Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 243(2): 580-590, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38488228

RESUMO

Non-structural carbohydrates (NSCs), as the labile fraction and dominant carbon currency, are essential mediators of plant adaptation to environments. However, whether and how NSC coordinates with plant economic strategy frameworks, particularly the well-recognized leaf economics spectrums (LES) and root economics space (RES), remains unclear. We examined the relationships between NSC and key plant economics traits in leaves and fine roots across 90 alpine coniferous populations on the Tibetan Plateau, China. We observed contrasting coordination of NSC with economics traits in leaves and roots. Leaf total NSC and soluble sugar aligned with the leaf economic spectrum, conveying a trade-off between growth and storage in leaves. However, NSC in roots was independent of the root economic spectrum, but highly coordinated with root foraging, with more starch and less sugar in forage-efficient, thinner roots. Further, NSC-trait coordination in leaves and roots was, respectively, driven by local temperature and precipitation. These findings highlight distinct roles of NSC in shaping the above- and belowground multidimensional economics trait space, and NSC-based carbon economics provides a mechanistic understanding of how plants adapt to heterogeneous habitats and respond to environmental changes.


Assuntos
Florestas , Folhas de Planta , Raízes de Plantas , Traqueófitas , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Traqueófitas/fisiologia , Metabolismo dos Carboidratos , Carboidratos , Característica Quantitativa Herdável , Temperatura
2.
Photosynth Res ; 161(1-2): 51-64, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38865029

RESUMO

Photostasis is the light-dependent maintenance of energy balance associated with cellular homeostasis in photoautotrophs. We review evidence that illustrates how photosynthetic adaptation in polar photoautrophs such as aquatic green algae, cyanobacteria, boreal conifers as well as terrestrial angiosperms exhibit an astonishing plasticity in structure and function of the photosynthetic apparatus. This plasticity contributes to the maintenance of photostasis, which is essential for the long-term survival in the seemingly inhospitable Antarctic and Arctic habitats. However, evidence indicates that polar photoautrophic species exhibit different functional solutions for the maintenance of photostasis. We suggest that this reflects, in part, the genetic diversity symbolized by inherent genetic redundancy characteristic of polar photoautotrophs which enhances their survival in a thermodynamically challenging environment.


Assuntos
Adaptação Fisiológica , Fotossíntese , Fotossíntese/fisiologia , Regiões Árticas , Regiões Antárticas , Cianobactérias/fisiologia , Cianobactérias/genética , Clorófitas/fisiologia , Clorófitas/genética , Ecossistema , Luz , Magnoliopsida/fisiologia , Magnoliopsida/genética , Traqueófitas/fisiologia , Traqueófitas/genética
3.
BMC Plant Biol ; 21(1): 33, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33419387

RESUMO

BACKGROUND: Our understanding of plastid transcriptomes is limited to a few model plants whose plastid genomes (plastomes) have a highly conserved gene order. Consequently, little is known about how gene expression changes in response to genomic rearrangements in plastids. This is particularly important in the highly rearranged conifer plastomes. RESULTS: We sequenced and reported the plastomes and plastid transcriptomes of six conifer species, representing all six extant families. Strand-specific RNAseq data show a nearly full transcription of both plastomic strands and detect C-to-U RNA-editing sites at both sense and antisense transcripts. We demonstrate that the expression of plastid coding genes is strongly functionally dependent among conifer species. However, the strength of this association declines as the number of plastomic rearrangements increases. This finding indicates that plastomic rearrangement influences gene expression. CONCLUSIONS: Our data provide the first line of evidence that plastomic rearrangements not only complicate the plastomic architecture but also drive the dynamics of plastid transcriptomes in conifers.


Assuntos
Evolução Molecular , Rearranjo Gênico/fisiologia , Genomas de Plastídeos , Traqueófitas/genética , Traqueófitas/fisiologia , Regulação da Expressão Gênica de Plantas , Filogenia
4.
Ecotoxicol Environ Saf ; 215: 112137, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33740490

RESUMO

In the past few decades, industrialization has caused a large number of pollutants to be released into the atmosphere. Forest ecosystems play an important function in regulating the biogeochemistry and the circulation of metal ions pollutants. Forest ecosystems affect the absorption of pollutants and dissolution of nutrients from the atmosphere and vegetation canopy, thereby influencing the content and composition of forest floor leachate and soil solution. This study examined changes in acid anions (NO3-, SO42-, Cl-) and metal cations (K+, Ca2+, Na2+, Mg2+, Fe3+, Pb2+, Cu2+, Cd2+) in rainfall, throughfall, stemflow, and forest floor leachate for five different forests (Larix principis-rupprechtii, Picea wilsonii, Picea crassifolia, Betula platyphylla and Rhododendron communities). The results showed that the enrichment capacity of acid anions and metal cations in the vegetation canopy of the coniferous forests (L. principis-rupprechtii, P. wilsonii, P. crassifolia) was stronger than that of the broad-leaved forests (B. platyphylla and Rhododendron communities). The content of acid anions and metal cations in stemflow of coniferous forests were 3.7-5.6 times and 0-9.3 times higher than those of broad-leaved forests, respectively. Corresponding values in throughfall were 1-1.4 times and 0.3-2.4 times, respectively. The contents of NO3-, Cl-, K+, Mg2+, Fe3+, Pb2+, Cu2+, and Cd2+ in leachate filtered from the soil layers that are deepening gradually showed consistent decreasing trend for all the forest stands. In addition, NO3-, Cl-, K+, Mg2+, Fe3+, and Pb2+ were also concentrated in the topsoil, except for Cu2+ and Cd2+. Nevertheless, SO42- and Na+ were concentrated in the subsoil, whereas Ca2+ was concentrated in the upper soil layers. Soil organic carbon (SOC) and total nitrogen (TN) contents in coniferous forest stands were 20-37% and 34-63% higher than those in broad-leaved forest stands, respectively. This results also shown that the contents of OC and TN has a strong correlation with the content of partial metal cations in soil and litter, indicating that coniferous forest stands had stronger ion scavenging and adsorption capacity in soil layer and litter layer than broad-leaved forest stands. Therefore, L. principis-rupprechtii, P. wilsonii, P. crassifolia had higher air pollutant adsorption and soil pollution remediation capacities than the other two forests. Thus, we recommend planting coniferous tree species (L. principis-rupprechtii, P. wilsonii and P. crassifolia) for eco-rehabilitation and water purification to improve the ecological service function of forest ecosystems.


Assuntos
Recuperação e Remediação Ambiental , Florestas , Traqueófitas/fisiologia , Adsorção , Betula , Carbono/química , China , Ecossistema , Íons , Nitrogênio/análise , Picea , Solo/química , Árvores
5.
Am Nat ; 195(2): 166-180, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32017614

RESUMO

Plant community response to climate change ranges from synchronous tracking to strong mismatch. Explaining this variation in climate change response is critical for accurate global change modeling. Here we quantify how closely assemblages track changes in climate (match/mismatch) and how broadly climate niches are spread within assemblages (narrow/broad ecological tolerance, or "filtering") using data for the past 21,000 years for 531 eastern North American fossil pollen assemblages. Although climate matching has been strong over the last 21 millennia, mismatch increased in 30% of assemblages during the rapid climate shifts between 14.5 and 10 ka. Assemblage matching rebounded toward the present day in 10%-20% of assemblages. Climate-assemblage mismatch was greater in tree-dominated and high-latitude assemblages, consistent with persisting populations, slower dispersal rates, and glacial retreat. In contrast, climate matching was greater for assemblages comprising taxa with higher median seed mass. More than half of the assemblages were climatically filtered at any given time, with peak filtering occurring at 8.5 ka for nearly 80% of assemblages. Thus, vegetation assemblages have highly variable rates of climate mismatch and filtering over millennial scales. These climate responses can be partially predicted by species' traits and life histories. These findings help constrain predictions for plant community response to contemporary climate change.


Assuntos
Mudança Climática , Pólen/classificação , Fósseis , Camada de Gelo , América do Norte , Sementes/anatomia & histologia , Traqueófitas/anatomia & histologia , Traqueófitas/fisiologia , Árvores
6.
New Phytol ; 225(2): 679-692, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31276231

RESUMO

Trees may survive prolonged droughts by shifting water uptake to reliable water sources, but it is unknown if the dominant mechanism involves activating existing roots or growing new roots during drought, or some combination of the two. To gain mechanistic insights on this unknown, a dynamic root-hydraulic modeling framework was developed that set up a feedback between hydraulic controls over carbon allocation and the role of root growth on soil-plant hydraulics. The new model was tested using a 5 yr drought/heat field experiment on an established piñon-juniper stand with root access to bedrock groundwater. Owing to the high carbon cost per unit root area, modeled trees initialized without adequate bedrock groundwater access experienced potentially lethal declines in water potential, while all of the experimental trees maintained nonlethal water potentials. Simulated trees were unable to grow roots rapidly enough to mediate the hydraulic stress, particularly during warm droughts. Alternatively, modeled trees initiated with root access to bedrock groundwater matched the hydraulics of the experimental trees by increasing their water uptake from bedrock groundwater when soil layers dried out. Therefore, the modeling framework identified a critical mechanism for drought response that required trees to shift water uptake among existing roots rather than growing new roots.


Assuntos
Carbono/metabolismo , Secas , Modelos Biológicos , Raízes de Plantas/fisiologia , Traqueófitas/fisiologia , Água/fisiologia , Simulação por Computador , Água Subterrânea , Juniperus/fisiologia , Pinus/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Transpiração Vegetal/fisiologia , Fatores de Tempo
7.
Am Nat ; 194(5): 640-653, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31613666

RESUMO

The extent to which competitive interactions and niche differentiation structure communities has been highly controversial. To quantify evidence for key features of plant community structure, I recharacterized published data from interaction experiments as networks of competitive and facilitative interactions. I measured the network structure of 31 woody and herbaceous communities, including the intensity, distribution, and diversity of interactions at the species-pair and community levels to determine the generality of competition, winner-loser relationships, and unequal interaction allocation. I developed novel methodology using meta-analysis to incorporate interaction uncertainty into estimates of structural metrics among independent networks. Plant communities were competitive, but intraspecific interactions were sometimes more intense than interspecific interactions. On the whole, interactions were imbalanced and communities were transitive. However, facilitation, balanced interactions, and intransitivity were common in individual communities. Synthesizing network metrics using meta-analysis is an original approach with which to generalize community structure in a systematic way.


Assuntos
Biota , Traqueófitas/fisiologia , Biodiversidade , Ecossistema , Modelos Biológicos , Dinâmica Populacional
8.
Proc Biol Sci ; 286(1912): 20191887, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31594500

RESUMO

Biodiversity hotspots are important for understanding how areas of high species richness form, but disentangling the processes that produce them is difficult. We combine geographical ranges, phylogenetic relationships and trait data for 606 conifer species in order to explore the mechanisms underlying richness hotspot formation. We identify eight richness hotspots that overlap known centres of plant endemism and diversity, and find that conifer richness hotspots occur in mountainous areas within broader regions of long-term climate stability. Conifer hotspots are not unique in their species composition, traits or phylogenetic structure; however, a large percentage of their species are not restricted to hotspots and they rarely show either a preponderance of new radiating lineages or old relictual lineages. We suggest that conifer hotspots have primarily formed as a result of lineages accumulating over evolutionary time scales in stable mountainous areas rather than through high origination, preferential retention of relictual lineages or radiation of species with unique traits, although such processes may contribute to nuanced differences among hotspots. Conifers suggest that a simple accumulation of regional diversity can generate high species richness without additional processes and that geography rather than biology may play a primary role in hotspot formation.


Assuntos
Biodiversidade , Traqueófitas/fisiologia , Animais , Evolução Biológica , Clima , Cycadopsida , Geografia , Filogenia , Plantas
9.
New Phytol ; 221(4): 1685-1690, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30289999

RESUMO

Although a requirement for boron is a well-established feature of vascular plants, its designation, for almost a century, as essential is challenged and, instead, the proposal is made that it has never been so as conventionally defined. This is because an alternative interpretation of published evidence negates its compliance with one of the criteria for essentiality, that its effects are direct. The alternative, here postulated, is that boron is, and always has been, potentially toxic, a feature which, for normal growth, development and reproduction, needed to be nullified. This was enabled by exploitation of boron's ability to be chemically bound to compounds with cis-hydroxyl groups. Although particular cell wall carbohydrate polymers, glycoproteins and membrane glycolipids are among candidates for this role, it is here proposed that soluble phenolic metabolites of, or related to, the components of the pathway of lignin biosynthesis, themselves potentially toxic, are primarily used by vascular plants. When metabolic circumstances allow these phenolics to accumulate endogenously in the cytoplasm, their own inherent toxicity is also alleviated, partially at least, by formation of complexes with boron. This chemical reciprocity, enhanced by physical sequestration of the complexes in vacuoles and/or apoplast, thus achieves, in a flexible but indirect manner, a minimization of the inherent toxicities of both boron and relevant phenolics. In these ways, the multifarious outcomes of impairments, natural or experimental, to this interplay are responsible for the lack of consensus to explain the diverse effects observed in the many searches for boron's primary metabolic role, here considered to be nonexistent. In particular, since a toxic element cannot have 'deficiency symptoms', those previously so-called are postulated to be largely due to the expressed toxicity of phenylpropanoids. A principal requirement for the otherwise toxic boron is to nullify, by means of its indirect chemical and physical sequestration, such expression. In these ways, it is therefore neither an essential nor a beneficial element as currently strictly defined.


Assuntos
Boro/fisiologia , Traqueófitas/fisiologia , Boro/toxicidade , Lignina/metabolismo , Desenvolvimento Vegetal , Raízes de Plantas/crescimento & desenvolvimento , Polinização , Oligoelementos/metabolismo
10.
New Phytol ; 224(4): 1444-1463, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31179548

RESUMO

Conifers have evolved complex oleoresin terpene defenses against herbivores and pathogens. In co-evolved bark beetles, conifer terpenes also serve chemo-ecological functions as pheromone precursors, chemical barcodes for host identification, or nutrients for insect-associated microbiomes. We highlight the genomic, molecular and biochemical underpinnings of the large chemical space of conifer oleoresin terpenes and volatiles. Conifer terpenes are predominantly the products of the conifer terpene synthase (TPS) gene family. Terpene diversity is increased by cytochromes P450 of the CYP720B class. Many conifer TPS are multiproduct enzymes. Multisubstrate CYP720B enzymes catalyse multistep oxidations. We summarise known terpenoid gene functions in various different conifer species with reference to the annotated terpenoid gene space in a spruce genome. Overall, biosynthesis of terpene diversity in conifers is achieved through a system of biochemical radiation and metabolic grids. Expression of TPS and CYP720B genes can be specific to individual cell types of constitutive or traumatic resin duct systems. Induced terpenoid transcriptomes in resin duct cells lead to dynamic changes of terpene composition and quantity to fend off herbivores and pathogens. While terpenoid defenses have contributed much to the evolutionary success of conifers, under new conditions of climate change, these defences may become inconsequential against range-expanding forest pests.


Assuntos
Alquil e Aril Transferases/metabolismo , Herbivoria , Extratos Vegetais/metabolismo , Traqueófitas/química , Traqueófitas/fisiologia , Alquil e Aril Transferases/genética , Animais , Mudança Climática , Besouros , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Extratos Vegetais/química , Terpenos/metabolismo
11.
Plant Cell Environ ; 42(5): 1674-1689, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30536787

RESUMO

Conifers growing at high elevations need to optimize their stomatal conductance (gs ) for maximizing photosynthetic yield while minimizing water loss under less favourable thermal conditions. Yet the ability of high-elevation conifers to adjust their gs sensitivity to environmental drivers remains largely unexplored. We used 4 years of sap flow measurements to elucidate intraspecific and interspecific variability of gs in Larix decidua Mill. and Picea abies (L.) Karst along an elevational gradient and contrasting soil moisture conditions. Site- and species-specific gs response to main environmental drivers were examined, including vapour pressure deficit, air temperature, solar irradiance, and soil water potential. Our results indicate that maximum gs of L. decidua is >2 times higher, shows a more plastic response to temperature, and down-regulates gs stronger during atmospheric drought compared to P. abies. These differences allow L. decidua to exert more efficient water use, adjust to site-specific thermal conditions, and reduce water loss during drought episodes. The stronger plasticity of gs sensitivity to temperature and higher conductance of L. decidua compared to P. abies provide new insights into species-specific water use strategies, which affect species' performance and should be considered when predicting terrestrial water dynamics under future climatic change.


Assuntos
Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Traqueófitas , Adaptação Fisiológica , Secas , Larix/fisiologia , Pinus/fisiologia , Solo , Temperatura , Traqueófitas/fisiologia , Água/fisiologia
12.
BMC Genet ; 20(1): 81, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31651248

RESUMO

BACKGROUND: Forest trees can occupy extensive geography and environmentally highly variable areas which result in high genetic variability in the direction of pressure from natural selection. At the same time, the majority of conifer species are wind-pollinated from both short and long distances, resulting in wide-spread gene flow, which can lead to maladaptation to local conditions. Quantitative analyses of provenance/progeny tests correct for genetic differences between populations to ensure unbiased genetic parameters are obtained. Commonly, the provenance effect is fitted as a fixed term or can be implemented as a contemporary group in the pedigree. RESULTS: The use of a provenance effect, either as a fixed term or as the same contemporary groups in both maternal and paternal sides of the pedigree, resulted in fairly similar precision of genetic parameters in our case. However, when we developed a phantom contemporary group for the paternal side of the pedigree that considered a different genetic quality of pollen compared with the maternal contribution from trees in the local environment, the model fit and accuracy of breeding values increased. CONCLUSION: Consideration of the mating dynamics and the vector of gene flow are important factors in modelling contemporary genetic groups, particularly when implementing pedigrees within a mixed model framework to obtain unbiased estimates of genetic parameters. This approach is especially important in traits involved in local adaptation.


Assuntos
Variação Genética , Traqueófitas/fisiologia , Fluxo Gênico , Genética Populacional , Genótipo , Modelos Genéticos , Melhoramento Vegetal , Polinização , Reprodução , Traqueófitas/genética
13.
Physiol Plant ; 166(2): 513-524, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29952010

RESUMO

We evaluated the effect of global warming on Araucaria angustifolia (Bert.) O. Kuntze, a critically endangered native tree of Southern Brazil, by studying the effects of short-term high temperature treatment on cell viability, respiration and DNA repair of embryogenic cells. Compared with control cells grown at 25°C, cell viability was reduced by 40% after incubation at 30 and 37°C for 24 and 6 h, respectively, while 2 h at 40 and 42°C killed 95% of the cells. Cell respiration was unaffected at 30-37°C, but dramatically reduced after 2 h at 42°C. The in vitro activity of enzymes of the base excision repair (BER) pathway was determined. Apurinic/apyrimidine endonuclease, measured in extracts from cells incubated for 2 h at 42°C, was completely inactivated while lower temperatures had no effect. The activities of three enzymes of the mitochondrial BER pathway were measured after 30-min preincubation of isolated mitochondria at 25-40°C and one of them, uracil glycosylase, was completely inhibited at 40°C. We conclude that cell viability, respiration and DNA repair have different temperature sensitivities between 25 and 37°C, and that they are all very sensitive to 40 or 42°C. Thus, A. angustifolia will likely be vulnerable to the short-term high temperature events associated with global warming.


Assuntos
Reparo do DNA/fisiologia , Traqueófitas/genética , Traqueófitas/fisiologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Reparo do DNA/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Temperatura , Traqueófitas/enzimologia
14.
Physiol Plant ; 165(4): 843-854, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29923608

RESUMO

More frequently occurring, drought waves call for a deeper understanding of tree hydraulics and fast and easily applicable methods to measure drought stress. The aim of this study was to establish empirical relationships between the percent loss of hydraulic conductivity (PLC) and the relative water loss (RWL) in woody stem axes with different P50 , i.e. the water potential (Ψ) that causes 50% conductivity loss. Branches and saplings of temperate conifer (Picea abies, Larix decidua) and angiosperm species (Acer campestre, Fagus sylvatica, Populus x canescens, Populus tremula, Sorbus torminalis) and trunk wood of mature P. abies trees were analyzed. P50 was calculated from hydraulic measurements following bench top dehydration or air injection. RWL and PLC were fitted by linear, quadratic or cubic equations. Species- or age-specific RWLs at P50 varied between 10 and 25% and P88 , the Ψ that causes 88% conductivity loss, between 18 and 44%. P50 was predicted from the relationship between Ψ and the RWL. The predictive quality for P50 across species was almost 1:1 (r2 = 0.99). The approach presented allows thus reliable and fast prediction of PLC from RWL. Branches and saplings with high hydraulic vulnerability tended to have lower RWLs at P50 and at P88 . The results are discussed with regard to the different water storage capacities in sapwood and survival strategies under drought stress. Potential applications are screening trees for drought sensitivity and a fast interpretation of diurnal, seasonal or drought induced changes in xylem water content upon their impact on conductivity loss.


Assuntos
Árvores/metabolismo , Árvores/fisiologia , Água/metabolismo , Secas , Magnoliopsida/metabolismo , Magnoliopsida/fisiologia , Caules de Planta/metabolismo , Caules de Planta/fisiologia , Traqueófitas/metabolismo , Traqueófitas/fisiologia
15.
J Environ Sci (China) ; 78: 338-351, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30665653

RESUMO

High nitrate (NO3-) loading in water bodies is a crucial factor inducing the eutrophication of lakes. We tried to enhance NO3- reduction in overlying water by coupling sediment microbial fuel cells (SMFCs) with submerged aquatic plant Ceratophyllum demersum. A comparative study was conducted by setting four treatments: open-circuit SMFC (Control), closed-circuit SMFC (SMFC-c), open-circuit SMFC with C. demersum (Plant), and closed-circuit SMFC with C. demersum (P-SMFC-c). The electrochemical parameters were documented to illustrate the bio-electrochemical characteristics of SMFC-c and P-SMFC-c. Removal pathways of NO3- in different treatments were studied by adding quantitative 15NO3- to water column. The results showed that the cathodic reaction in SMFC-c was mainly catalyzed by aerobic organisms attached on the cathode, including algae, Pseudomonas, Bacillus, and Albidiferax. The oxygen secreted by plants significantly improved the power generation of SMFC-c. Both electrogenesis and plants enhanced the complete removal of NO3- from the sediment-water system. The complete removal rates of added 15N increased by 17.6% and 10.2% for SMFC-c and plant, respectively, when compared with control at the end of experiment. The electrochemical/heterotrophic and aerobic denitrification on cathodes mainly drove the higher reduction of NO3- in SMFC-c and plant, respectively. The coexistence of electrogenesis and plants further increased the complete removal of NO3- with a rate of 23.1%. The heterotrophic and aerobic denitrifications were simultaneously promoted with a highest abundance of Flavobacterium, Bacillus, Geobacter, Pseudomonas, Rhodobacter, and Arenimonas on the cathode.


Assuntos
Fontes de Energia Bioelétrica , Nitratos/metabolismo , Traqueófitas/fisiologia , Poluentes Químicos da Água/metabolismo , Traqueófitas/metabolismo
16.
BMC Evol Biol ; 18(1): 125, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30157769

RESUMO

BACKGROUND: Male cones of modern Ephedraceae are compound and compact. No fossil evidence has so far been found to support an origin of the compact compound male cone from a hypothetical loosely-arranged shoot system. RESULTS: Here we describe a new macrofossil taxon, Eamesia chinensis Yang, Lin, Ferguson et Wang, gen. et sp. nov., from the Early Cretaceous of western Liaoning, northeastern China. It was an ephedroid shrub bearing male spikes terminal to twigs, but differs from modern Ephedraceae by its loosely-arranged male cones, the axillary male shoot consisting of an elongated synangiophore on which leaf-like foliar organs were inserted, and four sessile synangia terminal to the apex. CONCLUSIONS: The morphology of this fossil suggests that the modern compact male cone of Ephedra was indeed derived from a once loosely-arranged shoot system, and the male reproductive unit originated from a once elongated axillary male shoot. This new fossil species thus provides a transitional link from the hypothetical ancestral shoot system to the modern compact morphology. Changes of habitat from closed humid forests to open dry deserts and shifts of the pollination syndrome may have acted as the driving forces behind this morphological evolution.


Assuntos
Evolução Biológica , Fósseis , Traqueófitas/anatomia & histologia , Traqueófitas/fisiologia , Florestas , Polinização
17.
Proc Biol Sci ; 285(1877)2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29669903

RESUMO

Often the mutualistic roles of extinct species are inferred based on plausible assumptions, but sometimes palaeoecological evidence can overturn such inferences. We present an example from New Zealand, where it has been widely assumed that some of the largest-seeded plants were dispersed by the giant extinct herbivorous moa (Dinornithiformes). The presence of large seeds in preserved moa gizzard contents supported this hypothesis, and five slow-germinating plant species (Elaeocarpus dentatus, E. hookerianus, Prumnopitys ferruginea, P. taxifolia, Vitex lucens) with thick seedcoats prompted speculation about whether these plants were adapted for moa dispersal. However, we demonstrate that all these assumptions are incorrect. While large seeds were present in 48% of moa gizzards analysed, analysis of 152 moa coprolites (subfossil faeces) revealed a very fine-grained consistency unparalleled in extant herbivores, with no intact seeds larger than 3.3 mm diameter. Secondly, prolonged experimental mechanical scarification of E. dentatus and P. ferruginea seeds did not reduce time to germination, providing no experimental support for the hypothesis that present-day slow germination results from the loss of scarification in moa guts. Paradoxically, although moa were New Zealand's largest native herbivores, the only seeds to survive moa gut passage intact were those of small-seeded herbs and shrubs.


Assuntos
Extinção Biológica , Herbivoria , Paleógnatas/fisiologia , Dispersão de Sementes , Árvores/fisiologia , Animais , Elaeocarpaceae/fisiologia , Fósseis , Nova Zelândia , Sementes/fisiologia , Traqueófitas/fisiologia , Vitex/fisiologia
18.
New Phytol ; 219(4): 1283-1299, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29862531

RESUMO

Trees play a key role in the global hydrological cycle and measurements performed with the thermal dissipation method (TDM) have been crucial in providing whole-tree water-use estimates. Yet, different data processing to calculate whole-tree water use encapsulates uncertainties that have not been systematically assessed. We quantified uncertainties in conifer sap flux density (Fd ) and stand water use caused by commonly applied methods for deriving zero-flow conditions, dampening and sensor calibration. Their contribution has been assessed using a stem segment calibration experiment and 4 yr of TDM measurements in Picea abies and Larix decidua growing in contrasting environments. Uncertainties were then projected on TDM data from different conifers across the northern hemisphere. Commonly applied methods mostly underestimated absolute Fd . Lacking a site- and species-specific calibrations reduced our stand water-use measurements by 37% and induced uncertainty in northern hemisphere Fd . Additionally, although the interdaily variability was maintained, disregarding dampening and/or applying zero-flow conditions that ignored night-time water use reduced the correlation between environment and Fd . The presented ensemble of calibration curves and proposed dampening correction, together with the systematic quantification of data-processing uncertainties, provide crucial steps in improving whole-tree water-use estimates across spatial and temporal scales.


Assuntos
Reologia , Temperatura , Traqueófitas/fisiologia , Incerteza , Calibragem , Modelos Lineares , Especificidade da Espécie , Fatores de Tempo , Árvores/fisiologia , Água
19.
New Phytol ; 219(1): 89-97, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29663406

RESUMO

Rising temperatures and extended periods of drought compromise tree hydraulic and carbohydrate systems, threatening forest health globally. Despite winter's biological significance to many forests, the effects of warmer and dryer winters on tree hydraulic and carbohydrate status have largely been overlooked. Here we report a sharp and previously unknown decline in stem water content of three conifer species during California's anomalous 2015 mid-winter drought that was followed by dampened spring starch accumulation. Recent precipitation and seasonal vapor pressure deficit (VPD) anomaly, not absolute VPD, best predicted the hydraulic patterns observed. By linking relative water content and hydraulic conductivity (Kh ), we estimated that stand-level Kh declined by 52% during California's 2015 mid-winter drought, followed by a 50% reduction in spring starch accumulation. Further examination of tree increment records indicated a concurrent decline of growth with rising mid-winter, but not summer, VPD anomaly. Thus, our findings suggest a seasonality to tree hydraulic and carbohydrate declines, with consequences for annual growth rates, raising novel physiological and ecological questions about how rising winter temperatures will affect forest vitality as climate changes.


Assuntos
Amido/metabolismo , Traqueófitas/fisiologia , Água/metabolismo , California , Metabolismo dos Carboidratos , Florestas , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Transpiração Vegetal , Estações do Ano , Temperatura , Traqueófitas/crescimento & desenvolvimento , Árvores , Pressão de Vapor
20.
Plant Physiol ; 174(4): 2054-2061, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28684434

RESUMO

The vulnerability of plant water transport tissues to a loss of function by cavitation during water stress is a key indicator of the survival capabilities of plant species during drought. Quantifying this important metric has been greatly advanced by noninvasive techniques that allow embolisms to be viewed directly in the vascular system. Here, we present a new method for evaluating the spatial and temporal propagation of embolizing bubbles in the stem xylem during imposed water stress. We demonstrate how the optical method, used previously in leaves, can be adapted to measure the xylem vulnerability of stems. Validation of the technique is carried out by measuring the xylem vulnerability of 13 conifers and two short-vesseled angiosperms and comparing the results with measurements made using the cavitron centrifuge method. Very close agreement between the two methods confirms the reliability of the new optical technique and opens the way to simple, efficient, and reliable assessment of stem vulnerability using standard flatbed scanners, cameras, or microscopes.


Assuntos
Fenômenos Ópticos , Caules de Planta/fisiologia , Xilema/fisiologia , Traqueófitas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA