Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.486
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nat Rev Neurosci ; 25(4): 272-284, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38374463

RESUMO

The presymptomatic phase of Alzheimer disease (AD) starts with the deposition of amyloid-ß in the cortex and begins a decade or more before the emergence of cognitive decline. The trajectory towards dementia and neurodegeneration is shaped by the pathological load and the resilience of neural circuits to the effects of this pathology. In this Perspective, I focus on recent advances that have uncovered the vulnerability of neural circuits at early stages of AD to hyperexcitability, particularly when the brain is in a low-arousal states (such as sleep and anaesthesia). Notably, this hyperexcitability manifests before overt symptoms such as sleep and memory deficits. Using the principles of control theory, I analyse the bidirectional relationship between homeostasis of neuronal activity and sleep and propose that impaired activity homeostasis during sleep leads to hyperexcitability and subsequent sleep disturbances, whereas sleep disturbances mitigate hyperexcitability via negative feedback. Understanding the interplay among activity homeostasis, neuronal excitability and sleep is crucial for elucidating the mechanisms of vulnerability to and resilience against AD pathology and for identifying new therapeutic avenues.


Assuntos
Doença de Alzheimer , Transtornos do Sono-Vigília , Humanos , Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Sono/fisiologia , Transtornos do Sono-Vigília/complicações , Encéfalo/metabolismo
2.
Physiol Rev ; 100(2): 805-868, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31804897

RESUMO

Sleep spindles are burstlike signals in the electroencephalogram (EEG) of the sleeping mammalian brain and electrical surface correlates of neuronal oscillations in thalamus. As one of the most inheritable sleep EEG signatures, sleep spindles probably reflect the strength and malleability of thalamocortical circuits that underlie individual cognitive profiles. We review the characteristics, organization, regulation, and origins of sleep spindles and their implication in non-rapid-eye-movement sleep (NREMS) and its functions, focusing on human and rodent. Spatially, sleep spindle-related neuronal activity appears on scales ranging from small thalamic circuits to functional cortical areas, and generates a cortical state favoring intracortical plasticity while limiting cortical output. Temporally, sleep spindles are discrete events, part of a continuous power band, and elements grouped on an infraslow time scale over which NREMS alternates between continuity and fragility. We synthesize diverse and seemingly unlinked functions of sleep spindles for sleep architecture, sensory processing, synaptic plasticity, memory formation, and cognitive abilities into a unifying sleep spindle concept, according to which sleep spindles 1) generate neural conditions of large-scale functional connectivity and plasticity that outlast their appearance as discrete EEG events, 2) appear preferentially in thalamic circuits engaged in learning and attention-based experience during wakefulness, and 3) enable a selective reactivation and routing of wake-instated neuronal traces between brain areas such as hippocampus and cortex. Their fine spatiotemporal organization reflects NREMS as a physiological state coordinated over brain and body and may indicate, if not anticipate and ultimately differentiate, pathologies in sleep and neurodevelopmental, -degenerative, and -psychiatric conditions.


Assuntos
Ondas Encefálicas , Encéfalo/fisiopatologia , Cognição , Doenças do Sistema Nervoso/fisiopatologia , Periodicidade , Fases do Sono , Transtornos do Sono-Vigília/fisiopatologia , Animais , Atenção , Encéfalo/metabolismo , Humanos , Inteligência , Memória , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/psicologia , Plasticidade Neuronal , Transtornos do Sono-Vigília/genética , Transtornos do Sono-Vigília/metabolismo , Transtornos do Sono-Vigília/psicologia , Fatores de Tempo
3.
Proc Natl Acad Sci U S A ; 121(9): e2214756121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38394243

RESUMO

Sleep, circadian rhythms, and mental health are reciprocally interlinked. Disruption to the quality, continuity, and timing of sleep can precipitate or exacerbate psychiatric symptoms in susceptible individuals, while treatments that target sleep-circadian disturbances can alleviate psychopathology. Conversely, psychiatric symptoms can reciprocally exacerbate poor sleep and disrupt clock-controlled processes. Despite progress in elucidating underlying mechanisms, a cohesive approach that integrates the dynamic interactions between psychiatric disorder with both sleep and circadian processes is lacking. This review synthesizes recent evidence for sleep-circadian dysfunction as a transdiagnostic contributor to a range of psychiatric disorders, with an emphasis on biological mechanisms. We highlight observations from adolescent and young adults, who are at greatest risk of developing mental disorders, and for whom early detection and intervention promise the greatest benefit. In particular, we aim to a) integrate sleep and circadian factors implicated in the pathophysiology and treatment of mood, anxiety, and psychosis spectrum disorders, with a transdiagnostic perspective; b) highlight the need to reframe existing knowledge and adopt an integrated approach which recognizes the interaction between sleep and circadian factors; and c) identify important gaps and opportunities for further research.


Assuntos
Transtornos Mentais , Transtornos do Sono-Vigília , Adulto Jovem , Adolescente , Humanos , Transtornos Mentais/etiologia , Transtornos Mentais/terapia , Sono/fisiologia , Ritmo Circadiano/fisiologia , Saúde Mental , Transtornos do Humor
4.
Cell ; 146(2): 194-207, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21784243

RESUMO

Sleep remains one of the least understood phenomena in biology--even its role in synaptic plasticity remains debatable. Since sleep was recognized to be regulated genetically, intense research has launched on two fronts: the development of model organisms for deciphering the molecular mechanisms of sleep and attempts to identify genetic underpinnings of human sleep disorders. In this Review, we describe how unbiased, high-throughput screens in model organisms are uncovering sleep regulatory mechanisms and how pathways, such as the circadian clock network and specific neurotransmitter signals, have conserved effects on sleep from Drosophila to humans. At the same time, genome-wide association studies (GWAS) have uncovered ∼14 loci increasing susceptibility to sleep disorders, such as narcolepsy and restless leg syndrome. To conclude, we discuss how these different strategies will be critical to unambiguously defining the function of sleep.


Assuntos
Transtornos do Sono-Vigília/genética , Sono/genética , Animais , Relógios Circadianos , Estudo de Associação Genômica Ampla , Humanos , Modelos Animais , Proteínas do Tecido Nervoso/fisiologia , Neurotransmissores/metabolismo , Transdução de Sinais , Sono/fisiologia , Transtornos do Sono-Vigília/fisiopatologia
5.
Proc Natl Acad Sci U S A ; 120(15): e2221686120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37014857

RESUMO

Sleep is essential for our well-being, and chronic sleep deprivation has unfavorable health consequences. We recently demonstrated that two familial natural short sleep (FNSS) mutations, DEC2-P384R and Npsr1-Y206H, are strong genetic modifiers of tauopathy in PS19 mice, a model of tauopathy. To gain more insight into how FNSS variants modify the tau phenotype, we tested the effect of another FNSS gene variant, Adrb1-A187V, by crossing mice with this mutation onto the PS19 background. We found that the Adrb1-A187V mutation helped restore rapid eye movement (REM) sleep and alleviated tau aggregation in a sleep-wake center, the locus coeruleus (LC), in PS19 mice. We found that ADRB1+ neurons in the central amygdala (CeA) sent projections to the LC, and stimulating CeAADRB1+ neuron activity increased REM sleep. Furthermore, the mutant Adrb1 attenuated tau spreading from the CeA to the LC. Our findings suggest that the Adrb1-A187V mutation protects against tauopathy by both mitigating tau accumulation and attenuating tau spreading.


Assuntos
Transtornos do Sono-Vigília , Tauopatias , Camundongos , Animais , Sono REM , Tauopatias/genética , Sono/fisiologia , Locus Cerúleo/metabolismo , Receptores Adrenérgicos , Proteínas tau/genética , Proteínas tau/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças
6.
Hum Genomics ; 18(1): 51, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778419

RESUMO

OBJECTIVE: This study aimed to identify candidate loci and genes related to sleep disturbances in depressed individuals and clarify the co-occurrence of sleep disturbances and depression from the genetic perspective. METHODS: The study subjects (including 58,256 self-reported depressed individuals and 6,576 participants with PHQ-9 score ≥ 10, respectively) were collected from the UK Biobank, which were determined based on the Patient Health Questionnaire (PHQ-9) and self-reported depression status, respectively. Sleep related traits included chronotype, insomnia, snoring and daytime dozing. Genome-wide association studies (GWASs) of sleep related traits in depressed individuals were conducted by PLINK 2.0 adjusting age, sex, Townsend deprivation index and 10 principal components as covariates. The CAUSALdb database was used to explore the mental traits associated with the candidate genes identified by the GWAS. RESULTS: GWAS detected 15 loci significantly associated with chronotype in the subjects with self-reported depression, such as rs12736689 at RNASEL (P = 1.00 × 10- 09), rs509476 at RGS16 (P = 1.58 × 10- 09) and rs1006751 at RFX4 (P = 1.54 × 10- 08). 9 candidate loci were identified in the subjects with PHQ-9 ≥ 10, of which 2 loci were associated with insomnia such as rs115379847 at EVC2 (P = 3.50 × 10- 08), and 7 loci were associated with daytime dozing, such as rs140876133 at SMYD3 (P = 3.88 × 10- 08) and rs139156969 at ROBO2 (P = 3.58 × 10- 08). Multiple identified genes, such as RNASEL, RGS16, RFX4 and ROBO2 were reported to be associated with chronotype, depression or cognition in previous studies. CONCLUSION: Our study identified several candidate genes related to sleep disturbances in depressed individuals, which provided new clues for understanding the biological mechanism underlying the co-occurrence of depression and sleep disorders.


Assuntos
Depressão , Estudo de Associação Genômica Ampla , Transtornos do Sono-Vigília , Humanos , Masculino , Feminino , Transtornos do Sono-Vigília/genética , Pessoa de Meia-Idade , Depressão/genética , Polimorfismo de Nucleotídeo Único/genética , Predisposição Genética para Doença , Idoso , Adulto
7.
Mol Psychiatry ; 29(3): 838-846, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38233469

RESUMO

Previous studies have shown that excessive alcohol consumption is associated with poor sleep. However, the health risks of light-to-moderate alcohol consumption in relation to sleep traits (e.g., insomnia, snoring, sleep duration and chronotype) remain undefined, and their causality is still unclear in the general population. To identify the association between alcohol consumption and multiple sleep traits using an observational and Mendelian randomization (MR) design. Observational analyses and one-sample MR (linear and nonlinear) were performed using clinical and individual-level genetic data from the UK Biobank (UKB). Two-sample MR was assessed using summary data from genome-wide association studies from the UKB and other external consortia. Phenotype analyses were externally validated using data from the National Health and Nutrition Examination Survey (2017-2018). Data analysis was conducted from January 2022 to October 2022. The association between alcohol consumption and six self-reported sleep traits (short sleep duration, long sleep duration, chronotype, snoring, waking up in the morning, and insomnia) were analysed. This study included 383,357 UKB participants (mean [SD] age, 57.0 [8.0] years; 46% male) who consumed a mean (SD) of 9.0 (10.0) standard drinks (one standard drink equivalent to 14 g of alcohol) per week. In the observational analyses, alcohol consumption was significantly associated with all sleep traits. Light-moderate-heavy alcohol consumption was linearly linked to snoring and the evening chronotype but nonlinearly associated with insomnia, sleep duration, and napping. In linear MR analyses, a 1-SD (14 g) increase in genetically predicted alcohol consumption was associated with a 1.14-fold (95% CI, 1.07-1.22) higher risk of snoring (P < 0.001), a 1.28-fold (95% CI, 1.20-1.37) higher risk of evening chronotype (P < 0.001) and a 1.24-fold (95% CI, 1.13-1.36) higher risk of difficulty waking up in the morning (P < 0.001). Nonlinear MR analyses did not reveal significant results after Bonferroni adjustment. The results of the two-sample MR analyses were consistent with those of the one-sample MR analyses, but with a slightly attenuated overall estimate. Our findings suggest that even low levels of alcohol consumption may affect sleep health, particularly by increasing the risk of snoring and evening chronotypes. The negative effects of alcohol consumption on sleep should be made clear to the public in order to promote public health.


Assuntos
Consumo de Bebidas Alcoólicas , Bancos de Espécimes Biológicos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Distúrbios do Início e da Manutenção do Sono , Sono , Humanos , Análise da Randomização Mendeliana/métodos , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/epidemiologia , Masculino , Reino Unido/epidemiologia , Feminino , Pessoa de Meia-Idade , Sono/genética , Sono/fisiologia , Idoso , Distúrbios do Início e da Manutenção do Sono/genética , Distúrbios do Início e da Manutenção do Sono/epidemiologia , Ronco/genética , Ronco/epidemiologia , Adulto , Fenótipo , Transtornos do Sono-Vigília/genética , Transtornos do Sono-Vigília/epidemiologia , Polimorfismo de Nucleotídeo Único/genética , Biobanco do Reino Unido
8.
PLoS Biol ; 20(1): e3001456, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35081110

RESUMO

In traumatic brain injury (TBI), the initial injury phase is followed by a secondary phase that contributes to neurodegeneration, yet the mechanisms leading to neuropathology in vivo remain to be elucidated. To address this question, we developed a Drosophila head-specific model for TBI termed Drosophila Closed Head Injury (dCHI), where well-controlled, nonpenetrating strikes are delivered to the head of unanesthetized flies. This assay recapitulates many TBI phenotypes, including increased mortality, impaired motor control, fragmented sleep, and increased neuronal cell death. TBI results in significant changes in the transcriptome, including up-regulation of genes encoding antimicrobial peptides (AMPs). To test the in vivo functional role of these changes, we examined TBI-dependent behavior and lethality in mutants of the master immune regulator NF-κB, important for AMP induction, and found that while sleep and motor function effects were reduced, lethality effects were enhanced. Similarly, loss of most AMP classes also renders flies susceptible to lethal TBI effects. These studies validate a new Drosophila TBI model and identify immune pathways as in vivo mediators of TBI effects.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Drosophila melanogaster , Neuroglia/imunologia , Animais , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/metabolismo , Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/mortalidade , Modelos Animais de Doenças , Imunidade Inata , Locomoção , Masculino , Mutação , NF-kappa B/genética , NF-kappa B/metabolismo , Transtornos do Sono-Vigília , Transcriptoma
9.
Crit Rev Immunol ; 44(6): 63-73, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38848294

RESUMO

Postoperative sleep disturbance is a common issue that affects recovery in patients undergoing general anesthesia. Dexmedetomidine (Dex) has a potential role in improving postoperative sleep quality. We evaluated the effects of different doses of Dex on postoperative sleep disturbance and serum neurotransmitters in patients undergoing radical gastrectomy under general anesthesia. Patients were assigned to the control, NS, and Dex (Dex-L/M/H) groups based on different treatment doses [0.2, 0.4, and 0.6 µg/(kg · h)]. The Athens Insomnia Scale (AIS) and ELISA kits were used to assess sleep disturbance and serum neurotransmitter (GABA, 5-HT, NE) levels before surgery and on postoperative days one, four, and seven. The effects of different doses on postoperative sleep disturbance incidence and serum neurotransmitter levels were analyzed by the Fisher exact test and one-way and repeated-measures ANOVA. Patients had no differences in gender, age, body mass index, operation time, and bleeding volume. Different Dex doses reduced the postoperative AIS score of patients under general anesthesia, improved their sleep, and increased serum levels of 5-HT, NE, and GABA. Furthermore, the effects were dose-dependent within the range of safe clinical use. Specifically, Dex at doses of 0.2, 0.4, and 0.6 µg/(kg · h) reduced postoperative AIS score, elevated serum neurotransmitter levels, and reduced postoperative sleep disturbance incidence. Collectively, Dex has a potential preventive effect on postoperative sleep disturbance in patients undergoing general anesthesia for radical gastrectomy. The optimal dose of Dex is between 0.2 and 0.6 µg/(kg · h), which significantly reduces the incidence of postoperative sleep disturbance and increases serum neurotransmitter levels.


Assuntos
Anestesia Geral , Dexmedetomidina , Neurotransmissores , Complicações Pós-Operatórias , Transtornos do Sono-Vigília , Humanos , Dexmedetomidina/administração & dosagem , Anestesia Geral/efeitos adversos , Neurotransmissores/sangue , Masculino , Feminino , Transtornos do Sono-Vigília/etiologia , Transtornos do Sono-Vigília/epidemiologia , Pessoa de Meia-Idade , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/epidemiologia , Incidência , Idoso , Gastrectomia/efeitos adversos
10.
J Med Genet ; 61(6): 586-589, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38350721

RESUMO

Pogo transposable element-derived protein with ZNF domain (POGZ) gene encodes a chromatin regulator and rare variants on this gene have been associated with a broad spectrum of neurodevelopmental disorders, such as White-Sutton syndrome. Patient clinical manifestations frequently include developmental delay, autism spectrum disorder and obesity. Sleep disturbances are also commonly observed in these patients, yet the biological pathways which link sleep traits to the POGZ-associated syndrome remain unclear. We screened for sleep implications among individuals with causative POGZ variants previously described. Sleep disturbances were observed in 52% of patients, and being obese was not observed as a risk factor for sleep problems. Next, we identified genes associated with sleep-associated traits among the POGZ regulatory targets, aiming to uncover the molecular pathways that, when disrupted by POGZ loss of function, contribute to the aetiology of sleep phenotypes in these patients. The intersect between POGZ targets and sleep-related genes was used in a pathway enrichment analysis. Relevant pathways among these overlapping genes are involved in the regulation of circadian rhythm, tau protein binding, ATPase activator activity. This study may represent the beginning for novel functional investigations on shared molecular mechanisms between sleep disturbances and rare developmental syndromes related to POGZ and its regulatory targets.


Assuntos
Transtornos do Neurodesenvolvimento , Fenótipo , Transtornos do Sono-Vigília , Humanos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Sono-Vigília/genética , Masculino , Feminino , Sono/genética , Criança , Pré-Escolar , Ritmo Circadiano/genética , Proteínas de Ligação a DNA , Proteínas de Ciclo Celular
11.
Proc Natl Acad Sci U S A ; 119(12): e2116729119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35302893

RESUMO

SignificanceHuman sleep phenotypes are diversified by genetic and environmental factors, and a quantitative classification of sleep phenotypes would lead to the advancement of biomedical mechanisms underlying human sleep diversity. To achieve that, a pipeline of data analysis, including a state-of-the-art sleep/wake classification algorithm, the uniform manifold approximation and projection (UMAP) dimension reduction method, and the density-based spatial clustering of applications with noise (DBSCAN) clustering method, was applied to the 100,000-arm acceleration dataset. This revealed 16 clusters, including seven different insomnia-like phenotypes. This kind of quantitative pipeline of sleep analysis is expected to promote data-based diagnosis of sleep disorders and psychiatric disorders that tend to be complicated by sleep disorders.


Assuntos
Bancos de Espécimes Biológicos , Transtornos do Sono-Vigília , Aceleração , Humanos , Fenótipo , Sono , Reino Unido
12.
PLoS Genet ; 18(9): e1010356, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36137075

RESUMO

Rare variants in ten genes have been reported to cause Mendelian sleep conditions characterised by extreme sleep duration or timing. These include familial natural short sleep (ADRB1, DEC2/BHLHE41, GRM1 and NPSR1), advanced sleep phase (PER2, PER3, CRY2, CSNK1D and TIMELESS) and delayed sleep phase (CRY1). The association of variants in these genes with extreme sleep conditions were usually based on clinically ascertained families, and their effects when identified in the population are unknown. We aimed to determine the effects of these variants on sleep traits in large population-based cohorts. We performed genetic association analysis of variants previously reported to be causal for Mendelian sleep and circadian conditions. Analyses were performed using 191,929 individuals with data on sleep and whole-exome or genome-sequence data from 4 population-based studies: UK Biobank, FINRISK, Health-2000-2001, and the Multi-Ethnic Study of Atherosclerosis (MESA). We identified sleep disorders from self-report, hospital and primary care data. We estimated sleep duration and timing measures from self-report and accelerometery data. We identified carriers for 10 out of 12 previously reported pathogenic variants for 8 of the 10 genes. They ranged in frequency from 1 individual with the variant in CSNK1D to 1,574 individuals with a reported variant in the PER3 gene in the UK Biobank. No carriers for variants reported in NPSR1 or PER2 were identified. We found no association between variants analyzed and extreme sleep or circadian phenotypes. Using sleep timing as a proxy measure for sleep phase, only PER3 and CRY1 variants demonstrated association with earlier and later sleep timing, respectively; however, the magnitude of effect was smaller than previously reported (sleep midpoint ~7 mins earlier and ~5 mins later, respectively). We also performed burden tests of protein truncating (PTVs) or rare missense variants for the 10 genes. Only PTVs in PER2 and PER3 were associated with a relevant trait (for example, 64 individuals with a PTV in PER2 had an odds ratio of 4.4 for being "definitely a morning person", P = 4x10-8; and had a 57-minute earlier midpoint sleep, P = 5x10-7). Our results indicate that previously reported variants for Mendelian sleep and circadian conditions are often not highly penetrant when ascertained incidentally from the general population.


Assuntos
Ritmo Circadiano , Transtornos do Sono-Vigília , Ritmo Circadiano/genética , Humanos , Fenótipo , Receptores Acoplados a Proteínas G/genética , Sono/genética , Transtornos do Sono-Vigília/genética
13.
Proc Natl Acad Sci U S A ; 119(45): e2123528119, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36331996

RESUMO

In our daily life, we are exposed to uncontrollable and stressful events that disrupt our sleep. However, the underlying neural mechanisms deteriorating the quality of non-rapid eye movement sleep (NREMs) and REM sleep are largely unknown. Here, we show in mice that acute psychosocial stress disrupts sleep by increasing brief arousals (microarousals [MAs]), reducing sleep spindles, and impairing infraslow oscillations in the spindle band of the electroencephalogram during NREMs, while reducing REMs. This poor sleep quality was reflected in an increased number of calcium transients in the activity of noradrenergic (NE) neurons in the locus coeruleus (LC) during NREMs. Opto- and chemogenetic LC-NE activation in naïve mice is sufficient to change the sleep microarchitecture similar to stress. Conversely, chemogenetically inhibiting LC-NE neurons reduced MAs during NREMs and normalized their number after stress. Specifically inhibiting LC-NE neurons projecting to the preoptic area of the hypothalamus (POA) decreased MAs and enhanced spindles and REMs after stress. Optrode recordings revealed that stimulating LC-NE fibers in the POA indeed suppressed the spiking activity of POA neurons that are activated during sleep spindles and REMs and inactivated during MAs. Our findings reveal that changes in the dynamics of the stress-regulatory LC-NE neurons during sleep negatively affect sleep quality, partially through their interaction with the POA.


Assuntos
Transtornos do Sono-Vigília , Sono REM , Animais , Camundongos , Sono REM/fisiologia , Hipotálamo , Sono/fisiologia , Eletroencefalografia , Norepinefrina
14.
J Neurosci ; 43(28): 5241-5250, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37365003

RESUMO

Many sleep less than recommended without experiencing daytime sleepiness. According to prevailing views, short sleep increases risk of lower brain health and cognitive function. Chronic mild sleep deprivation could cause undetected sleep debt, negatively affecting cognitive function and brain health. However, it is possible that some have less sleep need and are more resistant to negative effects of sleep loss. We investigated this using a cross-sectional and longitudinal sample of 47,029 participants of both sexes (20-89 years) from the Lifebrain consortium, Human Connectome project (HCP) and UK Biobank (UKB), with measures of self-reported sleep, including 51,295 MRIs of the brain and cognitive tests. A total of 740 participants who reported to sleep <6 h did not experience daytime sleepiness or sleep problems/disturbances interfering with falling or staying asleep. These short sleepers showed significantly larger regional brain volumes than both short sleepers with daytime sleepiness and sleep problems (n = 1742) and participants sleeping the recommended 7-8 h (n = 3886). However, both groups of short sleepers showed slightly lower general cognitive function (GCA), 0.16 and 0.19 SDs, respectively. Analyses using accelerometer-estimated sleep duration confirmed the findings, and the associations remained after controlling for body mass index, depression symptoms, income, and education. The results suggest that some people can cope with less sleep without obvious negative associations with brain morphometry and that sleepiness and sleep problems may be more related to brain structural differences than duration. However, the slightly lower performance on tests of general cognitive abilities warrants closer examination in natural settings.SIGNIFICANCE STATEMENT Short habitual sleep is prevalent, with unknown consequences for brain health and cognitive performance. Here, we show that daytime sleepiness and sleep problems are more strongly related to regional brain volumes than sleep duration. However, participants sleeping ≤6 h had slightly lower scores on tests of general cognitive function (GCA). This indicates that sleep need is individual and that sleep duration per se is very weakly if at all related brain health, while daytime sleepiness and sleep problems may show somewhat stronger associations. The association between habitual short sleep and lower scores on tests of general cognitive abilities must be further scrutinized in natural settings.


Assuntos
Distúrbios do Sono por Sonolência Excessiva , Transtornos do Sono-Vigília , Masculino , Feminino , Humanos , Estudos Transversais , Encéfalo/diagnóstico por imagem , Sono , Privação do Sono/diagnóstico por imagem , Transtornos do Sono-Vigília/complicações , Cognição , Distúrbios do Sono por Sonolência Excessiva/complicações , Distúrbios do Sono por Sonolência Excessiva/diagnóstico
15.
J Neurosci ; 43(35): 6197-6211, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37536983

RESUMO

Alzheimer's disease (AD) increases the risk for seizures and sleep disorders. We show here that germline deletion of ß-site amyloid precursor protein (APP) cleaving enzyme-1 (BACE1) in neurons, but not in astrocytes, increased epileptiform activity. However, Bace1 deletion at adult ages did not alter the normal EEG waveform, indicating less concern for BACE1 inhibition in patients. Moreover, we showed that deletion of Bace1 in the adult was able to reverse epileptiform activity in 5xFAD mice. Intriguingly, treating 5xFAD and APPNL-G-F/NL-G-F (APP KI) mice of either sex with one BACE1 inhibitor Lanabecestat (AZD3293) dramatically increased epileptiform spiking, likely resulting from an off-target effect. We also monitored sleep-wake pathologies in these mice and showed increased wakefulness, decreased non-rapid eye movement sleep, and rapid eye movement sleep in both 5xFAD and APP KI mice; BACE1 inhibition in the adult 5xFAD mice reversed plaque load and sleep disturbances, but this was not seen in APP KI mice. Further studies with and without BACE1 inhibitor treatment showed different levels of plaque-associated microgliosis and activated microglial proteins in 5xFAD mice compared with APP KI mice. Together, BACE1 inhibition should be developed to avoid off-target effect for achieving benefits in reducing epileptic activity and sleep disturbance in Alzheimer's patients.SIGNIFICANCE STATEMENT BACE1 is widely recognized as a therapeutic target for treating Alzheimer's disease patients. However, BACE1 inhibitors failed in clinical trials because of inability to show cognitive improvement in patients. Here we show that BACE1 inhibition actually reduces sleep disturbances and epileptic seizures; both are seen in AD patients. We further showed that one of clinically tested BACE1 inhibitors does have off-target effects, and development of safer BACE1 inhibitors will be beneficial to AD patients. Results from this study will provide useful guidance for additional drug development.


Assuntos
Doença de Alzheimer , Transtornos do Sono-Vigília , Camundongos , Animais , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Camundongos Transgênicos , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Placa Amiloide , Convulsões , Transtornos do Sono-Vigília/etiologia , Transtornos do Sono-Vigília/genética , Sono , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças
16.
Stroke ; 55(3): e61-e76, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38235581

RESUMO

Accumulating evidence supports a link between sleep disorders, disturbed sleep, and adverse brain health, ranging from stroke to subclinical cerebrovascular disease to cognitive outcomes, including the development of Alzheimer disease and Alzheimer disease-related dementias. Sleep disorders such as sleep-disordered breathing (eg, obstructive sleep apnea), and other sleep disturbances, as well, some of which are also considered sleep disorders (eg, insomnia, sleep fragmentation, circadian rhythm disorders, and extreme sleep duration), have been associated with adverse brain health. Understanding the causal role of sleep disorders and disturbances in the development of adverse brain health is complicated by the common development of sleep disorders among individuals with neurodegenerative disease. In addition to the role of sleep disorders in stroke and cerebrovascular injury, mechanistic hypotheses linking sleep with brain health and biomarker data (blood-based, cerebrospinal fluid-based, and imaging) suggest direct links to Alzheimer disease-specific pathology. These potential mechanisms and the increasing understanding of the "glymphatic system," and the recognition of the importance of sleep in poststroke recovery, as well, support a biological basis for the indirect (through the worsening of vascular disease) and direct (through specific effects on neuropathology) connections between sleep disorders and brain health. Given promising evidence for the benefits of treatment and prevention, sleep disorders and disturbances represent potential targets for early treatment that may improve brain health more broadly. In this scientific statement, we discuss the evidence supporting an association between sleep disorders and disturbances and poor brain health ranging from stroke to dementia and opportunities for prevention and early treatment.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Transtornos do Sono-Vigília , Acidente Vascular Cerebral , Humanos , Doença de Alzheimer/complicações , American Heart Association , Sono , Encéfalo/patologia , Acidente Vascular Cerebral/complicações , Transtornos do Sono-Vigília/complicações
17.
Neurobiol Dis ; 190: 106369, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38049012

RESUMO

Sleep-wake disturbances are common in neurodegenerative diseases and may occur years before the clinical diagnosis, potentially either representing an early stage of the disease itself or acting as a pathophysiological driver. Therefore, discovering biomarkers that identify individuals with sleep-wake disturbances who are at risk of developing neurodegenerative diseases will allow early diagnosis and intervention. Given the association between sleep and neurodegeneration, the most frequently analyzed fluid biomarkers in people with sleep-wake disturbances to date include those directly associated with neurodegeneration itself, such as neurofilament light chain, phosphorylated tau, amyloid-beta and alpha-synuclein. Abnormalities in these biomarkers in patients with sleep-wake disturbances are considered as evidence of an underlying neurodegenerative process. Levels of hormonal sleep-related biomarkers such as melatonin, cortisol and orexin are often abnormal in patients with clinical neurodegenerative diseases, but their relationships with the more standard neurodegenerative biomarkers remain unclear. Similarly, it is unclear whether other chronobiological/circadian biomarkers, such as disrupted clock gene expression, are causal factors or a consequence of neurodegeneration. Current data would suggest that a combination of fluid biomarkers may identify sleep-wake disturbances that are most predictive for the risk of developing neurodegenerative disease with more optimal sensitivity and specificity.


Assuntos
Doenças Neurodegenerativas , Transtornos do Sono-Vigília , Humanos , Sono/fisiologia , Peptídeos beta-Amiloides/metabolismo , Transtornos do Sono-Vigília/diagnóstico , Transtornos do Sono-Vigília/etiologia , Transtornos do Sono-Vigília/metabolismo , Biomarcadores
18.
Am J Epidemiol ; 193(3): 479-488, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37968336

RESUMO

Maternal poor sleep quality may increase blood pressure during pregnancy, but sound evidence is still limited and inconsistent. To evaluate whether sleep disturbances in early gestation are risk factors for the development of hypertensive disorders of pregnancy, we conducted the Early Life Plan Project from June 2016 to December 2019. Maternal sleep patterns were assessed at 12-16 weeks of gestation by using the Pittsburgh Sleep Quality Index questionnaire. For gestational hypertension and preeclampsia, we estimated adjusted odds ratios (ORs) and 95% confidence intervals (CIs) using multinomial logistic regression models adjusting for potential confounders. Among 5,532 eligible women, we observed that maternal blood pressure in early gestation was significantly higher in women with low sleep efficiency (≤85%), long sleep duration (≥9 hours/night), and snoring. Compared with nonsnorers, snoring in early gestation was independently associated with preeclampsia (OR = 1.72 (95% CI: 1.09, 2.73) for snoring once or twice per week; OR = 2.06 (95% CI: 1.01, 4.31) for snoring 3 or more times per week), particularly for term preeclampsia (OR = 1.79 (95% CI: 1.08, 2.95) and 2.26 (95% CI: 1.03, 4.95), respectively). Results suggest that snoring in early gestation may be a significant risk factor for preeclampsia, with a dose-response pattern.


Assuntos
Hipertensão Induzida pela Gravidez , Pré-Eclâmpsia , Transtornos do Sono-Vigília , Gravidez , Feminino , Humanos , Hipertensão Induzida pela Gravidez/epidemiologia , Pré-Eclâmpsia/epidemiologia , Pré-Eclâmpsia/etiologia , Ronco/complicações , Ronco/epidemiologia , Estudos Prospectivos , Transtornos do Sono-Vigília/complicações , Transtornos do Sono-Vigília/epidemiologia , Sono
19.
Curr Opin Neurol ; 37(4): 414-420, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38809245

RESUMO

PURPOSE OF REVIEW: This review aimed to comprehensively outline sleep and circadian rhythm abnormalities in hyperkinetic movement disorders beyond Parkinson's disease and atypical parkinsonisms, including tremor, dystonia, choreiform movements, tics, and ataxia disorders. RECENT FINDINGS: Insomnia, poor sleep quality, and excessive daytime sleepiness (EDS) are commonly reported in essential tremor, Wilson's disease, tics or Tourette's syndrome, and spinocerebellar ataxia (SCA). REM sleep behavior disorder (RBD) have been observed in Wilson's disease and SCA. A combination of REM and non-REM parasomnias, along with nocturnal stridor with the initiation of sleep and re-entering after awakening, are characterized by undifferentiated Non-REM and poorly structured N2 in anti-IgLON5 disease. Restless legs syndrome (RLS) has been reported commonly in SCAs. Sleep-related dyskinesia has been reported in ADCY5-related disease and GNAO1-related movement disorder. SUMMARY: Sleep problems can manifest as a result of movement disorders, either through direct motor disturbances or secondary nonmotor symptoms. Medication effects must be considered, as certain medications for movement disorders can exacerbate or alleviate sleep disturbances. Distinguishing sleep problems in some diseases might involve pathognomonic symptoms and signs, aiding in the diagnosis of movement disorders.


Assuntos
Transtornos dos Movimentos , Transtornos do Sono-Vigília , Humanos , Transtornos dos Movimentos/fisiopatologia , Transtornos dos Movimentos/etiologia , Transtornos do Sono-Vigília/fisiopatologia , Transtornos do Sono-Vigília/complicações , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia , Transtornos Cronobiológicos/fisiopatologia , Transtornos Cronobiológicos/complicações
20.
J Clin Immunol ; 44(5): 109, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676767

RESUMO

Inborn errors of immunity have been associated with reduced health-related quality of life and increased fatigue. Sleep disorders, which have been shown to contribute to fatigue and other health concerns, are prevalent in the general population, but there are limited studies evaluating these conditions in patients with common variable immunodeficiency (CVID). Our aim was to evaluate the prevalence of fatigue, sleep disturbances, and sleep-disordered breathing in adults with CVID. Patients completed 4 validated, self-administered questionnaires and a 1-night disposable home sleep apnea test. Our results demonstrated increased median Patient-Reported Outcomes Measurement Information System fatigue scores of 58.7 in patients with CVID in addition to clinically significant fatigue as measured by Fatigue Severity Scale score (median, 5.2) and overall poor sleep quality based on global Pittsburgh Sleep Quality Index score (median, 9.0). For CVID patients who completed the home sleep apnea test, 76.9% met criteria for sleep-disordered breathing with an Apnea-Hypopnea Index score of 5 or greater. The results of our study indicate that patients with CVID may have increased rates of undiagnosed sleep disorders that may contribute to increased fatigue and reduced health-related quality of life.


Assuntos
Imunodeficiência de Variável Comum , Fadiga , Qualidade de Vida , Transtornos do Sono-Vigília , Humanos , Masculino , Feminino , Imunodeficiência de Variável Comum/complicações , Imunodeficiência de Variável Comum/epidemiologia , Imunodeficiência de Variável Comum/diagnóstico , Pessoa de Meia-Idade , Adulto , Inquéritos e Questionários , Fadiga/epidemiologia , Fadiga/etiologia , Fadiga/diagnóstico , Transtornos do Sono-Vigília/epidemiologia , Transtornos do Sono-Vigília/etiologia , Transtornos do Sono-Vigília/diagnóstico , Índice de Gravidade de Doença , Prevalência , Idoso , Síndromes da Apneia do Sono/epidemiologia , Síndromes da Apneia do Sono/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA