primase , Complexo Shelterina , Telomerase , Tetrahymena , Microscopia Crioeletrônica , DNA/genética , DNA/metabolismo , DNA Primase/química , DNA Primase/metabolismo , DNA Primase/ultraestrutura , Holoenzimas/química , Holoenzimas/metabolismo , Holoenzimas/ultraestrutura , Ligação Proteica , Complexo Shelterina/química , Complexo Shelterina/metabolismo , Complexo Shelterina/ultraestrutura , Telomerase/química , Telomerase/metabolismo , Telomerase/ultraestrutura , Telômero/genética , Telômero/metabolismo , Tetrahymena/química , Tetrahymena/enzimologia , Tetrahymena/metabolismo , Tetrahymena/ultraestrutura
2.
Exp Parasitol ; 209: 107825, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31877275

RESUMO

Ciliate ectoparasites are one of the most important groups of pathogens in fish culture, and the traditional treatments are sometimes harmful to the fish and the environment. Thus, the search for novel compounds that are effective at low concentrations and safe for fish are necessary to optimise treatments in aquaculture. The antiprotozoal capacity of silver nanoparticles (AgNPs) against the ciliate Tetrahymena has been documented; however, their toxicity may vary with the synthesis methodology and nanoparticle size. The objectives of this study were a) to evaluate the acute toxicity in vitro of two AgNPs (Argovit™ and UTSA) on Tetrahymena sp., a biological model for ciliated ectoparasites of fish and b) to test the safety of lethal and higher doses of UTSA AgNPs for ciliates on the fish C. estor. Light microscopy and scanning electron microscopy (SEM) were used to determine whether AgNPs affected the structure of the cell surface of Tetrahymena. The mortality, histopathological alterations and metagenomics of the fish were used to determine the major effects of UTSA AgNPs. In Tetrahymena, the median lethal concentration (LC50) for Argovit™ was 2501 ± 1717 ng/L at 15 min and 796 ± 510 ng/L at 60 min, while the LC50 for UTSA AgNPs was 4 ± 2 and 1 ± 0.6 ng/L at 15 min and 60 min, respectively. A concentration of 3300 ng/L Argovit™ and 10.6 ng/L UTSA AgNPs for 15 and 60 min, respectively, was 100% effective against Tetrahymena. After 60 min of exposure to 0.25 and 0.50 ng/L UTSA AgNPs, the number of cilia significantly reduced, there were small holes on the cell surface, and the cellular membrane was ruptured. In fish exposed to lethal (10.6 ng/L) and higher (31.8 and 95.4 ng/L) doses of UTSA, the AgNPs did not affect fish survival after 96 h, and there were no signs of histopathological damage or gut microbial changes. This study is the first report on microscopic and ultrastructural changes in Tetrahymena after exposure to significantly low concentrations of UTSA AgNPs with antiprotozoal efficacy without evidence of harmful effects on fish. These results provide the basis for further studies of both pet aquarium and commercial fish that may validate these findings at a larger experimental scale, taking into account AgNPs bioaccumulation, safety for human consumption and environmental impact.


Assuntos
Ectoparasitoses/veterinária , Doenças dos Peixes/tratamento farmacológico , Nanopartículas Metálicas/toxicidade , Prata/farmacologia , Tetrahymena/efeitos dos fármacos , Animais , Aquicultura , Ectoparasitoses/tratamento farmacológico , Ectoparasitoses/parasitologia , Doenças dos Peixes/parasitologia , Peixes , Água Doce , Microbioma Gastrointestinal , Humanos , Dose Letal Mediana , Metagenômica , Nanopartículas Metálicas/química , Microscopia Eletrônica de Varredura/veterinária , Prata/química , Prata/toxicidade , Tetrahymena/ultraestrutura
3.
J Cell Sci ; 128(9): 1812-23, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25788697

RESUMO

Ciliates have two functionally distinct nuclei, a somatic macronucleus (MAC) and a germline micronucleus (MIC) that develop from daughter nuclei of the last postzygotic division (PZD) during the sexual process of conjugation. Understanding this nuclear dimorphism is a central issue in ciliate biology. We show, by live-cell imaging of Tetrahymena, that biased assembly of the nuclear pore complex (NPC) occurs immediately after the last PZD, which generates anterior-posterior polarized nuclei: MAC-specific NPCs assemble in anterior presumptive MACs but not in posterior presumptive MICs. MAC-specific NPC assembly in the anterior nuclei occurs much earlier than transport of Twi1p, which is required for MAC genome rearrangement. Correlative light-electron microscopy shows that addition of new nuclear envelope (NE) precursors occurs through the formation of domains of redundant NE, where the outer double membrane contains the newly assembled NPCs. Nocodazole inhibition of the second PZD results in assembly of MAC-specific NPCs in the division-failed zygotic nuclei, leading to failure of MIC differentiation. Our findings demonstrate that NPC type switching has a crucial role in the establishment of nuclear differentiation in ciliates.


Assuntos
Macronúcleo/metabolismo , Micronúcleo Germinativo/metabolismo , Poro Nuclear/metabolismo , Tetrahymena/metabolismo , Sobrevivência Celular , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/metabolismo , Imageamento Tridimensional , Modelos Biológicos , Poro Nuclear/ultraestrutura , Proteínas de Protozoários/metabolismo , Tetrahymena/citologia , Tetrahymena/ultraestrutura , Zigoto/metabolismo
4.
Parasitol Res ; 115(2): 771-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26499199

RESUMO

Tetrahymena rostrata, which is characterized by a particular encystment-excystment cycle involving autogamy, has been recently found infecting the kidney of edible Helix aspersa snails under farming conditions. In this work, the effects of several factors on its encystment/excystment behaviour and the occurrence of different serotypes were investigated. The encystment/excystment response under starvation conditions was seriously affected by temperature. While a peak of encystment at 48 h followed by a progressive spontaneous excystment was observed at 18 and 25 °C, the encystment response was practically inhibited at 5 °C and clearly slowed down at 10 °C. At 30 °C, most of surviving ciliates remained encysted throughout the experiment, with spontaneous excystment being detected only after switching the temperature to 18 °C. Soil components also affected the encystment/excystment behaviour at 18 °C, with spontaneous excystment occurring in the presence of a sterile-filtered soil extract or mineral water but being strongly minimized with a non-filtered soil extract. Resting cysts formed in the latter extract exhibited a 3­4 times thicker and ultrastructurally more complex wall than that formed in mineral water and retained the excystment ability for about 4 weeks. Incomplete desiccation did not affect significantly the encystment response, while the mucus and kidney extracts from snails as well as a ciliate extract strongly stimulated a rapid excystment. Finally, two different serotypes infecting H. aspersa in heliciculture farms of Galicia (NW Spain) were identified, but no differences were observed between the encystment/excystment responses exhibited by two isolates belonging to each serotype.


Assuntos
Caracois Helix/parasitologia , Tetrahymena/fisiologia , Agricultura , Animais , Soros Imunes/imunologia , Rim/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Águas Minerais/parasitologia , Solo/química , Solo/parasitologia , Espanha , Temperatura , Tetrahymena/ultraestrutura
5.
J Struct Biol ; 178(2): 199-206, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22406282

RESUMO

Although eukaryotic flagella and cilia all share the basic 9+2 microtubule-organization of their internal axonemes, and are capable of generating bending-motion, the waveforms, amplitudes, and velocities of the bending-motions are quite diverse. To explore the structural basis of this functional diversity of flagella and cilia, we here compare the axonemal structure of three different organisms with widely divergent bending-motions by electron cryo-tomography. We reconstruct the 3D structure of the axoneme of Tetrahymena cilia, and compare it with the axoneme of the flagellum of sea urchin sperm, as well as with the axoneme of Chlamydomonas flagella, which we analyzed previously. This comparative structural analysis defines the diversity of molecular architectures in these organisms, and forms the basis for future correlation with their different bending-motions.


Assuntos
Chlamydomonas/ultraestrutura , Cílios/ultraestrutura , Flagelos/ultraestrutura , Ouriços-do-Mar/ultraestrutura , Tetrahymena/ultraestrutura , Animais , Axonema/ultraestrutura , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Processamento de Imagem Assistida por Computador
6.
Traffic ; 10(5): 461-71, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19192246

RESUMO

Centrioles perform the dual functions of organizing both centrosomes and cilia. The biogenesis of nascent centrioles is an essential cellular event that is tightly coupled to the cell cycle so that each cell contains only two or four centrioles at any given point in the cell cycle. The assembly of centrioles and their analogs, basal bodies, is well characterized at the ultrastructural level whereby structural modules are built into a functional organelle. Genetic studies in model organisms combined with proteomic, bioinformatic and identifying ciliary disease gene orthologs have revealed a wealth of molecules requiring further analysis to determine their roles in centriole duplication, assembly and function. Nonetheless, at this stage, our understanding of how molecular components interact to build new centrioles and basal bodies is limited. The ciliates, Tetrahymena and Paramecium, historically have been the subject of cytological and genetic study of basal bodies. Recent advances in the ciliate genetic and molecular toolkit have placed these model organisms in a favorable position to study the molecular mechanisms of centriole and basal body assembly.


Assuntos
Centríolos/metabolismo , Organelas/metabolismo , Paramecium/metabolismo , Tetrahymena/metabolismo , Animais , Ciclo Celular , Centríolos/ultraestrutura , Centrossomo/metabolismo , Cílios/metabolismo , Cílios/ultraestrutura , Cilióforos/metabolismo , Paramecium/ultraestrutura , Tetrahymena/ultraestrutura
7.
Eur J Protistol ; 76: 125722, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32679518

RESUMO

Cilia and flagella play an important role in motility, sensory perception, and the life cycles of eukaryotes, from protists to humans. However, much critical information concerning cilia structure and function remains elusive. The vast majority of ciliary and flagellar proteins analyzed so far are evolutionarily conserved and play a similar role in protozoa and vertebrates. This makes protozoa attractive biological models for studying cilia biology. Research conducted on ciliated or flagellated protists may improve our general understanding of cilia protein composition, of cilia beating, and can shed light on the molecular basis of the human disorders caused by motile cilia dysfunction. The Symposium "From genomics to flagellar and ciliary structures and cytoskeleton dynamics" at ECOP2019 in Rome presented the latest discoveries about cilia biogenesis and the molecular mechanisms of ciliary and flagellum motility based on studies in Paramecium, Tetrahymena, and Trypanosoma. Here, we review the most relevant aspects presented and discussed during the symposium and add our perspectives for future research.


Assuntos
Citoesqueleto/ultraestrutura , Genoma de Protozoário/genética , Paramecium , Tetrahymena , Trypanosoma , Cílios/genética , Congressos como Assunto , Flagelos/genética , Paramecium/genética , Paramecium/ultraestrutura , Tetrahymena/genética , Tetrahymena/ultraestrutura , Trypanosoma/genética , Trypanosoma/ultraestrutura
8.
Cells ; 9(2)2020 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991798

RESUMO

Katanin-like 2 protein (Katnal2) orthologs have a tripartite domain organization. Two highly conserved regions, an N-terminal LisH (Lis-homology) domain and a C-terminal AAA catalytic domain, are separated by a less conserved linker. The AAA domain of Katnal2 shares the highest amino acid sequence homology with the AAA domain of the canonical katanin p60. Katnal2 orthologs are present in a wide range of eukaryotes, from protists to humans. In the ciliate Tetrahymena thermophila, a Katnal2 ortholog, Kat2, co-localizes with the microtubular structures, including basal bodies and ciliary outer doublets, and this co-localization is sensitive to levels of microtubule glutamylation. The functional analysis of Kat2 domains suggests that an N-terminal fragment containing a LisH domain plays a role in the subcellular localization, dimerization, and stability of Kat2.


Assuntos
Katanina/genética , Katanina/metabolismo , Microtúbulos/metabolismo , Tetrahymena/metabolismo , Ácido Glutâmico/metabolismo , Microscopia Eletrônica de Transmissão , Microtúbulos/ultraestrutura , Mutação , Domínios Proteicos , Multimerização Proteica/genética , Estabilidade Proteica , Tetrahymena/enzimologia , Tetrahymena/genética , Tetrahymena/ultraestrutura
9.
J Cell Biol ; 100(6): 2008-18, 1985 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-2860115

RESUMO

The substructure of the components of the axoneme interior--the inner dynein arms, the radial spokes, and the central pair/projection complex--was analyzed for Chlamydomonas. Tetrahymena, Strongelocentrotus, and Mnemiopsis using the quick-freeze, deep-etch technique. The inner arms are shown to resemble the outer arms in overall molecular organization, but they are disposed differently on the microtubule and have two distinct morphologies--dyads with two heads and triads with three. The dyads associate with spokes S3 and S2; the triads associate with S1. The spokes form a three-start right-handed helix with a 288-nm rise; the central pair makes a shallow left-handed twist. The spoke heads are shown to be made up of four major subunits; two bind to the spoke shaft and two bind to a pair of central-sheath projections.


Assuntos
Cílios/ultraestrutura , Flagelos/ultraestrutura , Animais , Chlamydomonas/ultraestrutura , Cnidários , Técnica de Congelamento e Réplica , Microscopia Eletrônica , Microtúbulos/ultraestrutura , Ouriços-do-Mar/ultraestrutura , Tetrahymena/ultraestrutura
10.
J Cell Biol ; 105(6 Pt 1): 2855-9, 1987 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-3121638

RESUMO

The ciliated protozoan Oxytricha fallax possesses multiple highly localized clusters of basal bodies and cilia, all of which are broken down and rebuilt during prefission morphogenesis-with one major exception. The adoral zone of membranelles (AZM) of the ciliate oral apparatus contains approximately 1,500-2,000 basal bodies and cilia, and it is the only compound ciliary structure that is passed morphologically intact to one daughter cell at each cell division. By labeling all proteins in cells, and then picking the one daughter cell possessing the original labeled AZM, we could then evaluate whether or not the ciliary proteins of the AZM were diluted (i.e., either by degradation to constituent amino acids or by subunit exchange) during cell division. Autoradiographic analysis demonstrated that the label was highly conserved in the AZM (i.e., we saw no evidence of turnover), and electrophoretic data illustrate that at least one of the proteins of the AZM is tubulin. We, therefore, conclude that for at least some of the ciliary and basal body proteins of Oxytricha fallax, AZM morphological conservation is essentially equivalent to molecular conservation.


Assuntos
Cilióforos/citologia , Proteínas/metabolismo , Animais , Divisão Celular , Cílios/ultraestrutura , Cilióforos/crescimento & desenvolvimento , Cilióforos/ultraestrutura , Morfogênese , Organoides/ultraestrutura , Tetrahymena/ultraestrutura
11.
J Cell Biol ; 66(1): 198-200, 1975 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-1095595

RESUMO

Cells of many kinds adhere firmly to glass or plastic surfaces which have been pretreated with polylysine. The attachment takes place as soon as the cells make contact with the surfaces, and the flattening of the cells against the surfaces is quite rapid. Cells which do not normally adhere to solid surfaces, such as sea urchin eggs, attach as well as cells which normally do so, such as amebas or mammalian cells in culture. The adhesion is interpreted simply as the interaction between the polyanionic cell surfaces and the polycationic layer of adsorbed polylysine. The attachment of cells to the polylysine-treated surfaces can be exploited for a variety of experimental manipulations. In the preparation of samples for scanning or transmission electron microscopy, the living material may first be attached to a polylysine-coated plate or grid, subjected to some experimental treatment (fertilization of an egg, for example), then transferred rapidly to fixative and further passed through processing for observation; each step involves only the transfer of the plate or grid from one container to the next. The cells are not detached. The adhesion of the cell may be so firm that the body of the cell may be sheared away, leaving attached a patch of cell surface, face up, for observation of its inner aspect. For example, one may observe secretory vesicles on the inner face of the surface (3) or may study the association of filaments with the inner surface (Fig. 1). Subcellular structures may attach to the polylysine-coated surfaces. So far, we have found this to be the case for nuclei isolated from sea urchin embryos and for the microtubules of flagella, which are well displayed after the membrane has been disrupted by Triton X-100 (Fig. 2).


Assuntos
Adesão Celular , Técnicas Histológicas , Microscopia Eletrônica , Peptídeos , Polilisina , Animais , Dictyostelium/ultraestrutura , Feminino , Vidro , Masculino , Microscopia Eletrônica de Varredura , Óvulo/ultraestrutura , Ouriços-do-Mar/ultraestrutura , Cauda do Espermatozoide/ultraestrutura , Tetrahymena/ultraestrutura
12.
J Cell Biol ; 107(6 Pt 2): 2473-82, 1988 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-3204116

RESUMO

Histone H1 is highly phosphorylated in transcriptionally active, amitotic macronuclei of Tetrahymena during vegetative growth. However, the level of H1 phosphorylation changes dramatically in response to different physiological conditions. H1 is hyperphosphorylated in response to heat shock and during prezygotic stages of conjugation. Conversely, H1 is largely dephosphorylated during prolonged starvation and during elimination of parental macronuclei during conjugation. Mapping of phosphorylation sites within H1 indicates that phosphorylation occurs at multiple sites in the amino-terminal portion of the molecule, predominantly at threonine residues. Two of these sites have been identified by compositional analyses and microsequencing of tryptic peptides. Interestingly, two major sites contain the sequence Thr-Pro-Val-Lys similar to that contained in the sites recognized by growth-associated histone kinase in other organisms. No new sites are detected during the hyperphosphorylation of H1 which occurs during heat shock or in early stages of conjugation, and no sites are preferentially dephosphorylated during starvation or later stages of conjugation. Therefore, changes in the overall level of H1 phosphorylation, as opposed to phosphorylation or dephosphorylation at particular sites, appear to be important in the regulation of chromatin structure under these physiological conditions. Further, since no cell division or DNA replication occurs under these conditions, changes in the level of H1 phosphorylation are best correlated to changes in gene expression during heat shock, starvation, and conjugation. We suggest that, at least in Tetrahymena, H1 hyperphosphorylation is used as a rapid and transient mechanism for the cessation of transcription under conditions of cellular stress.


Assuntos
Histonas/metabolismo , Tetrahymena/metabolismo , Sequência de Aminoácidos , Aminoácidos/análise , Animais , Autorradiografia , Divisão Celular , Núcleo Celular/metabolismo , Conjugação Genética , Replicação do DNA , Regulação da Expressão Gênica , Temperatura Alta , Mitose , Dados de Sequência Molecular , Fosfopeptídeos/análise , Fosforilação , Tetrahymena/genética , Tetrahymena/ultraestrutura , Transcrição Gênica
13.
J Cell Biol ; 105(2): 897-901, 1987 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-2957382

RESUMO

As shown in the preceding paper (Toyoshima, Y. Y., 1987, J. Cell Biol., 105:887-895) three-headed Tetrahymena 22S dynein consists of three heavy chains (HCs) and is decomposed into two-headed (H) and one-headed (L) fragments by chymotryptic digestion. To accurately determine the presence of multiple ATPases and ultimately the location of various domains, it is necessary to determine the identity of each HC fragment relative to the original HCs in 22S dynein. The degradation pathway of each HC was determined by peptide mapping and immunoblotting. The three HCs (A alpha, A beta, and A gamma) were immunologically different; although SDS-urea gel electrophoresis showed that A gamma HC was apparently resistant to the digestion, actually three distinct HCs contributed to the same band alternately. H fragment was derived from A beta and A gamma HCs, whereas L fragment originated from A alpha HC. Since both fragments were associated with ATPase activity, these results directly demonstrate the presence of multiple ATPase sites in Tetrahymena 22S dynein.


Assuntos
Adenosina Trifosfatases/metabolismo , Cílios/enzimologia , Dineínas/metabolismo , Tetrahymena/enzimologia , Animais , Quimotripsina , Dineínas/isolamento & purificação , Substâncias Macromoleculares , Peso Molecular , Mapeamento de Peptídeos , Tetrahymena/ultraestrutura
14.
J Cell Biol ; 67(1): 105-17, 1975 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-1236852

RESUMO

We have assayed various materials for their ability to induce aster formation by microinjection into unfertilized eggs of Xenopus laevis. We have found that purified basal bodies from Chlamydomonas reinhardtii and Tetrahymena pyriformis induce the formation of asters and irregular cleavage furrows within 1 h after injection. Other microtubule structures such as flagella, flagellar axonemes, cilia, and brain microtubules are completely ineffective at inducing asters or cleavage furrows in unfertilized eggs. When known amounts of sonicated Tetrahymena and Chlamydomonas preparations are injected into unfertilized eggs, 50% of the injected eggs show a furrowing response at approximately 3 cell equvalents for Chlamydomonas and 0.1 cell equivalent for Tetrahymena. These results are close to those expected if basal bodies were the effective astral-inducing agent in these cells. Other materials effective at inducing asters in unfertilized eggs, such as crude brain nuclei, sperm, and a particulate fraction from brain known to induce parthenogenesis in eggs of Rana pipiens, probably contain centrioles as the effective agent. Our experiments provide the first functional assay to indicate that centrioles play an active role in aster initiation. None of the injected materials effective in unfertilized eggs produced any observable response in fully grown oocytes. Oocytes and eggs were found to have equal tubulin pools as judged by colchicine-binding activity. Therefore, the inability of oocytes to form asters cannot be due to a lack of an organizing center or to a lack of tubulin. Experiments in which D2O was found to stimulate aster-like fibrous areas in eggs but not oocytes suggest that the inability of oocytes to form asters may be due to an inability of tubulin in oocytes to assemble.


Assuntos
Microtúbulos/metabolismo , Mitose , Organoides , Óvulo/ultraestrutura , Animais , Núcleo Celular , Chlamydomonas/ultraestrutura , Deutério/farmacologia , Feminino , Masculino , Microinjeções , Microtúbulos/ultraestrutura , Oócitos/metabolismo , Óvulo/metabolismo , Espermatozoides/fisiologia , Tetrahymena/ultraestrutura , Tubulina (Proteína)/análise , Xenopus
15.
J Cell Biol ; 110(3): 703-14, 1990 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-2106524

RESUMO

Structures that cap the plus ends of microtubules may be involved in the regulation of their assembly and disassembly. Growing and disassembling microtubules in the mitotic apparatus are capped by kinetochores and ciliary and flagellar microtubules are capped by the central microtubule cap and distal filaments. To compare the ciliary caps with kinetochores, isolated Tetrahymena cilia were stained with CREST (Calcinosis/phenomenon esophageal dysmotility, sclerodactyly, telangiectasia) antisera known to stain kinetochores. Immunofluorescence microscopy revealed that a CREST antiserum stained the distal tips of cilia that contained capping structures but did not stain axonemes that lacked capping structures. Both Coomassie blue-stained gels and Western blots probed with CREST antiserum revealed that a 97-kD antigen copurifies with the capping structures. Affinity-purified antibodies to the 97-kD ciliary protein stained the tips of cap-containing Tetrahymena cilia and the kinetochores in HeLa, Chinese hamster ovary, and Indian muntjak cells. These results suggest that at least one polypeptide found in the kinetochore is present in ciliary microtubule capping structures and that there may be a structural and/or functional homology between these structures that cap the plus ends of microtubules.


Assuntos
Antígenos/análise , Cílios/ultraestrutura , Microtúbulos/ultraestrutura , Organelas/ultraestrutura , Tetrahymena/ultraestrutura , Animais , Fluoresceína-5-Isotiocianato , Fluoresceínas , Imunofluorescência , Corantes Fluorescentes , Células HeLa/ultraestrutura , Humanos , Soros Imunes , Immunoblotting , Microscopia Eletrônica , Modelos Estruturais , Tiocianatos
16.
J Cell Biol ; 107(6 Pt 1): 2259-69, 1988 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-3198686

RESUMO

The distal ends of ciliary microtubules are attached to the membrane by microtubule-capping structures. The capping structures are located at the sites of tubulin addition and loss in vivo and may be part of the regulatory system that directs ciliary and flagellar microtubule assembly. This study describes conditions for the release and stabilization of microtubule capping structures as a first step in their purification. Two types of capping structures, the distal filaments and the central microtubule caps, are selectively and independently released from the axoneme by CaCl2 and MgCl2 but not by MgSO4, ZnCl2, NaCl, KCl, or KI. The release of the caps and filaments is specific for Ca+2, Mg+2, and Cl- and is not simply a function of ionic strength. The capping structures are released without major disruption of the axonemal structure. In addition to providing a means to purify and identify the cap and filament components, these results suggest ways in which their binding to the axoneme may be modulated during periods of microtubule growth or shortening. This report also reveals that the distal filaments are composed of two separable components, a small bead inserted into the end of each A-tubule and a "Y"-shaped plug and filament that slips through the bead.


Assuntos
Cílios/ultraestrutura , Microtúbulos/ultraestrutura , Animais , Cloreto de Cálcio/farmacologia , Cílios/análise , Cílios/efeitos dos fármacos , Magnésio/farmacologia , Cloreto de Magnésio , Microscopia Eletrônica , Microtúbulos/análise , Microtúbulos/efeitos dos fármacos , Tetrahymena/ultraestrutura
17.
J Cell Biol ; 96(6): 1610-21, 1983 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-6602134

RESUMO

Tetrahymena and Chlamydomonas cells treated with high (0.25-0.5%) concentrations of the detergent Nonidet P-40 in appropriate buffers retain the shape of the intact cells but are devoid of any ciliary activity unless supplied with MgATP. ATP causes them to swim actively, with beat parameters and swimming patterns indistinguishable from those of intact cells. Both types of detergent-extracted cells are completely devoid of ciliary membranes. The Tetrahymena preparations also lack all cellular membranes, whereas cellular membranes remain intact in the Chlamydomonas preparations. Experiments demonstrating the effects of ATP, ADP, vanadate, erythro-9-[3-2-(hydroxynonyl)]-adenine, and Ca++ are described to illustrate the use of these detergent-extracted cells in research on ciliary motility.


Assuntos
Chlamydomonas/citologia , Tetrahymena/citologia , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/farmacologia , Animais , Cálcio/farmacologia , Chlamydomonas/ultraestrutura , Microscopia Eletrônica de Varredura , Movimento/efeitos dos fármacos , Octoxinol , Polietilenoglicóis , Tetrahymena/ultraestrutura , Vanádio/farmacologia
18.
J Cell Biol ; 87(1): 84-97, 1980 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-6448256

RESUMO

Tetrahymena 30S dynein was extracted with 0.5 M KCl and tested for retention of several functional properties associated wtih its in situ force-generating capacity. The dynein fraction will rebind to extracted outer doublets in the presence of Mg2+ to restore dynein arms. The arms attach at one end to the A subfiber and form bridges at the other end to the B subfiber of an adjacent doublet. Recombined arms retain an ATPase activity that remains coupled to potential generation of interdoublet sliding forces. To examine important aspects of the dynein-tubulin interaction that we presume are directly related to the dynein force-generating cross-bridge cycle, a simple and quantitative spectrophotometric assay was devised for monitoring the associations between isolated 30S dynein and the B subfiber. Utilizing this assay, the binding of dynein to B subfibers was found to be dependent upon divalent cations, saturating at 3 mM Mg2+. Micromolar concentrations of MgATP2- cause the release of dynein from the B subfiber; however, not all of the dynein bound under these conditions is released by ATP. ATP-insensitive dynein binding results from dynein interactions with non-B-tubule sites on outer-doublet and central-pair microtubules and from ATP-insensitive binding to sites on the B subfiber. Vanadate over a wide concentration range (10(-6)-10(-3) M) has no effect on the Mg2+-induced binding of dynein or its release by MgATP2-, and was used to inhibit secondary doublet disintegration in the suspensions. In the presence of 10 microM vanadate, dynein is maximally dissociated by MgATP2- concentrations greater than or equal to 1 microM with half-maximal release at 0.2 microM. These binding properties of isolated dynein arms closely resemble the cross-bridging behavior of in situ dynein arms reported previously, suggesting that quantitative studies such as those presented here may yield reliable information concerning the mechanism of force generation in dynein-microtubule motile systems. The results also suggest that vanadate may interact with an enzyme-product complex that has a low affinity for tubulin.


Assuntos
Adenosina Trifosfatases/metabolismo , Cílios/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Sítios de Ligação , Dineínas/antagonistas & inibidores , Magnésio/farmacologia , Microscopia Eletrônica , Ligação Proteica/efeitos dos fármacos , Tetrahymena/ultraestrutura , Vanádio/farmacologia
19.
J Cell Biol ; 95(3): 798-815, 1982 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-6218174

RESUMO

The substructure of the outer dynein arm has been analyzed in quick-frozen deep-etch replicas of Tetrahymena and Chlamydomonas axonemes. Each arm is found to be composed of five morphologically discrete components: an elliptical head; two spherical feet; a slender stalk; and an interdynein linker. The feet make contact with the A microtubule of each doublet; the stalk contacts the B microtubule; the head lies between the feet and stalk; and the linker associates each arm with its neighbor. The spatial relationships between these five components are found to be distinctly different in rigor (ATP-depleted) versus relaxed (ATP- or vanadate plus ATP-treated) axonemes, and the stalk appears to alter its affinity for the B microtubule in the relaxed state. Images of living cilia attached to Tetrahymena cells show that the relaxed configuration is adopted in vivo. We relate our observations to morphological and experimental studies reported by others and propose several models that suggest how this newly described dynein morphology may relate to dynein function.


Assuntos
Adenosina Trifosfatases , Chlamydomonas/enzimologia , Cílios/enzimologia , Dineínas , Tetrahymena/enzimologia , Adenosina Trifosfatases/fisiologia , Trifosfato de Adenosina/farmacologia , Animais , Chlamydomonas/fisiologia , Chlamydomonas/ultraestrutura , Cílios/fisiologia , Cílios/ultraestrutura , Dineínas/fisiologia , Microscopia Eletrônica , Microtúbulos/enzimologia , Modelos Biológicos , Conformação Molecular , Movimento/efeitos dos fármacos , Tetrahymena/fisiologia , Tetrahymena/ultraestrutura , Vanadatos , Vanádio/farmacologia
20.
Science ; 222(4620): 181-4, 1983 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-6623070

RESUMO

In conjugating Tetrahymena, a cellular assembly composed of a microtubule meshwork appears to be required for the transfer of gametic pronuclei across the junction that separates the conjugating cells. This assembly is suggestive of a gametogenic cell division in ancient predecessors of ciliates, with Tetrahymena retaining only the associated nuclear division and export.


Assuntos
Fertilização , Microtúbulos/fisiologia , Tetrahymena/fisiologia , Animais , Núcleo Celular/fisiologia , Microscopia Eletrônica , Mitose , Tetrahymena/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA