Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 883
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Biotechnol ; 24(1): 46, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971771

RESUMO

BACKGROUND: Microbial growth during plant tissue culture is a common problem that causes significant losses in the plant micro-propagation system. Most of these endophytic microbes have the ability to propagate through horizontal and vertical transmission. On the one hand, these microbes provide a rich source of several beneficial metabolites. RESULTS: The present study reports on the isolation of fungal species from different in vitro medicinal plants (i.e., Breynia disticha major, Breynia disticha, Duranta plumieri, Thymus vulgaris, Salvia officinalis, Rosmarinus officinalis, and Ocimum basilicum l) cultures. These species were tested for their indole acetic acid (IAA) production capability. The most effective species for IAA production was that isolated from Thymus vulgaris plant (11.16 µg/mL) followed by that isolated from sweet basil plant (8.78 µg/mL). On screening for maximum IAA productivity, medium, "MOS + tryptophan" was chosen that gave 18.02 µg/mL. The macroscopic, microscopic examination and the 18S rRNA sequence analysis indicated that the isolate that given code T4 was identified as Neopestalotiopsis aotearoa (T4). The production of IAA by N. aotearoa was statistically modeled using the Box-Behnken design and optimized for maximum level, reaching 63.13 µg/mL. Also, IAA extract was administered to sweet basil seeds in vitro to determine its effect on plant growth traits. All concentrations of IAA extract boosted germination parameters as compared to controls, and 100 ppm of IAA extract exhibited a significant growth promotion effect for all seed germination measurements. CONCLUSIONS: The IAA produced from N. aotearoa (T4) demonstrated an essential role in the enhancement of sweet basil (Ocimum basilicum) growth, suggesting that it can be employed to promote the plant development while lowering the deleterious effect of using synthetic compounds in the environment.


Assuntos
Endófitos , Germinação , Ácidos Indolacéticos , Ocimum basilicum , Sementes , Thymus (Planta) , Ocimum basilicum/microbiologia , Thymus (Planta)/química , Ácidos Indolacéticos/metabolismo , Endófitos/fisiologia , Endófitos/metabolismo , Endófitos/isolamento & purificação , Endófitos/genética , Germinação/efeitos dos fármacos , Sementes/microbiologia , Sementes/crescimento & desenvolvimento , Sementes/efeitos dos fármacos
2.
Microb Pathog ; 196: 107011, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39396688

RESUMO

Today, many infections in plants are related to biofilm-developing bacteria. These infections can result in severe agricultural losses. Thus, this study aims to investigate the synergistic antibiofilm activity of Thymus vulgaris extract on the inherent antibacterial properties of ZnO nanoparticles against Erwinia amylovora and Pseudomonas syringae pv. syringae. Additionally, to gain insight into the molecular mechanisms of phytocompounds' antibacterial activity, the molecular interactions of T. vulgaris phytochemicals with the TolC protein and TonB-dependent siderophore receptor were investigated through in-silico studies. Green-synthesized ZnO NPs (ZnO@GS) and chemically synthesized ZnO (ZnO@CHS) were evaluated using XRD and SEM techniques, showing a crystalline structure for both powders with average sizes of 50, and 40 nm, respectively. According to FT-IR and EDS spectroscopy, ZnO@GS was covered with thyme extract. Based on the in vitro results, all samples of ZnO NPs exhibited considerable antibacterial activity against both bacteria. At the same time, thyme aqueous extract alone proved considerably less effective at all tested concentrations. Compared to ZnO@CHS and thyme extract, the antibacterial efficacy of ZnO@GS against E. amylovora (MIC = 512 µg/mL) and P. syringae pv. syringae (MIC = 256 µg/mL) was significantly improved upon surface covering with thyme phytocompounds. Moreover, their antibiofilm properties were enhanced by almost 20 % compared to ZnO@CHS. In addition, molecular docking investigations showed that most of the phytocompounds could form stable interactions with the TonB-dependent siderophore receptor (P. syringae) plug domain and the TolC (E. amylovora) external channel. In vitro and in silico studies demonstrate that using the green approach for synthesizing ZnO NPs via thyme extract can notably boost its antibacterial and antibiofilm effects on the tested phytopathogenic bacteria.


Assuntos
Antibacterianos , Biofilmes , Erwinia amylovora , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Extratos Vegetais , Pseudomonas syringae , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Erwinia amylovora/efeitos dos fármacos , Pseudomonas syringae/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Thymus (Planta)/química , Simulação por Computador , Nanopartículas/química , Química Verde , Espectroscopia de Infravermelho com Transformada de Fourier , Proteínas da Membrana Bacteriana Externa/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química
3.
J Biol Inorg Chem ; 29(2): 201-216, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38587623

RESUMO

The presented study proposes an efficient utilization of a common Thymus serpyllum L. (wild thyme) plant as a highly potent biosorbent of Cu(II) and Pb(II) ions and the efficient interaction of the copper-laden plant with two opportunistic bacteria. Apart from biochars that are commonly used for adsorption, here we report the direct use of native plant, which is potentially interesting also for soil remediation. The highest adsorption capacity for Cu(II) and Pb(II) ions (qe = 12.66 and 53.13 mg g-1, respectively) was achieved after 10 and 30 min of adsorption, respectively. Moreover, the Cu-laden plant was shown to be an efficient antibacterial agent against the bacteria Escherichia coli and Staphylococcus aureus, the results being slightly better in the former case. Such an activity is enabled only via the interaction of the adsorbed ions effectively distributed within the biological matrix of the plant with bacterial cells. Thus, the sustainable resource can be used both for the treatment of wastewater and, after an effective embedment of metal ions, for the fight against microbes.


Assuntos
Antibacterianos , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Adsorção , Metais Pesados/química , Metais Pesados/metabolismo , Metais Pesados/farmacologia , Thymus (Planta)/química , Chumbo/química , Chumbo/metabolismo , Cobre/química , Cobre/farmacologia , Cobre/metabolismo , Testes de Sensibilidade Microbiana
4.
Anal Bioanal Chem ; 416(18): 4039-4055, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38805060

RESUMO

Untargeted analysis of gas chromatography-high-resolution mass spectrometry (GC-HRMS) data is a key and time-consuming challenge for identifying metabolite markers in food authentication applications. Few studies have been performed to evaluate the capability of untargeted data processing tools for feature extraction, metabolite annotation, and marker selection from untargeted GC-HRMS data since most of them are focused on liquid chromatography (LC) analysis. In this framework, this study provides a comprehensive evaluation of data analysis tools for GC-Orbitrap-HRMS plant metabolomics data, including the open-source MS-DIAL software and commercial Compound Discoverer™ software (designed for Orbitrap data processing), applied for the geographical discrimination and search for thyme markers (Spanish vs. Polish differentiation) as the case study. Both approaches showed that the feature detection process is highly affected by unknown metabolites (Levels 4-5 of identification confidence), background signals, and duplicate features that must be carefully assessed before further multivariate data analysis for reliable putative identification of markers. As a result, Compound Discoverer™ and MS-DIAL putatively annotated 52 and 115 compounds at Level 2, respectively. Further multivariate data analysis allowed the identification of differential compounds, showing that the putative identification of markers, especially in challenging untargeted analysis, heavily depends on the data processing parameters, including available databases used during compound annotation. Overall, this method comparison pointed out both approaches as good options for untargeted analysis of GC-Orbitrap-HRMS data, and it is presented as a useful guide for users to implement these data processing approaches in food authenticity applications depending on their availability.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Metabolômica , Software , Thymus (Planta) , Metabolômica/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Thymus (Planta)/química , Biomarcadores/análise , Análise de Alimentos/métodos
5.
J Appl Microbiol ; 135(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39174457

RESUMO

AIMS: Enteric viruses are recognized as a major concern in health care and in the food sector in Canada. Novel clean-label strategies for controlling enteric viruses are sought in the food industry. In this study, we examined the antiviral potential of plant extracts and essential oils on murine norovirus 1 (MNV-1), hepatitis A virus (HAV), and herpes simplex virus 1 (HSV-1). METHODS AND RESULTS: Inactivation of the viruses by grape seed, blueberry, green tea, and cranberry extracts and by rosemary and thyme essential oils was measured using plaque formation assay. Concentrations ranging from 50 to 200 000 ppm with a contact time of 90 min were tested. Grape seed extract at 10 000 ppm was the most effective (P < 0.05) at reducing MNV-1 and HAV infectious titers, respectively, by 2.85 ± 0.44 log10 and 1.94 ± 0.17 log10. HSV-1 titer was reduced by 3.81 ± 0.40 log10 at 1000 ppm grape seed extract. CONCLUSIONS: Among the plant products tested, grape seed extract was found the most effective at reducing the infectious titers of MNV-1, HAV, and HSV.


Assuntos
Antivirais , Vírus da Hepatite A , Herpesvirus Humano 1 , Norovirus , Óleos Voláteis , Extratos Vegetais , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Antivirais/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Norovirus/efeitos dos fármacos , Vírus da Hepatite A/efeitos dos fármacos , Animais , Vaccinium macrocarpon/química , Thymus (Planta)/química , Camundongos , Extrato de Sementes de Uva/farmacologia , Rosmarinus/química , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/prevenção & controle , Doenças Transmitidas por Alimentos/virologia , Chá/química
6.
J Appl Microbiol ; 135(10)2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39108092

RESUMO

AIMS: To identify efficient, broad-spectrum, and non-toxic preservatives for natural agricultural products, eight essential oils were screened for high inhibitory and antioxidant activities against spoilage microbes. METHODS AND RESULTS: The zone of inhibition test and minimum inhibitory concentration (MIC) assay were performed to assess the antimicrobial activity of eight essential oils against Bacillus subtilis, Staphylococcus aureus, Penicillium, Saccharomyces, and Escherichia coli. Among the eight essential oils, garlic and rose essential oils exhibited the best inhibitory effects, their MICs against the spoilage microbes were 40-640 µl/l and 10-320 µl/l, respectively. In addition, the antioxidant activities of eight essential oils were compared using the DPPH and ABTS radical-scavenging assays and the reducing power assay. Eight essential oils had antioxidant capacity, among which rosemary, thyme, rose, and tea tree essential oils performed the best. Moreover, the combination of thyme and rose exerted stronger antioxidant activity. Therefore, the concentrations of rose and garlic, and thyme essential oils were optimized using response surface methodology to obtain the optimal composite ratios, which were 1254 µl/l, 640 µl/l, and 1228 µl/l for rose, garlic, and thyme, respectively. The DPPH free radical-scavenging rate detected using this formulation was 50.2%, basically consistent with the prediction. Zone of inhibition diameters with the compound essential oil, against five spoilage microbes, were all greater than 45 mm. CONCLUSIONS: The essential oil combination had high antimicrobial, against agricultural product spoilage microbes, and antioxidant activities.


Assuntos
Anti-Infecciosos , Antioxidantes , Testes de Sensibilidade Microbiana , Óleos Voláteis , Óleos Voláteis/farmacologia , Antioxidantes/farmacologia , Anti-Infecciosos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Óleos de Plantas/farmacologia , Microbiologia de Alimentos , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Thymus (Planta)/química , Bactérias/efeitos dos fármacos , Antibacterianos/farmacologia , Alho/química
7.
Biotechnol Appl Biochem ; 71(4): 835-848, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38515313

RESUMO

Sepsis is a potentially fatal syndrome related to severe systemic inflammation developed by infection. Despite different antimicrobial therapies, morbidity and mortality rates remain high. Herbs along with cell therapy have been introduced as a promising option to improve the symptoms of sepsis. The present study aimed to evaluate the therapeutic effect of simultaneous administration of thyme essential oil (TEO) and endothelial progenitor stem cells (EPCs) on lipopolysaccharide (LPS)-induced sepsis in C57BL/6 mice. Sepsis was induced in C57Bl/6J mice by intraperitoneal injection of LPS, followed 2 h later by an intravenous injection of EPCs or oral administration of TEO or simultaneous administration of TEO and EPCs. After 10 days, the complete blood cell, renal and liver factors, serum levels of inflammatory cytokines, and angiogenic factors were measured. Simultaneous treatment with EPCs and TEO significantly increased the survival of mice with sepsis and modulated the inflammatory response by reducing the serum levels of pro-inflammatory cytokines. Moreover, this treatment significantly reduced the level of white blood cells and neutrophils and increased the number of red blood cells, the percentage of hematocrit, and hemoglobin. The combination of TEO with EPCs decreased organ injuries and was assessed by lower levels of the liver enzymes alanine aminotransferase and aspartate aminotransferase compared to the sepsis group. Administration of EPCs and TEO also significantly improved angiogenic factors, lung function, and toll-like receptor 4 expression. EPCs in combination with TEO increase survival in the LPS-induced sepsis mice model by acting on several targets. Thus, the combination of TEO with EPCs can be a feasible approach for the future clinical treatment and control of sepsis.


Assuntos
Células Progenitoras Endoteliais , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Óleos Voláteis , Sepse , Thymus (Planta) , Animais , Lipopolissacarídeos/farmacologia , Óleos Voláteis/farmacologia , Sepse/induzido quimicamente , Sepse/tratamento farmacológico , Camundongos , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/efeitos dos fármacos , Thymus (Planta)/química , Masculino
8.
BMC Vet Res ; 20(1): 269, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907235

RESUMO

This study was conducted to evaluate the effects of thyme, ginger, and their nano-particles, as alternatives to antibiotic growth promotors (AGP), on productive performance, carcass traits, meat quality and gut health of broiler chickens. A total of 270 one-day-old broiler chicks were randomly distributed into 6 groups, each consisting of 3 replicates (n = 15 chicks/replicate). The birds in group 1 were fed the control diet which contained neither antibiotic growth promotors nor phytogenic feed additives (PFA). Birds in group 2 were fed diets containing 0.05% of AGP (Bacitracin methylene disalicylate). Chicks in group 3 and 4 were fed diets supplemented with 1.0% of thyme and ginger, respectively, whereas birds in group 5 and 6 were offered diets including 0.10% of nano-thyme and nano-ginger, respectively. The experiment lasted for 35 days. It was found that thyme and ginger with their nano-products, like the antibiotic, improved the body weight, weight gain and feed conversion rate of birds. The effect of ginger and nano-ginger on body weight and weight gain was greater than other treatments. During the overall feeding period, the feed cost of production was the highest in antibiotic group, but was the lowest in ginger and nano-ginger treatments. There was no effect of dietary treatments on carcass yield or organs weight except bursa of Fabricius and abdominal fat. Thyme, ginger and their nano-composites increased the weight of bursa and reduced the abdominal fat amount. The phytogenic additives and their nano-particles improved the colour, water holding capacity, and flavor of meat. Moreover, these additives reduced the total intestinal bacterial count as well as the total aerobic mesophilic count of meat. The effect of PFA and their nano-particles on the bacterial count was similar to that of antibiotic. In conclusion, thyme and ginger with their nano- particles can be considered as promising agents in feeding of broilers to improve the growth performance, gut health and meat quality. Moreover, these additives can be used as alternatives to AGP to overcome its health hazards and the high cost. The nanotechnology of herbal plants enables them to be added in smaller amounts in poultry diets with producing the same effect of raw ingredients, and this could be due to the higher bioavailability.


Assuntos
Ração Animal , Galinhas , Dieta , Carne , Nanopartículas , Thymus (Planta) , Zingiber officinale , Animais , Galinhas/crescimento & desenvolvimento , Galinhas/microbiologia , Zingiber officinale/química , Thymus (Planta)/química , Ração Animal/análise , Dieta/veterinária , Carne/normas , Nanopartículas/administração & dosagem , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino
9.
Exp Parasitol ; 262: 108778, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735517

RESUMO

Sheep haemonchosis is a disease that causes serious losses in livestock production, particularly with the increase of cases of anthelmintic resistance around the world. This justifies the urgent need of alternative solutions. The aim of this study was to determine the chemical profile, in vitro, and, in vivo, anthelmintic properties of Thymus capitatus essential oil. To evaluate the, in vitro, anthelmintic activity of the T. capitatus EO on Haemonchus contortus, two tests were used: egg hatch assay (EHA) and adult worm motility (AWM) assay. The nematicidal effect of this oil was evaluated, in vivo, in mice infected artificially with Heligmosomoides polygyrus using faecal egg count reduction (FECR) and total worm count reduction (TWCR). Chromatographic characterization of T.capitatus composition using gas chromatography coupled to mass spectrometry (GC-MS) demonstrated the presence of carvacrol (81.16%), as the major constituents. The IC50 values obtained was 1.9 mg/mL in the EHT. In the AWM assay; T. capitatus essential oil achieved 70.8% inhibition at 1 mg/mL after 8 h incubation. The in vivo, evaluation on H. polygyrus revealed a significant nematicidal effect 7 days post-treatment by inducing 49.5% FECR and 64.5% TWCR, using the highest dose (1600 mg/kg). The results of present study, demonstrate that T.capitatus EO possess a significant anthelmintic properties. Furthermore, it could be an alternative source of anthelmintic agents against gastrointestinal infections caused by H. contortus.


Assuntos
Anti-Helmínticos , Fezes , Flores , Cromatografia Gasosa-Espectrometria de Massas , Hemoncose , Haemonchus , Nematospiroides dubius , Óleos Voláteis , Contagem de Ovos de Parasitas , Infecções por Strongylida , Thymus (Planta) , Animais , Haemonchus/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Camundongos , Nematospiroides dubius/efeitos dos fármacos , Thymus (Planta)/química , Hemoncose/veterinária , Hemoncose/tratamento farmacológico , Hemoncose/parasitologia , Infecções por Strongylida/tratamento farmacológico , Infecções por Strongylida/veterinária , Infecções por Strongylida/parasitologia , Anti-Helmínticos/farmacologia , Anti-Helmínticos/isolamento & purificação , Anti-Helmínticos/uso terapêutico , Anti-Helmínticos/química , Fezes/parasitologia , Contagem de Ovos de Parasitas/veterinária , Flores/química , Feminino , Ovinos , Concentração Inibidora 50 , Monoterpenos/farmacologia , Monoterpenos/isolamento & purificação , Monoterpenos/química , Masculino , Doenças dos Ovinos/parasitologia , Doenças dos Ovinos/tratamento farmacológico , Cimenos
10.
Biomed Chromatogr ; 38(3): e5808, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38191948

RESUMO

Thymus linearis (Thyme) is a medicinal plant widely distributed throughout Asia. Various parts of thyme are utilized for diverse medicinal purposes, including its use as a tonic and diuretic, for cough relief, as a flavoring agent, in treating dysentery, and for alleviating stomach disorders. Numerous studies have been conducted to explore the unexploited potential of thyme. Thyme was collected from the northern region of Pakistan, and sun-mediated extraction was conducted. Phytochemical analysis, utilizing GC-MS, revealed numerous bioactive phytochemical constituents with disease-preventing roles, including detoxifying agents, antioxidants, anticancer compounds, dietary fiber, neuropharmacological agents, and immunity-potentiating agents, in the methanolic and ethanolic (14 days) extracts of the flower, leaf, and stem. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay results indicated that the ethanolic and methanolic extracts of the stem exhibited the highest antioxidant activity, reaching up to 67.34% and 62.73%, respectively, while the values for the flower and leaf extracts (both methanol and ethanol) were around 60%. The IC50 (half maximal inhibitory concentration) values were also calculated for all the samples, ranging between 7 and 9 µg/mL. Positive antibacterial and antifungal effects against Bacillus subtilis and Escherichia coli, as well as Aspergillus niger (fungi), were observed only in the extracts of the flower (both methanol and ethanol). The sun-mediated technique was used for extraction for the first time in this study. Therefore, this study introduces a novel approach to the extraction of bioactive compounds from medicinal plants, ultimately contributing to the development of herbal drugs with more convenient and cost-effective methods.


Assuntos
Plantas Medicinais , Thymus (Planta) , Antioxidantes/farmacologia , Antioxidantes/química , Metanol/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Thymus (Planta)/química , Antibacterianos/farmacologia , Antibacterianos/química , Plantas Medicinais/química , Compostos Fitoquímicos/farmacologia , Etanol
11.
Chem Biodivers ; 21(7): e202400500, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38719739

RESUMO

The Thymus genus includes various medicinal and aromatic species, cultivated worldwide for their unique medicinal and economic value. Besides, their conventional use as a culinary flavoring agent, Thymus species are well-known for their diverse biological effects, such as antioxidant, anti-fungal, anti-bacterial, anti-viral, anti-tumor, anti-inflammatory, anti-cancer, and anti-hypertensive properties. Hence, they are used in the treatment of fever, colds, and digestive and cardiovascular diseases. The pharmaceutical significance of Thymus plants is due to their high levels of bioactive components such as natural terpenoid phenol derivatives (p-cymene, carvacrol, thymol, geraniol), flavonoids, alkaloids, and phenolic acids. This review examines the phytochemicals, biological properties, functional food, and nutraceutical attributes of some important Thymus species, with a specific focus on their potential uses in the nutra-pharmaceutical industries. Furthermore, the review provides an insight into the mechanisms of biological activities of key phytochemicals of Thymus species exploring their potential for the development of novel natural drugs.


Assuntos
Thymus (Planta) , Thymus (Planta)/química , Humanos , Suplementos Nutricionais/análise , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Antioxidantes/farmacologia , Antioxidantes/química
12.
Chem Biodivers ; 21(5): e202302115, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38415904

RESUMO

There is a burgeoning focus on utilizing the antifungal and antioxidant properties of essential oils derived from various plants as a modern and natural approach to combat the growth of fungi that contaminate food. In this study, we used essential oils extracted from Thymus daenensis Celak. subsp. daenensis to address three mycotoxin-producing species of Aspergillus, specifically A. flavus, A. parasiticus, and A. niger, all of which are recognized contaminants of food and agricultural products. Concurrently, the antioxidant properties of the essential oils were evaluated, revealing their noteworthy role in the antifungal activity. Essential oils were derived from T. daenensis subsp. daenensis was observed to have a significant inhibitory effect on all three species of Aspergillus, as evidenced by the minimum inhibitory concentration (MIC) ranging from 575 to 707 ppm and the half-maximal inhibitory concentration (IC50) ranging from 237 to 280 ppm. These results confirm the strong antifungal activity of the essential oils. Furthermore, the essential oil exhibited free radical scavenging activity, resulting in an EC50 value of 37.1 µg/ml. In summary, T. daenensis subsp. daenensis essential oil demonstrated a competitive advantage over other similar plants and synthetic antibiotics. This indicates the promising potential of this essential oil as a natural antifungal agent to control Aspergillus growth and mycotoxin contamination. It offers an alternative or complementary approach to conventional antifungal agents and could be a valuable addition to the arsenal of natural remedies to address fungal contamination in food and agricultural products.


Assuntos
Antifúngicos , Aspergillus , Sequestradores de Radicais Livres , Testes de Sensibilidade Microbiana , Óleos Voláteis , Timol , Thymus (Planta) , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Aspergillus/efeitos dos fármacos , Aspergillus/química , Thymus (Planta)/química , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/química , Timol/farmacologia , Timol/química , Monoterpenos/farmacologia , Monoterpenos/química , Monoterpenos/isolamento & purificação
13.
Chem Biodivers ; 21(9): e202300563, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38880770

RESUMO

This study aimed to define the chemical composition of Moroccan Thymus capitatus essential oil, and to investigate its in vitro antioxidant and antifungal activities against human pathogenic fungi. Chemical analysis using GC-FID and GC-MS system revealed 28 constituents, representing 99 % of total compounds. Oxygenated monoterpenes represented the highest proportion (79.79 %), among which carvacrol (75.73 %) was the predominant compound, followed by linalol (2.26 %). Monoterpene hydrocarbons represented the second major fraction (16.29 %): within them, the predominant constituents were γ-terpinene (5,55 %), ρ-cymene (5,50 %), and ß-caryophyllene (2.73 %). Antioxidant activity was performed by DPPH scavenging, ß-carotene bleaching inhibition, and ferric reducing power. T. capitatus revealed pronounced DPPH radical scavenging activity (IC50=110.53 µg mL-1), strong ferric reducing ability (EC50=644.4 µg mL-1), and a remarkable degree of protection against lipid peroxidation during ß-carotene bleaching inhibition (IC50=251.76 µg mL-1). Antifungal activity was carried out against Candida, Aspergillus, and Rhizopus species by microdilution method. T. capitatus exhibited potent anticandidal activity (MIC=125-500 µg mL-1) and strong inhibition against filamentous fungi (MIC=250-500 µg mL-1). Its hemolytic activity against human erythrocytes had a low toxic effect at concentrations lower than 1250 µg mL-1. The useful antioxidant properties and broad antifungal effect of T. capitatus EO confirm its considerable potential for the food industry and for phytopharmaceutical production.


Assuntos
Antifúngicos , Antioxidantes , Testes de Sensibilidade Microbiana , Óleos Voláteis , Thymus (Planta) , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Humanos , Thymus (Planta)/química , Hemólise/efeitos dos fármacos , Compostos de Bifenilo/antagonistas & inibidores , Marrocos , Picratos/antagonistas & inibidores , beta Caroteno/química , Fungos/efeitos dos fármacos
14.
Int J Mol Sci ; 25(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39063231

RESUMO

Chemical residues in food pose health risks such as cancer and liver issues. This has driven the search for safer natural alternatives to synthetic fungicides and preservatives. The aim of this study was to characterize the chemical composition of the essential oils (EO), determine the polyphenolic contents, and evaluate the in vitro antioxidant and antifungal activities of methanol extracts (ME), essential oils (EO), and powders from Rosmarinus officinalis L. (rosemary) and Thymus ciliatus (Desf) Benth. (thyme) from the M'sila region, Algeria. The chemical composition of the EOs was determined by GC-MS. R. officinalis EO was composed of 31 components, mainly camphor (41.22%), camphene (18.14%), and α-pinene (17.49%); T. ciliatus EO was composed of 58 components, mainly, in percentage, α-pinene (22.18), myrcene (13.13), ß-pinene (7.73), ß-caryophyllene (10.21), and germacrene D (9.90). The total phenols and flavonoids were determined spectrophotometrically, and the rosemary ME was found to possess the highest polyphenolic content (127.1 ± 2.40 µg GAE/mg), while the thyme ME had the highest flavonoid content (48.01 ± 0.99 µg QE/mg). The antioxidant activity was assessed using three methods: rosemary ME was the most potent, followed by DPPH (IC50 = 13.43 ± 0.14 µg/mL), ß-carotene/linoleic acid (IC50 = 39.01 ± 2.16 µg/mL), and reducing power (EC50 = 15.03 ± 1.43 µg/mL). Antifungal activity was assessed for 32 pathogenic and foodborne fungi. Four methods were applied to the solid medium. Incorporating the powdered plant into the culture medium (at 10%) reduced the fungal growth to greater than 50% in 21.88% and 6.25% of all fungal isolates, for R. officinalis and T. ciliatus, respectively. The ME, applied by the well diffusion method (0.1 g/mL), was less effective. Different concentrations of EO were tested. Incorporating the EO into the culture medium (1500 µL/L) inhibited 50% of the molds to levels of 50 and 75% for R. officinalis and T. ciliatus, respectively, with the complete inhibition of four fungi. Fumigated EO (15 µL) inhibited 65% of the molds to levels of 65 and 81.25% for R. officinalis and T. ciliatus, respectively, with the complete inhibition of five fungi. There was little to no sporulation in conjunction with the inhibition. Our results revealed some of the potential of the studied plants to fight foodborne molds and presented their promising characteristics as a source of alternatives to chemical pesticides and synthetic preservatives. Further studies are needed to find adequate application techniques in the food safety area.


Assuntos
Antifúngicos , Antioxidantes , Óleos Voláteis , Extratos Vegetais , Rosmarinus , Thymus (Planta) , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Thymus (Planta)/química , Rosmarinus/química , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antifúngicos/farmacologia , Antifúngicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/análise , Monoterpenos Bicíclicos/farmacologia , Monoterpenos Bicíclicos/química , Metanol/química , Pós , Monoterpenos Acíclicos/farmacologia , Monoterpenos/farmacologia , Monoterpenos/análise , Monoterpenos/química , Cânfora/farmacologia , Cânfora/análise , Cânfora/química , Alcenos
15.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732065

RESUMO

The research investigates the influence of different lighting conditions and soil treatments, in particular the application of food polymers separately and in combination with spores of Trichoderma consortium, on the growth and development of herbs-Thymus vulgaris and Thymus serpyllum. The metabolic analysis focuses on detecting changes in the levels of biologically active compounds such as chlorophyll a and b, anthocyanins, carotenoids, phenolic compounds (including flavonoids), terpenoids, and volatile organic compounds with potential health-promoting properties. By investigating these factors, the study aims to provide insights into how environmental conditions affect the growth and chemical composition of selected plants and to shed light on potential strategies for optimising the cultivation of these herbs for the improved quality and production of bioactive compounds. Under the influence of additional lighting, the growth of T. vulgaris and T. serpyllum seedlings was greatly accelerated, resulting in an increase in shoot biomass and length, and in the case of T. vulgaris, an increase in carotenoid and anthocyanin contents. Regarding secondary metabolites, the most pronounced changes were observed in total antioxidant capacity and flavonoid content, which increased significantly under the influence of additional lighting. The simultaneous or separate application of Trichoderma and food polymers resulted in an increase in flavonoid content in the leaves of both Thymus species. The increase in terpenoid content under supplemental light appears to be related to the presence of Trichoderma spores as well as food polymers added to the soil. However, the nature of these changes depends on the thyme species. Volatile compounds were analysed using an electronic nose (E-nose). Eight volatile compounds (VOCs) were tentatively identified in the vapours of T. vulgaris and T. serpyllum: α-pinene, myrcene, α-terpinene, γ-terpinene; 1,8-cineole (eucalyptol), thymol, carvacrol, and eugenol. Tendencies to increase the percentage of thymol and γ-terpinene under supplemental lighting were observed. The results also demonstrate a positive effect of food polymers and, to a lesser extent, Trichoderma fungi on the synthesis of VOCs with health-promoting properties. The effect of Trichoderma and food polymers on individual VOCs was positive in some cases for thymol and γ-terpinene.


Assuntos
Carotenoides , Luz , Thymus (Planta) , Trichoderma , Compostos Orgânicos Voláteis , Thymus (Planta)/química , Thymus (Planta)/metabolismo , Trichoderma/metabolismo , Trichoderma/crescimento & desenvolvimento , Carotenoides/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Clorofila/metabolismo , Terpenos/metabolismo , Flavonoides/metabolismo , Flavonoides/análise , Antioxidantes/metabolismo , Antocianinas/metabolismo , Antocianinas/análise , Clorofila A/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento
16.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791385

RESUMO

Natural products are generally considered safe for human consumption, but this classification is often based on ethnobotanical surveys or their use in traditional medicine over a long period of time. However, edaphoclimatic factors are known to produce different chemotypes, which may affect the safety profile and bioactivities, and are not commonly considered for plants exploited as crops worldwide. Thymus carnosus Boiss., a thyme species with various health-promoting effects, has potential pharmaceutical applications, but edaphoclimatic factors were found to significantly impact its phytochemical composition. Thus, we aimed to assess the safety profile of T. carnosus extracts obtained from plants harvested in two locations over three consecutive years and to establish an association with specific components, an essential study in the search for new sources of nutraceuticals. Thus, the antiproliferative effect of an aqueous decoction (AD), hydroethanolic (HE) extracts, and major extracts' components of T. carnosus was evaluated on intestinal (Caco-2) and hepatic (HepG2) cell models, revealing effects dependent on extract type, cell line, and tested compounds. Flavonoids induced different cytotoxic patterns, which could be attributed to molecular structural differences. Flow cytometry analysis showed apoptosis and necrosis induction, mediated by the modulation of intracellular reactive oxygen species and mitochondrial membrane potential, effects that were dependent on the cell line and phytochemical composition and on the synergism between extracts components, rather than on the activity of an isolated compound. While ursolic acid was the component with the strongest impact on the difference between extraction methods, flavonoids assumed a pivotal role in the response of different cell lines to the extracts. We report for the first time, for Thymus spp. extracts, that variations in the phytochemical composition clearly influence the cellular response, thus highlighting the need for extract standardization for medicinal applications.


Assuntos
Estresse Oxidativo , Compostos Fitoquímicos , Extratos Vegetais , Thymus (Planta) , Thymus (Planta)/química , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/análise , Células CACO-2 , Células Hep G2 , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Flavonoides/farmacologia , Flavonoides/química , Flavonoides/análise , Biomarcadores
17.
Molecules ; 29(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39124929

RESUMO

There is considerable interest in the use of essential oils for food preservation, but their effect on the aroma profile of a product is poorly understood. This study investigated the effect of thyme essential oil (EO) addition at increasing concentrations (0.005, 0.01, 0.02, and 0.03% v/w) on the volatile compound composition of vacuum-packed minced turkey meat after storage for 8 days at 1-2 °C. The aroma profile of the meat was determined using the HS-SPME/GCMS (headspace solid-phase microextraction/gas chromatography-mass spectrometry) method. The results were also analysed by PCA (principal component analysis). The addition of thyme EO had a modifying effect on the aroma profile of meat-derived components, e.g., the formation of benzeneacetaldehyde, benzyl alcohol, 4,7-dimethylbenzofuran, hexathiane, hexanal, and 1-hexanol was reduced and the appearance of 9-hexadecenoic acid was observed in the stored samples. The increase in EO concentration affected the levels of its individual components in the meat headspace in different ways. In terms of fat rancidity indices, even a 0.005% addition of this essential oil significantly reduced the peroxide value. Quantitative descriptive analysis (QDA) showed that the addition of thyme EO reduced or masked the intensity of unpleasant odours associated with meat spoilage. In the aroma analysis, the turkey with 0.02% v/w EO scored highest, and pleasant citrus notes were found.


Assuntos
Conservação de Alimentos , Odorantes , Óleos Voláteis , Thymus (Planta) , Perus , Óleos Voláteis/química , Thymus (Planta)/química , Animais , Vácuo , Odorantes/análise , Conservação de Alimentos/métodos , Cromatografia Gasosa-Espectrometria de Massas , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Embalagem de Alimentos , Carne/análise , Armazenamento de Alimentos/métodos
18.
Molecules ; 29(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38930892

RESUMO

The Lamiaceae family, which includes several well-known aromatic plants, is scientifically relevant due to its essential oils (EOs). In this work, four EOs from Mediterranean species, namely Origanum vulgare L., Rosmarinus officinalis L., Salvia officinalis L., and Thymus vulgaris L., were evaluated for their volatile profiles and the biological activity in vitro to assess their potential use in the food and cosmetic sector. GC/MS analysis revealed dominant compounds, such as carvacrol, thymol, and eucalyptol. Regarding biological action, the samples exhibited antioxidant, cytotoxic, anti-inflammatory, antimicrobial, and antifungal activities, with O. vulgare and T. officinalis standing out. T. vulgaris showed the lowest EC50 in the reducing power assay, and O. vulgare had the lowest EC50 in the DPPH assay. Most EOs also displayed excellent anti-inflammatory responses and antifungal properties, with O. vulgare and T. vulgaris also demonstrating antibacterial activity. All EOs from Mediterranean species showed cytotoxicity against tumoral cell lines. Overall, the selected EOs stood out for their interesting bioactivities, with the obtained results underscoring their potential as natural preservatives and bioactive agents in various industrial applications, including food, pharmaceuticals, and cosmetics.


Assuntos
Antioxidantes , Lamiaceae , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Lamiaceae/química , Antioxidantes/farmacologia , Antioxidantes/química , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Cromatografia Gasosa-Espectrometria de Massas , Origanum/química , Salvia officinalis/química , Linhagem Celular Tumoral , Thymus (Planta)/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Plantas Comestíveis/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Timol/farmacologia , Timol/química , Testes de Sensibilidade Microbiana , Cimenos
19.
Molecules ; 29(19)2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39407547

RESUMO

The aim of this study was to determine the activity of common thyme (Thymus vulgare L.), Greek oregano (Origanum vulgare L. ssp. hirtum), and common oregano (Origanum vulgare L. ssp. vulgare) essential oils (EOs) against selected phytopathogenic microorganisms in relation to their chemical profile. The EOs were obtained from the herbs of 2-year-old plants cultivated in the organic farming system in a temperate climate in Central Europe. The EOs' composition was determined by GC/MS and GC/FID. The investigated species were represented by the following three chemotypes: 'thymol' for common thyme, 'carvacrol' for Greek oregano, and mixed 'caryophyllene oxide + ß-caryophyllene' for common oregano. The antimicrobial activity of the EOs was assessed based on minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) values. The plant pathogenic bacteria Pseudomonas syringae, Xanthomonas hortorum, Erwinia carotovora, and fungi: Fusarium culmorum, Alternaria alternata, Botrytis cinerea, Epicoccum purpurascens, Cladosporium cladosporioides, Phoma strasseri, and Pythium debaryanum were tested. The EOs revealed a stronger inhibitory effect against fungal growth in comparison to bacterial growth (MIC: 0.016-2 µL/mL for fungi and 0.125-4 µL/mL for bacteria). Common thyme and Greek oregano EOs indicated stronger antimicrobial power than common oregano EO. These results were associated with the chemical profile of the analysed EOs. The growth of examined bacteria and fungi strains (in particular, X. hortorum, F. culmorum, and P. debaryanum) were negatively correlated with the content of phenolic monoterpenes and monoterpene hydrocarbons. Among the tested strains, P. strasseri turned out to be the most sensitive (MIC 0.016 µL/mL) and E. carotovora the most resistant (MIC 0.250-4 µL/mL) to all investigated EOs.


Assuntos
Testes de Sensibilidade Microbiana , Óleos Voláteis , Origanum , Thymus (Planta) , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Origanum/química , Thymus (Planta)/química , Antifúngicos/farmacologia , Antifúngicos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Cimenos/farmacologia , Cimenos/química , Antibacterianos/farmacologia , Antibacterianos/química , Cromatografia Gasosa-Espectrometria de Massas , Sesquiterpenos Policíclicos/farmacologia , Sesquiterpenos Policíclicos/química , Timol/farmacologia , Timol/química
20.
Molecules ; 29(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38792237

RESUMO

Currently, researchers are looking for ways to replace synthetic pesticides with substances of natural origin. Essential oils are produced by plants, among other things, to protect against pathogens, which is why there is interest in their use as fungicides. This experiment assessed the composition of essential oils from a commercial source, their impact on the development of mycelium of pathogens of the Fusarium genus, and the possibility of using them as a pre-sowing treatment. Grains of winter wheat (Triticum aestivum L.) and corn (Zea mays L.) were inoculated with a suspension of mycelium and spores of fungi of the Fusarium genus and then soaked in solutions containing oils of sage (Salvia officinalis L.), cypress (Cupressus sempervirens L.), cumin (Cuminum cyminum L.), and thyme (Thymus vulgaris L.). The obtained results indicate that thyme essential oil had the strongest effect on limiting the development of Fusarium pathogens and seedling infection, but at the same time it had an adverse effect on the level of germination and seedling development of the tested plants. The remaining essential oils influenced the mentioned parameters to varying degrees. Selected essential oils can be an alternative to synthetic fungicides, but they must be selected appropriately.


Assuntos
Fusarium , Germinação , Óleos Voláteis , Triticum , Zea mays , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Zea mays/microbiologia , Zea mays/crescimento & desenvolvimento , Zea mays/efeitos dos fármacos , Triticum/microbiologia , Triticum/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Germinação/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Thymus (Planta)/química , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/microbiologia , Óleos de Plantas/farmacologia , Óleos de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA