Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 15(11): e1008014, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31703116

RESUMO

Clostridium perfringens epsilon toxin (ETX) is responsible for causing the economically devastating disease, enterotoxaemia, in livestock. It is well accepted that ETX causes blood brain barrier (BBB) permeability, however the mechanisms involved in this process are not well understood. Using in vivo and in vitro methods, we determined that ETX causes BBB permeability in mice by increasing caveolae-dependent transcytosis in brain endothelial cells. When mice are intravenously injected with ETX, robust ETX binding is observed in the microvasculature of the central nervous system (CNS) with limited to no binding observed in the vasculature of peripheral organs, indicating that ETX specifically targets CNS endothelial cells. ETX binding to CNS microvasculature is dependent on MAL expression, as ETX binding to CNS microvasculature of MAL-deficient mice was not detected. ETX treatment also induces extravasation of molecular tracers including 376Da fluorescein salt, 60kDA serum albumin, 70kDa dextran, and 155kDA IgG. Importantly, ETX-induced BBB permeability requires expression of both MAL and caveolin-1, as mice deficient in MAL or caveolin-1 did not exhibit ETX-induced BBB permeability. Examination of primary murine brain endothelial cells revealed an increase in caveolae in ETX-treated cells, resulting in dynamin and lipid raft-dependent vacuolation without cell death. ETX-treatment also results in a rapid loss of EEA1 positive early endosomes and accumulation of large, RAB7-positive late endosomes and multivesicular bodies. Based on these results, we hypothesize that ETX binds to MAL on the apical surface of brain endothelial cells, causing recruitment of caveolin-1, triggering caveolae formation and internalization. Internalized caveolae fuse with early endosomes which traffic to late endosomes and multivesicular bodies. We believe that these multivesicular bodies fuse basally, releasing their contents into the brain parenchyma.


Assuntos
Toxinas Bacterianas/farmacologia , Barreira Hematoencefálica/fisiopatologia , Encéfalo/fisiopatologia , Caveolina 1/fisiologia , Permeabilidade da Membrana Celular/fisiologia , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/fisiologia , Transcitose/efeitos dos fármacos , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cavéolas/efeitos dos fármacos , Cavéolas/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Chem Pharm Bull (Tokyo) ; 68(4): 316-325, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32238649

RESUMO

Discriminatory drug delivery into target cells is essential to effectively elicit the drug activity and to avoid off-target side effects; however, transporting drugs across the cell membrane is difficult due to factors such as molecular size, hydrophilicity, intercellular adhesiveness, and efflux transporters, particularly, in the brain capillary endothelial cells. Drug delivery into the brain is blocked by the blood-brain barrier (BBB). Thus, developing drugs for the central nervous system (CNS) diseases remains a challenge. The approach based on receptor-mediated transcytosis (RMT) can overcome this impassable problem at the BBB. Well-designed molecules for RMT form conjugates with the ligand and drugs via linkers or nanoparticles. Cell penetrating peptides (CPPs), receptor-targeting peptides, and monoclonal antibodies (mAbs) are often used as ligands. The binding of ligand to the receptor on the endothelial cell surface induces endocytosis. Existing exosomes comprising the conjugates move in the cytoplasm and fuse with the opposite plasma membrane to release them. Subsequently, the transcytosed conjugate-loaded drugs or released drugs from the conjugates elicit activity in the brain. As receptors, transferrin receptor (TfR), low-density lipoprotein receptor (LDLR), and insulin receptor (InsR) have been used to intendedly induce transcytosis. Presently, several clinical trials on CNS drugs for Alzheimer's and Parkinson disease are hindered due to poor drug distribution into the brain. Therefore, this strategy based on RMT is a promising method for CNS drugs to be transported into the brain. In this review, I introduce the practicality and possibility of drug delivery into brain across the BBB using RMT.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Fármacos do Sistema Nervoso Central/farmacologia , Sistemas de Liberação de Medicamentos , Receptores de Superfície Celular/metabolismo , Transcitose/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Fármacos do Sistema Nervoso Central/química , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Receptores de Superfície Celular/efeitos dos fármacos
3.
Pharm Biol ; 58(1): 518-527, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32501184

RESUMO

Context: Oridonin (ORI) has obvious anticancer effects, but its solubility is poor. Nanocrystal (NC) is a novel nano-drug delivery system for increasing bioavailability for ORI. However, the endocytosis and transcytosis behaviours of oridonin nanocrystals (ORI-NCs) through epithelial membrane are still unclear.Objectives: ORI-NCs were prepared and characterized. The in vitro cytotoxicity and endocytosis and transcytosis process on Madin-Darby canine kidney (MDCK) monolayer were investigated.Materials and methods: Anti-solvent precipitation method was adopted in preparation of ORI-NCs. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were adopted to explore crystallography of ORI-NCs. Sulforhodamine B (SRB) method was used to test the inhibition effect on proliferation of MDCK cells. Quantitative analysis by HPLC was performed to study the endocytosis and transcytosis of ORI-NCs and ORI bulk drug, and the process was observed by confocal laser spectrum microscopy (CLSM) and flow cytometry.Results: The particle size of ORI-NCs was about 274 nm. The crystallography form of ORI was not changed after prepared into NCs. The dissolution rate of ORI-NCs was higher than pure ORI in 120 min. At higher concentrations (34, 84 and 135 µg/mL), ORI-NCs significantly reduced the cell viability compared with free ORI (p < 0.05, p < 0.01). ORI-NCs demonstrated higher endocytosis in MDCK cells than free ORI (p < 0.01). In the transport process, ORI-NC was taken up into cells in an intact form, and excreted out from basolateral membrane of polarized epithelial cells in an intact form. The internalization and transmembrane amount increased as a function of time.Conclusions: ORI-NCs transported through the MDCK monolayers in an intact form.


Assuntos
Diterpenos do Tipo Caurano/metabolismo , Endocitose/fisiologia , Células Epiteliais/metabolismo , Nanopartículas/metabolismo , Transcitose/fisiologia , Animais , Diterpenos do Tipo Caurano/farmacologia , Cães , Endocitose/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Madin Darby de Rim Canino , Nanopartículas/administração & dosagem , Tamanho da Partícula , Transcitose/efeitos dos fármacos
4.
J Pharmacol Exp Ther ; 368(2): 317-325, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30420359

RESUMO

Prostaglandin transporter Oatp2a1/Slco2a1 is expressed at the apical (AP) membranes of type-1 alveolar epithelial (AT1) cells. To investigate the role of OATP2A1 in prostaglandin E2 (PGE2) handling by alveolar epithelium, we studied PGE2 transport across and secretion from monolayers of rat AT1-like (AT1-L) cells obtained by trans-differentiation of type-2 alveolar epithelial cells isolated from male Wistar rats. Rat AT1-L cells expressed Oatp2a1/Slco2a1, together with smaller amounts of Mrp4/Abcc4 and Oct1/Slc22a1 PGE2 uptake was saturable with Km 43.9 ± 21.9 nM. Transcellular transport of PGE2 across AT1-L cells grown on permeable filters in the AP-to-basolateral (BL) direction was 5-fold greater than that in the reverse direction and was saturable with Km 118 ± 26.8 nM; it was significantly inhibited by OATP inhibitors bromosulfophthalein (BSP) and suramin, and an MRP4 inhibitor, Ceefourin 1. We simultaneously monitored the effects of BSP on the distribution of PGE2 produced by bradykinin-treated AT1-L cells and PGE2-d4 externally added on the AP side of the cells. In the presence of BSP, PGE2 increased more rapidly on the AP side, whereas PGE2-d4 decreased more slowly on the AP side. The decrease in PGE2-d4 from the AP side corresponded well to the increase on the BL side, indicating that intracellular metabolism did not occur. These results suggest that Oatp2a1 and Mrp4 mediate transepithelial transport of PGE2 in the AP-to-BL direction. Therefore, OATP2A1 may be an important regulator of PGE2 in alveolar epithelium by reducing secretion of PGE2 and facilitating "resecretion" of PGE2 present in the alveolar lumen to the interstitial space or blood.


Assuntos
Dinoprostona/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Alvéolos Pulmonares/metabolismo , Mucosa Respiratória/metabolismo , Transcitose/fisiologia , Animais , Benzotiazóis/farmacologia , Relação Dose-Resposta a Droga , Masculino , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Alvéolos Pulmonares/efeitos dos fármacos , Ratos , Ratos Wistar , Mucosa Respiratória/efeitos dos fármacos , Transcitose/efeitos dos fármacos , Triazóis/farmacologia
5.
Arterioscler Thromb Vasc Biol ; 38(10): 2283-2294, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30354216

RESUMO

Objective- The atheroprotective effects of estrogen are independent of circulating lipid levels. Whether estrogen regulates transcytosis of LDL (low-density lipoprotein) across the coronary endothelium is unknown. Approach and Results- Using total internal reflection fluorescence microscopy, we quantified transcytosis of LDL across human coronary artery endothelial cells from multiple donors. LDL transcytosis was significantly higher in cells from men compared with premenopausal women. Estrogen significantly attenuated LDL transcytosis by endothelial cells from male but not female donors; transcytosis of albumin was not affected. Estrogen caused downregulation of endothelial SR-BI (scavenger receptor class B type 1), and overexpression of SR-BI was sufficient to restore LDL transcytosis. Similarly, depletion of SR-BI by siRNA attenuated endothelial LDL transcytosis and prevented any further effect of estrogen. In contrast, treatment with estrogen had no effect on SR-BI expression by liver cells. Inhibition of estrogen receptors α and ß had no effect on estrogen-mediated attenuation of LDL transcytosis. However, estrogen's effect on LDL transcytosis was blocked by depletion of the GPER (G-protein-coupled estrogen receptor). GPER was found to be enriched in endothelial cells compared with hepatocytes and is reported to signal via transactivation of the EGFR (epidermal growth factor receptor); inhibition of EGFR prevented the effect of estrogen on LDL transcytosis and SR-BI mRNA. Last, SR-BI expression was significantly higher in human coronary artery endothelial cells from male compared with premenopausal female donors. Conclusions- Estrogen significantly inhibits LDL transcytosis by downregulating endothelial SR-BI; this effect requires GPER.


Assuntos
Vasos Coronários/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Estradiol/farmacologia , Lipoproteínas LDL/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Depuradores Classe B/metabolismo , Transcitose/efeitos dos fármacos , Células Cultivadas , Vasos Coronários/metabolismo , Regulação para Baixo , Células Endoteliais/metabolismo , Feminino , Humanos , Masculino , Microscopia de Fluorescência/métodos , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Depuradores Classe B/genética , Fatores Sexuais , Transdução de Sinais/efeitos dos fármacos
6.
J Cell Sci ; 129(11): 2190-201, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27034138

RESUMO

The Cu(+) pump ATP7B plays an irreplaceable role in the elimination of excess Cu(+) by the hepatocyte into the bile. The trafficking and site of action of ATP7B are subjects of controversy. One current proposal is that an increase in intracellular Cu(+) results in the translocation of ATP7B to the lysosomes and excretion of excess Cu(+) through lysosomal-mediated exocytosis at the bile canaliculus. Here, we show that ATP7B is transported from the trans-Golgi network (TGN) to the bile canaliculus by basolateral sorting and endocytosis, and microtubule-mediated transcytosis through the subapical compartment. Trafficking ATP7B is not incorporated into lysosomes, and addition of Cu(+) does not cause relocalization of lysosomes and the appearance of lysosome markers in the bile canaliculus. Our data reveal the pathway of the Cu(+)-mediated transport of ATP7B from the TGN to the bile canaliculus and indicates that the bile canaliculus is the primary site of ATP7B action in the elimination of excess Cu(.)


Assuntos
Adenosina Trifosfatases/metabolismo , Canalículos Biliares/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Cobre/farmacologia , Transcitose/efeitos dos fármacos , Animais , Canalículos Biliares/efeitos dos fármacos , Brefeldina A/farmacologia , Compartimento Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , ATPases Transportadoras de Cobre , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células Hep G2 , Humanos , Hidrazonas/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Macrolídeos/farmacologia , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Transporte Proteico/efeitos dos fármacos , Ratos , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/metabolismo , Rede trans-Golgi/efeitos dos fármacos , Rede trans-Golgi/metabolismo
7.
Exp Cell Res ; 355(2): 153-161, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28390677

RESUMO

Transport of therapeutic agents across epithelial barriers is an important element in drug delivery. Transepithelial flux is widely used as a measure of transit across an epithelium, however it is most typically employed as a relative as opposed to absolute measure of molecular movement. Here, we have used the calcium switch approach to measure the maximum rate of paracellular flux through unencumbered intercellular junctions as a method to calibrate the flux rates for a series of tracers ranging in 0.6-900kDa in size across barriers composed of human colon epithelial (Caco-2) cells. We then examined the effects of nanostructured films (NSFs) on transepithelial transport. Two different NSF patterns were used, Defined Nanostructure (DN) 2 imprinted on polypropylene (PP) and DN3 imprinted on polyether ether ketone (PEEK). NSFs made direct contact with cells and decreased their barrier function, as measured by transepithelial resistance (TER), however cell viability was not affected. When NSF-induced transepithelial transport of Fab fragment (55kDa) and IgG (160kDa) was measured, it was unexpectedly found to be significantly greater than the maximum paracellular rate as predicted using cells cultured in low calcium. These data suggested that NSFs stimulate an active transport pathway, most likely transcytosis, in addition to increasing paracellular flux. Transport of IgG via transcytosis was confirmed by immunofluorescence confocal microscopy, since NSFs induced a significant level of IgG endocytosis by Caco-2 cells. Thus, NSF-induced IgG flux was attributable to both transcytosis and the paracellular route. These data provide the first demonstration that transcytosis can be stimulated by NSFs and that this was concurrent with increased paracellular permeability. Moreover, NSFs with distinct architecture paired with specific substrates have the potential to provide an effective means to regulate transepithelial transport in order to optimize drug delivery.


Assuntos
Células Epiteliais/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Nanoestruturas/química , Transcitose/efeitos dos fármacos , Células CACO-2 , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Humanos , Propriedades de Superfície
8.
J Emerg Med ; 55(2): 192-205, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29731287

RESUMO

BACKGROUND: Hyperkalemia is a common electrolyte disorder that can result in morbidity and mortality if not managed appropriately. OBJECTIVES: This review evaluates the classic treatments of hyperkalemia and discusses controversies and new medications for management. DISCUSSION: Potassium (K+) plays a key role in determining the transmembrane potentials of "excitable membranes" present in nerve and muscle cells. K+ is the predominant intracellular cation, and clinical deterioration typically ensues when patients develop sufficiently marked elevation in extracellular fluid concentrations of K+ (hyperkalemia). Hyperkalemia is usually detected via serum clinical laboratory measurement. The most severe effect of hyperkalemia includes various cardiac dysrhythmias, which may result in cardiac arrest and death. Treatment includes measures to "stabilize" cardiac membranes, to shift K+ from extracellular to intracellular stores, and to promote K+ excretion. Calcium gluconate 10% dosed 10 mL intravenously should be provided for membrane stabilization, unless the patient is in cardiac arrest, in which case 10 mL calcium chloride is warranted. Beta-agonists and intravenous insulin should be given, and some experts recommend the use of synthetic short-acting insulins rather than regular insulin. Dextrose should also be administered, as indicated by initial and serial serum glucose measurements. Dialysis is the most efficient means to enable removal of excess K+. Loop and thiazide diuretics can also be useful. Sodium polystyrene sulfonate is not efficacious. New medications to promote gastrointestinal K+ excretion, which include patiromer and sodium zirconium cyclosilicate, hold promise. CONCLUSIONS: Hyperkalemia can be deadly, and treatment requires specific measures including membrane stabilization, cellular shift, and excretion.


Assuntos
Hiperpotassemia/terapia , Resultado do Tratamento , Acidose/tratamento farmacológico , Soluções Tampão , Resinas de Troca de Cátion/uso terapêutico , Diálise/métodos , Combinação de Medicamentos , Eletrocardiografia/métodos , Glucose/uso terapêutico , Humanos , Hiperpotassemia/diagnóstico , Hipoglicemia/tratamento farmacológico , Hipoglicemia/etiologia , Insulina/efeitos adversos , Insulina/uso terapêutico , Poliestirenos/uso terapêutico , Potássio/análise , Potássio/sangue , Receptor de Insulina/efeitos adversos , Receptor de Insulina/uso terapêutico , Bicarbonato de Sódio/uso terapêutico , Transcitose/efeitos dos fármacos , Transcitose/fisiologia
9.
J Biol Chem ; 291(7): 3174-83, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26719327

RESUMO

Several different receptor proteins have been identified that bind monomeric, oligomeric, or fibrillar forms of amyloid-ß (Aß). "Good" receptors internalize Aß or promote its transcytosis out of the brain, whereas "bad" receptors bind oligomeric forms of Aß that are largely responsible for the synapticloss, memory impairments, and neurotoxicity that underlie Alzheimer disease. The prion protein both removes Aß from the brain and transduces the toxic actions of Aß. The clustering of distinct receptors in cell surface signaling platforms likely underlies the actions of distinct oligomeric species of Aß. These Aß receptor-signaling platforms provide opportunities for therapeutic intervention in Alzheimer disease.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Receptores de Superfície Celular/agonistas , Transdução de Sinais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/química , Animais , Apoptose/efeitos dos fármacos , Humanos , Ligantes , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/agonistas , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Terapia de Alvo Molecular , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/química , Neurônios/efeitos dos fármacos , Neurônios/patologia , Nootrópicos/farmacologia , Nootrópicos/uso terapêutico , Proteínas PrPC/agonistas , Proteínas PrPC/antagonistas & inibidores , Proteínas PrPC/metabolismo , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/tratamento farmacológico , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Agregação Patológica de Proteínas/prevenção & controle , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Agregação de Receptores/efeitos dos fármacos , Receptor para Produtos Finais de Glicação Avançada/agonistas , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/metabolismo , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcitose/efeitos dos fármacos
10.
J Cell Physiol ; 232(12): 3565-3573, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28112392

RESUMO

We previously described albumin endocytosis through caveolae in human renal glomerular endothelial cells (HRGECs). This suggested a new albumin transcytosis pathway, in addition to the fenestral pathway. As a next step, we investigated albumin transcytosis in HRGECs after caveolar endocytosis. HRGECs were incubated with Alexa Fluor 488-labeled bovine serum albumin from 0 to 360 min. Next, markers for endosomes, endoplasmic reticulum (ER), golgi apparatus (GA), lysosomes, and proteasomes and Fc receptors, microtubules, and actin were monitored by immunofluorescence. Labeled albumin co-localization with endosomes was gradually and significantly increased and it was significantly higher than with the other markers at any timepoint. Albumin, placed on inside of the Transwell membrane, diffused through HRGEC monolayers during a 360 min incubation period. This transportation of albumin through HRGECs was inhibited by methyl beta cyclodextrin (MBCD), a caveolae disrupting agent. MBCD also decreased albuminuria, causing decreased caveolin-1 (Cav-1) expression on glomerular capillaries, in puromycin aminonucleoside induced nephrotic mice. Albumin transcytosis depends on early endosomes, but not on other organelles, Fc receptors, or cytoskeletal components. Caveolae disruption prevented albumin transportation through HRGECs and decreased albuminuria in nephrotic mice. This newly described caveolae-dependent albumin pathway through glomerular endothelial cells is a potential pathogenetic mechanism for albuminuria, independent of the fenestrae.


Assuntos
Albuminúria/metabolismo , Cavéolas/metabolismo , Endocitose , Endossomos/metabolismo , Células Endoteliais/metabolismo , Glomérulos Renais/irrigação sanguínea , Soroalbumina Bovina/metabolismo , Transcitose , Albuminúria/induzido quimicamente , Albuminúria/prevenção & controle , Animais , Cavéolas/efeitos dos fármacos , Caveolina 1/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Nefrose/induzido quimicamente , Nefrose/metabolismo , Puromicina Aminonucleosídeo , Fatores de Tempo , Transcitose/efeitos dos fármacos , beta-Ciclodextrinas/farmacologia
11.
Cell Mol Life Sci ; 73(24): 4701-4716, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27376435

RESUMO

Methylphenidate (MPH) is an amphetamine-like stimulant commonly prescribed for attention deficit hyperactivity disorder. Despite its widespread use, the cellular/molecular effects of MPH remain elusive. Here, we report a novel direct role of MPH on the regulation of macromolecular flux through human brain endothelial cells (ECs). MPH significantly increased caveolae-mediated transcytosis of horseradish peroxidase through ECs without affecting paracellular permeability. Using FRET-based live cell imaging, together with pharmacological inhibitors and lentiviral-mediated shRNA knockdown, we demonstrate that MPH promoted ROS generation via activation of Rac1-dependent NADPH oxidase (NOX) and c-Src activation at the plasma membrane. c-Src in turn was shown to mediate the phosphorylation of caveolin-1 (Cav1) on Tyr14 leading to enhanced caveolae formation and transendothelial transport. Accordingly, the inhibition of Cav1 phosphorylation by overexpression of a phosphodefective Cav1Y14F mutant or knocking down Cav1 expression abrogated MPH-induced transcytosis. In addition, both vitamin C and inhibition of NOX blocked MPH-triggered vesicular transport. This study, therefore, identifies Rac1/NOX/c-Src-dependent signaling in MPH-induced increase in transendothelial permeability of brain endothelial cell monolayers via caveolae-mediated transcytosis.


Assuntos
Cavéolas/metabolismo , Caveolina 1/metabolismo , Células Endoteliais/metabolismo , Metilfenidato/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transcitose/efeitos dos fármacos , Proteínas rac1 de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo , Transporte Biológico/efeitos dos fármacos , Encéfalo/citologia , Proteína Tirosina Quinase CSK , Permeabilidade Capilar/efeitos dos fármacos , Cavéolas/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Peroxidase do Rábano Silvestre/metabolismo , Humanos , Modelos Biológicos , NADPH Oxidases/metabolismo , Oxidantes/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Vesículas Transportadoras/efeitos dos fármacos , Vesículas Transportadoras/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
12.
J Am Soc Nephrol ; 27(3): 731-44, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26116357

RESUMO

Albuminuria is a hallmark of kidney disease of various etiologies and usually caused by deterioration of glomerular filtration barrier integrity. We recently showed that angiotensin II (Ang II) acutely increases albumin filtration in the healthy kidney. Here, we used intravital microscopy to assess the effects of Ang II on podocyte function in rats. Acute infusion of 30, 60, or 80 ng/kg per minute Ang II enhanced the endocytosis of albumin by activation of the type 1 Ang II receptor and resulted in an average (±SEM) of 3.7±2.2, 72.3±18.6 (P<0.001), and 239.4±34.6 µm(3) (P<0.001) albumin-containing vesicles per glomerulus, respectively, compared with none at baseline or 10 ng/kg per minute Ang II. Immunostaining of Ang II-infused kidneys confirmed the presence of albumin-containing vesicles, which colocalized with megalin, in podocin-positive cells. Furthermore, podocyte endocytosis of albumin was markedly reduced in the presence of gentamicin, a competitive inhibitor of megalin-dependent endocytosis. Ang II infusion increased the concentration of albumin in the subpodocyte space, a potential source for endocytic protein uptake, and gentamicin further increased this concentration. Some endocytic vesicles were acidified and colocalized with LysoTracker. Most vesicles migrated from the capillary to the apical aspect of the podocyte and were eventually released into the urinary space. This transcytosis accounted for approximately 10% of total albumin filtration. In summary, the transcellular transport of proteins across the podocyte constitutes a new pathway of glomerular protein filtration. Ang II enhances the endocytosis and transcytosis of plasma albumin by podocytes, which may eventually impair podocyte function.


Assuntos
Albuminas/metabolismo , Angiotensina II/farmacologia , Glomérulos Renais/fisiologia , Podócitos/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Transcitose/efeitos dos fármacos , Vasoconstritores/farmacologia , Aminas , Animais , Feminino , Gentamicinas/farmacologia , Microscopia Intravital , Glomérulos Renais/efeitos dos fármacos , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Microscopia Eletrônica , Microscopia de Fluorescência por Excitação Multifotônica , Inibidores da Síntese de Proteínas/farmacologia , Ratos , Vesículas Transportadoras , Urina
13.
Am J Physiol Endocrinol Metab ; 310(3): E225-37, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26646098

RESUMO

Salidroside (SAL) is a phenylethanoid glycoside isolated from the medicinal plant Rhodiola rosea. R. rosea has been reported to have beneficial effects on diabetic nephropathy (DN) and high-glucose (HG)-induced mesangial cell proliferation. Given the importance of caveolin-1 (Cav-1) in transcytosis of albumin across the endothelial barrier, the present study was designed to elucidate whether SAL could inhibit Cav-1 phosphorylation and reduce the albumin transcytosis across glomerular endothelial cells (GECs) to alleviate diabetic albuminuria as well as to explore its upstream signaling pathway. To assess the therapeutic potential of SAL and the mechanisms involved in DN albuminuria, we orally administered SAL to db/db mice, and the effect of SAL on the albuminuria was measured. The albumin transcytosis across GECs was explored in a newly established in vitro cellular model. The ratio of albumin to creatinine was significantly reduced upon SAL treatment in db/db mice. SAL decreased the albumin transcytosis across GECs in both normoglycemic and hyperglycemic conditions. SAL reversed the HG-induced downregulation of AMP-activated protein kinase and upregulation of Src kinase and blocked the upregulation Cav-1 phosphorylation. Meanwhile, SAL decreased mitochondrial superoxide anion production and moderately depolarized mitochondrial membrane potential. We conclude that SAL exerts its proteinuria-alleviating effects by downregulation of Cav-1 phosphorylation and inhibition of albumin transcytosis across GECs. These studies provide the first evidence of interference with albumin transcytosis across GECs as a novel approach to the treatment of diabetic albuminuria.


Assuntos
Albuminas/efeitos dos fármacos , Albuminúria/metabolismo , Caveolina 1/efeitos dos fármacos , Nefropatias Diabéticas/metabolismo , Células Endoteliais/efeitos dos fármacos , Glucosídeos/farmacologia , Glomérulos Renais/efeitos dos fármacos , Fenóis/farmacologia , Transcitose/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Albuminas/metabolismo , Animais , Caveolina 1/metabolismo , Creatinina/metabolismo , Células Endoteliais/metabolismo , Glucose/metabolismo , Técnicas In Vitro , Glomérulos Renais/metabolismo , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , Camundongos , Fosforilação/efeitos dos fármacos , Quinases da Família src/efeitos dos fármacos , Quinases da Família src/metabolismo
14.
Biochem Biophys Res Commun ; 478(4): 1780-5, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27613088

RESUMO

It has long been appreciated that the microtubule network plays a critical role in endothelial cell function. Chemical inhibition of tubulin polymerization has been shown to drastically increases endothelial permeability via interactions with the actin cytoskeleton. Conversely, stabilization of microtubules significantly decreases vascular permeability. The purpose of this investigation was to determine if the low molecular weight fraction of commercial 5% human serum albumin (LMWF5A) alters endothelial cell cytoskeletal dynamics and function. To investigate this, human retinal endothelial cells (HREC) were treated with LMWF5A and the acetylation of α-tubulin was determined by immunofluorescent staining and immunoblotting. In addition, permeability assays were performed to evaluate functional changes. We found that HREC treated with LMWF5A exhibit a rapid increase in the amount and distribution of acetylated α-tubulin. This was accompanied by a reduction in macromolecular permeability. Calcium depletion and inhibition of PI3-kinase reduced LMWF5A-induced acetylation while p38 MAPK inhibition potentiated this effect. These findings suggest that LMWF5A mediates changes in the microtubule network and reduces transcytosis in HREC.


Assuntos
Células Endoteliais/efeitos dos fármacos , Albumina Sérica/farmacologia , Transcitose/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Acetilação/efeitos dos fármacos , Western Blotting , Cálcio/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , Cromonas/farmacologia , Células Endoteliais/metabolismo , Humanos , Imidazóis/farmacologia , Microscopia de Fluorescência , Peso Molecular , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Piridinas/farmacologia , Retina/citologia , Albumina Sérica/química , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Small ; 12(9): 1212-21, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26426116

RESUMO

The ultimate goal in the area of drug-delivery systems is the development of a nanoparticle that can penetrate the endothelial cell monolayer for the targeting of tissue parenchyma. In the present study, we identify a transcytosis-targeting peptide (TTP) that permits polyethyleneglycol (PEG)-modified liposomes (PEG-LPs) to penetrate through monolayers of brain-derived endothelial cells. These endothelial cells were layered on a gelatin nanofiber sheet, a nanofiber meshwork that allows the evaluation of transcellular transport of nanosized particles (ca. 100 nm). Systematic modification of the sequences results in the identification of the consensus sequence of TTP as L(R/K)QZZZL, where Z denotes hydrophilic amino acids (R/K/S and partially D). The TTP-modified liposomes are bound on the heparin sulfate proteoglycan, and are then taken up via lipid raft-mediated endocytosis. Subsequent intracellular imaging of the particles reveals a unique intracellular sorting of TTP-modified PEG liposomes (TTP-PEG-LPs); namely the TTP-LPs are not localized with the lysosomes, whereas this co-localization is dominant in the unmodified PEG liposomes (PEG-LPs). The in vivo endothelial penetration of liposomes in adipose tissue is conferred by the dual modification of the particles with TTP and tissue-targeting ligands. This technology promises innovations in intravenously available delivery system to tissue parenchyma.


Assuntos
Células Endoteliais/citologia , Lipossomos/química , Nanopartículas/química , Peptídeos/farmacologia , Transcitose/efeitos dos fármacos , Motivos de Aminoácidos , Animais , Células Endoteliais/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ligantes , Camundongos , Nanofibras/química , Polietilenoglicóis/química , Alicerces Teciduais/química
16.
Nature ; 468(7323): 557-61, 2010 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-20944627

RESUMO

The blood-brain barrier (BBB) consists of specific physical barriers, enzymes and transporters, which together maintain the necessary extracellular environment of the central nervous system (CNS). The main physical barrier is found in the CNS endothelial cell, and depends on continuous complexes of tight junctions combined with reduced vesicular transport. Other possible constituents of the BBB include extracellular matrix, astrocytes and pericytes, but the relative contribution of these different components to the BBB remains largely unknown. Here we demonstrate a direct role of pericytes at the BBB in vivo. Using a set of adult viable pericyte-deficient mouse mutants we show that pericyte deficiency increases the permeability of the BBB to water and a range of low-molecular-mass and high-molecular-mass tracers. The increased permeability occurs by endothelial transcytosis, a process that is rapidly arrested by the drug imatinib. Furthermore, we show that pericytes function at the BBB in at least two ways: by regulating BBB-specific gene expression patterns in endothelial cells, and by inducing polarization of astrocyte end-feet surrounding CNS blood vessels. Our results indicate a novel and critical role for pericytes in the integration of endothelial and astrocyte functions at the neurovascular unit, and in the regulation of the BBB.


Assuntos
Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/metabolismo , Pericitos/metabolismo , Animais , Astrócitos/metabolismo , Benzamidas , Sistema Nervoso Central/irrigação sanguínea , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Mesilato de Imatinib , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Transcitose/efeitos dos fármacos
17.
Proc Natl Acad Sci U S A ; 110(21): 8662-7, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23650374

RESUMO

Receptor-mediated transcytosis across the blood-brain barrier (BBB) may be a useful way to transport therapeutics into the brain. Here we report that transferrin (Tf)-containing gold nanoparticles can reach the brain parenchyma from systemic administration in mice through a receptor-mediated transcytosis pathway. This transport is aided by tuning the nanoparticle avidity to Tf receptor (TfR), which is correlated with nanoparticle size and total amount of Tf decorating the nanoparticle surface. Nanoparticles of both 45 nm and 80 nm diameter reach the brain parenchyma, and their accumulation there (visualized by silver enhancement light microscopy in combination with transmission electron microscopy imaging) is observed to be dependent on Tf content (avidity); nanoparticles with large amounts of Tf remain strongly attached to brain endothelial cells, whereas those with less Tf are capable of both interacting with TfR on the luminal side of the BBB and detaching from TfR on the brain side of the BBB. The requirement of proper avidity for nanoparticles to reach the brain parenchyma is consistent with recent behavior observed with transcytosing antibodies that bind to TfR.


Assuntos
Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Ouro/farmacologia , Nanopartículas Metálicas , Receptores da Transferrina/metabolismo , Transcitose/efeitos dos fármacos , Transferrina/farmacologia , Animais , Barreira Hematoencefálica/ultraestrutura , Células Endoteliais/ultraestrutura , Feminino , Ouro/química , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Transferrina/química , Transferrina/metabolismo
18.
Am J Physiol Endocrinol Metab ; 309(1): E35-44, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25944880

RESUMO

Obesity is associated with inflammation and immune cell recruitment to adipose tissue, muscle and intima of atherosclerotic blood vessels. Obesity and hyperlipidemia are also associated with tissue insulin resistance and can compromise insulin delivery to muscle. The muscle/fat microvascular endothelium mediates insulin delivery and facilitates monocyte transmigration, yet its contribution to the consequences of hyperlipidemia is poorly understood. Using primary endothelial cells from human adipose tissue microvasculature (HAMEC), we investigated the effects of physiological levels of fatty acids on endothelial inflammation and function. Expression of cytokines and adhesion molecules was measured by RT-qPCR. Signaling pathways were evaluated by pharmacological manipulation and immunoblotting. Surface expression of adhesion molecules was determined by immunohistochemistry. THP1 monocyte interaction with HAMEC was measured by cell adhesion and migration across transwells. Insulin transcytosis was measured by total internal reflection fluorescence microscopy. Palmitate, but not palmitoleate, elevated the expression of IL-6, IL-8, TLR2 (Toll-like receptor 2), and intercellular adhesion molecule 1 (ICAM-1). HAMEC had markedly low fatty acid uptake and oxidation, and CD36 inhibition did not reverse the palmitate-induced expression of adhesion molecules, suggesting that inflammation did not arise from palmitate uptake/metabolism. Instead, inhibition of TLR4 to NF-κB signaling blunted palmitate-induced ICAM-1 expression. Importantly, palmitate-induced surface expression of ICAM-1 promoted monocyte binding and transmigration. Conversely, palmitate reduced insulin transcytosis, an effect reversed by TLR4 inhibition. In summary, palmitate activates inflammatory pathways in primary microvascular endothelial cells, impairing insulin transport and increasing monocyte transmigration. This behavior may contribute in vivo to reduced tissue insulin action and enhanced tissue infiltration by immune cells.


Assuntos
Tecido Adiposo/citologia , Células Endoteliais/efeitos dos fármacos , Inflamação , Insulina/metabolismo , Monócitos/efeitos dos fármacos , Ácido Palmítico/farmacologia , Transcitose/efeitos dos fármacos , Tecido Adiposo/irrigação sanguínea , Tecido Adiposo/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Microvasos/citologia , Monócitos/fisiologia , Transdução de Sinais/efeitos dos fármacos
19.
Proc Natl Acad Sci U S A ; 109(31): 12680-5, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22723360

RESUMO

The constant heavy chain (CH1) domain affects antibody affinity and fine specificity, challenging the paradigm that only variable regions contribute to antigen binding. To investigate the role of the CH1 domain, we constructed IgA2 from the broadly neutralizing anti-HIV-1 2F5 IgG1, and compared 2F5 IgA2 and IgG binding affinity and functional activities. We found that 2F5 IgA2 bound to the gp41 membrane proximal external region with higher affinity than IgG1. Functionally, compared with IgG1, 2F5 IgA2 more efficiently blocked HIV-1 transcytosis across epithelial cells and CD4(+) cell infection by R5 HIV-1. The 2F5 IgG1 and IgA2 acted synergistically to fully block HIV-1 transfer from Langerhans to autologous CD4(+) T cells and to inhibit CD4(+) T-cell infection. Epitope mapping performed by screening a random peptide library and in silico docking modeling suggested that along with the 2F5 IgG canonical ELDKWA epitope on gp41, the IgG1 recognized an additional 3D-conformational epitope on the gp41 C-helix. In contrast, the IgA2 epitope included a unique conformational motif on the gp41 N-helix. Overall, the CH1 region of 2F5 contributes to shape its epitope specificity, antibody affinity, and functional activities. In the context of sexually transmitted infections such as HIV-1/AIDS, raising a mucosal IgA-based vaccine response should complement an IgG-based vaccine response in blocking HIV-1 transmission.


Assuntos
Síndrome da Imunodeficiência Adquirida/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/imunologia , Especificidade de Anticorpos , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , HIV-1/imunologia , Imunoglobulina G/imunologia , Síndrome da Imunodeficiência Adquirida/terapia , Síndrome da Imunodeficiência Adquirida/transmissão , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/farmacologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Células Cultivadas , Epitopos/genética , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/farmacologia , Proteína gp41 do Envelope de HIV/genética , HIV-1/genética , HIV-1/patogenicidade , Humanos , Imunoglobulina G/genética , Imunoglobulina G/farmacologia , Estrutura Secundária de Proteína , Transcitose/efeitos dos fármacos , Transcitose/imunologia
20.
J Mol Cell Cardiol ; 72: 85-94, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24594319

RESUMO

Tumor necrosis factor-α (TNF-α) is an established pro-atherosclerotic factor, but the mechanism is not completely understood. We explored whether TNF-α could promote atherosclerosis by increasing the transcytosis of lipoproteins (e.g., LDL) across endothelial cells and how NF-κB and PPAR-γ were involved in this process. TNF-α significantly increased the transcytosis of LDL across human umbilical vein endothelial cells (HUVECs) and stimulated an increase of subendothelial retention of LDL in vascular walls. These effects of TNF-α were substantially blocked not only by transcytosis inhibitors, but also by NF-κB inhibitors and PPAR-γ inhibitors. In ApoE(-/-) mice, both NF-κB and PPAR-γ inhibitors alleviated the early atherosclerotic changes promoted by TNF-α. NF-κB and PPAR-γ inhibitors down-regulated the transcriptional activities of NF-κB and PPAR-γ induced by TNF-α. Furthermore, cross-binding activity assay revealed that NF-κB and PPAR-γ could form an active transcription factor complex containing both the NF-κB P65 subunit and PPAR-γ. The increased expressions of LDL transcytosis-related proteins (LDL receptor and caveolin-1, -2) stimulated by TNF-α were also blocked by both NF-κB inhibitors and PPAR-γ inhibitors. TNF-α promotes atherosclerosis by increasing the LDL transcytosis across endothelial cells and thereby facilitating LDL retention in vascular walls. In this process, NF-κB and PPAR-γ are activated coordinately to up-regulate the expression of transcytosis-related proteins. These observations suggest that inhibitors of either NF-κB or PPAR-γ can be used to target atherosclerosis.


Assuntos
Aterosclerose/genética , Lipoproteínas LDL/metabolismo , NF-kappa B/metabolismo , PPAR gama/metabolismo , Transcitose/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Anilidas/farmacologia , Animais , Aterosclerose/induzido quimicamente , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Benzamidas/farmacologia , Caveolina 1/antagonistas & inibidores , Caveolina 1/genética , Caveolina 1/metabolismo , Caveolina 2/antagonistas & inibidores , Caveolina 2/genética , Caveolina 2/metabolismo , Alcaloides de Cinchona/farmacologia , Filipina/farmacologia , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Lipoproteínas LDL/antagonistas & inibidores , Camundongos , Camundongos Knockout , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Nitrilas/farmacologia , PPAR gama/antagonistas & inibidores , PPAR gama/genética , Prolina/análogos & derivados , Prolina/farmacologia , Piridinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de LDL/antagonistas & inibidores , Receptores de LDL/genética , Receptores de LDL/metabolismo , Transdução de Sinais , Sulfonas/farmacologia , Tiocarbamatos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA